Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On pyramids and reducedness

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

A convex body K in ℝd is said to be reduced if the minimum width of each convex body properly contained in K is strictly smaller than the minimum width of K. We study the question of Lassak on the existence of reduced polytopes of dimension larger than two. We show that a pyramid of dimension larger than two with equal numbers of facets and vertices is not reduced. This generalizes the main result from [8].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Averkov and H. Martini, On reduced polytopes and antipodality, Adv. Geom., 8 (2008), 617–628.

    Article  Google Scholar 

  2. E. Heil, Kleinste konvexe Körper gegebener Dicke, Preprint No. 453, Fachbereich Mathematik der TH Darmstadt, 1978.

  3. M. Lassak, Reduced convex bodies in the plane, Israel J. Math., 70 (1990), 365–379.

    Article  MATH  MathSciNet  Google Scholar 

  4. M. Lassak, Contributed Problem No. 12, Polytopes: Abstract, Convex and Computational (Scarborough, ON, 1993), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 440, Kluwer Acad. Publ., Dordrecht, 1994, 495.

    Google Scholar 

  5. M. Lassak, Characterizations of reduced polytopes in finite-dimensional normed spaces, Beiträge Algebra Geom., 47, (2006), 559–566.

    MATH  MathSciNet  Google Scholar 

  6. M. Lassak and H. Martini, Reduced bodies in Minkowski space, Acta Math. Hungar., 106 (2005), 17–26.

    Article  MATH  MathSciNet  Google Scholar 

  7. H. Martini, Cross-sectional measures, Intuitive Geometry (Szeged, 1991), Colloq. Math. Soc. J. Bolyai 63, Eds. K. Böröczky and G. Fejes Tóth, North-Holland, Amsterdam, 1994, 269–310.

    Google Scholar 

  8. H. Martini and K. J. Swanepoel, Non-planar simplices are not reduced, Publ. Math. Debrecen, 64 (2004), 101–106.

    MATH  MathSciNet  Google Scholar 

  9. H. Martini and W. Wenzel, Tetrahedra are not reduced, Appl. Math. Lett., 15 (2002), 881–884.

    Article  MATH  MathSciNet  Google Scholar 

  10. R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia of Mathematics and its Applications 44, Cambridge University Press, Cambridge, 1993.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennadiy Averkov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Averkov, G., Martini, H. On pyramids and reducedness. Period Math Hung 57, 117–120 (2008). https://doi.org/10.1007/s10998-008-8117-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-008-8117-x

Mathematics subject classification numbers

Key words and phrases