Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Introgression of UfCyt c6, a thylakoid lumen protein from a green seaweed Ulva fasciata Delile enhanced photosynthesis and growth in tobacco

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Cytochromes are important components of photosynthetic electron transport chain. Here we report on genetic transformation of Cytochrome c6 (UfCyt c6) gene from Ulva fasciata Delile in tobacco for enhanced photosynthesis and growth. UfCyt c6 cDNA had an open reading frame of 330 bp encoding a polypeptide of 109 amino acids with a predicted molecular mass of 11.65 kDa and an isoelectric point of 5.21. UfCyt c6 gene along with a tobacco petE transit peptide sequence under control of CaMV35S promoter was transformed in tobacco through Agrobacterium mediated genetic transformation. Transgenic tobacco grew normal and exhibited enhanced growth as compared to wild type (WT) and vector control (VC) tobacco. Transgenic tobacco had higher contents of photosynthetic pigments and better ratios of photosynthetic pigments. The tobacco expressing UfCyt c6 gene exhibited higher photosynthetic rate and improved water use efficiency. Further activity of the water-splitting complex, photosystem II quantum yield, photochemical quenching, electron transfer rate, and photosynthetic yield were found comparatively higher in transgenic tobacco as compared to WT and VC tobacco. Alternatively basal quantum yield of non-photochemical processes in PSII and non-photochemical quenching were estimated lower in tobacco expressing UfCyt c6 gene. As a result of improved photosynthetic performance the transgenic tobacco had higher contents of sugar and starch, and exhibited comparatively better growth. To the best of our knowledge this is the first report on expression of UfCyt c6 gene from U. fasciata for improved photosynthesis and growth in tobacco.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. FAO (2010) Food and Agriculture Organization of the United Nations

  2. Miyagawa Y, Tamoi M, Shigeoka S (2001) Overexpression of a cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase in tobacco enhances photosynthesis and growth. Nat Biotechnol 19(10):965–969. https://doi.org/10.1038/nbt1001-965

    Article  CAS  PubMed  Google Scholar 

  3. Lefebvre S, Lawson T, Zakhleniuk OV, Lloyd JC, Raines CA, Fryer M (2005) Increased sedoheptulose-1,7-bisphosphatase activity in transgenic tobacco plants stimulates photosynthesis and growth from an early stage in development. Plant Physiol 138(1):451–460. https://doi.org/10.1104/pp.104.055046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Feng L, Wang K, Li Y, Tan Y, Kong J, Li H, Li Y, Zhu Y (2007) Overexpression of SBPase enhances photosynthesis against high temperature stress in transgenic rice plants. Plant Cell Rep 26(9):1635–1646. https://doi.org/10.1007/s00299-006-0299-y

    Article  CAS  PubMed  Google Scholar 

  5. Rosenthal D, Locke A, Khozaei M, Raines C, Long S, Ort D (2011) Over-expressing the C3 photosynthesis cycle enzyme sedoheptulose-1–7 bisphosphatase improves photosynthetic carbon gain and yield under fully open air CO2 fumigation (FACE). BMC Plant Biol 11:123. https://doi.org/10.1186/1471-2229-11-123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kandoi D, Mohanty S, Tripathy BC (2016) Towards efficient photosynthesis: overexpression of Zea mays phosphoenolpyruvate carboxylase in Arabidopsis thaliana. Photosynth Res 130(1–3):47–72. https://doi.org/10.1007/s11120-016-0224-3

    Article  CAS  PubMed  Google Scholar 

  7. Köhler IH, Ruiz-Vera UM, VanLoocke A, Thomey ML, Clemente T et al (2017) Expression of cyanobacterial FBP/SBPase in soybean prevents yield depression under future climate conditions. J Exp Bot 68(3):715–726. https://doi.org/10.1093/jxb/erw435

    Article  CAS  PubMed  Google Scholar 

  8. Lieman-hurwitz J, Rachmilevitch S, Mittler R, Marcus Y, Kaplan A (2003) Enhanced photosynthesis and growth of transgenic plants that express ictB, a gene involved in HCO3-accumulation in cyanobacteria. Plant Biotechnol J 1(1):43–50. https://doi.org/10.1046/j.1467-7652.2003.00003.x

    Article  CAS  PubMed  Google Scholar 

  9. Pellny TK, Ghannoum O, Conroy JP, Schluepmann H, Smeekens S, Andralojc J, Krause KP, Goddijn O, Paul MJ (2004) Genetic modification of photosynthesis with E. coli genes for trehalose synthesis. Plant Biotechnol J 2(1):71–82. https://doi.org/10.1111/j.1467-7652.2004.00053.x

    Article  CAS  PubMed  Google Scholar 

  10. Nölke G, Barsoum M, Houdelet M, Arcalís E, Kreuzaler F, Fischer R, Schillberg S (2018) The integration of algal carbon concentration mechanism components into tobacco chloroplasts increases photosynthetic efficiency and biomass. Biotechnol J. https://doi.org/10.1002/biot.201800170

    Article  PubMed  Google Scholar 

  11. Hajirezaei MR, Peisker M, Tschiersch H, Palatnik JF, Valle EM, Carrillo N, Sonnewald U (2002) Small changes in the activity of chloroplastic NADP+-dependent ferredoxin oxidoreductase lead to impaired plant growth and restrict photosynthetic activity of transgenic tobacco plants. Plant J 29(3):281–293. https://doi.org/10.1046/j.0960-7412.2001.01209.x

    Article  CAS  PubMed  Google Scholar 

  12. Rodriguez RE, Lodeyro A, Poli HO, Zurbriggen M, Peisker M, Palatnik JF, Tognetti VB, Tschiersch H, Hajirezaei MR, Valle EM, Carrillo N (2007) Transgenic tobacco plants overexpressing chloroplastic ferredoxin-NADP(H) reductase display normal rates of photosynthesis and increased tolerance to oxidative stress. Plant Physiol 143(2):639–649. https://doi.org/10.1104/pp.106.090449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chida H, Nakazawa A, Akazaki H, Hirano T, Suruga K et al (2007) Expression of the algal cytochrome c6 gene in Arabidopsis enhances photosynthesis and growth. Plant Cell Physiol 48(7):948–957. https://doi.org/10.1093/pcp/pcm064

    Article  CAS  PubMed  Google Scholar 

  14. Simkin AJ, McAusland L, Lawson T, Raines CA (2017) Over-expression of the RieskeFeS protein increases electron transport rates and biomass yield. Plant Physiol 175(1):135–145. https://doi.org/10.1104/pp.17.00622

    Article  CAS  Google Scholar 

  15. Głowacka K, Kromdijk J, Kucera K, Xie J, Cavanagh AP, Leonelli L, Leakey AD, Ort DR, Niyogi KK, Long SP (2018) Photosystem II subunit S overexpression increases the efficiency of water use in a field-grown crop. Nat Commun 9(1):868. https://doi.org/10.1038/s41467-018-03231-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wastl J, Bendall DS, Howe CJ (2002) Higher plants contain a modified cytochrome c6. Trends Plant Sci 7(6):244–245. https://doi.org/10.1016/S1360-1385(02)02280-X

    Article  CAS  PubMed  Google Scholar 

  17. Howe CJ, Schlarb-ridley BG, Wastl J, Purton S, Bendall DS (2006) The novel cytochrome c6 of chloroplasts: a case of evolutionary bricolage? J Exp Bot 57(1):13–22. https://doi.org/10.1093/jxb/erj023

    Article  CAS  PubMed  Google Scholar 

  18. De la Rosa MA, Navarro JA, Diaz-Quintana A, De la Cerda B, Molina-Heredia FP et al (2002) An evolutionary analysis of the reaction mechanisms of photosystem I reduction by cytochrome c 6 and plastocyanin. Bioelectrochemistry 55(1–2):41–45. https://doi.org/10.1016/S1567-5394(01)00136-0

    Article  PubMed  Google Scholar 

  19. Pedersen MF, Borum J (1996) Nutrient control of algal growth in estuarine waters. Nutrient limitation and the importance of nitrogen requirements and nitrogen storage among phytoplankton and species of macroalgae. Marine Ecol-Progress Ser 142:261–272. https://doi.org/10.3354/meps142261

    Article  CAS  Google Scholar 

  20. Zeng Y, Yang T (2002) RNA isolation from highly viscous samples rich in polyphenols and polysaccharides. Plant Mol Biol Rep 20(4):417–417. https://doi.org/10.1007/BF02772130

    Article  Google Scholar 

  21. Prilusky J, Feder CE, Zeev-Ben-Mordehai T, Rydberg E, Man O, Beckman JS, Silman I, Sussman JL (2005) FoldIndex: a simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics 21(16):3435–3438. https://doi.org/10.1093/bioinformatics/bti537

    Article  CAS  PubMed  Google Scholar 

  22. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739. https://doi.org/10.1093/molbev/msr121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Töpfer R, Matzeit V, Gronenborn B, Schell J, Steinbiss HH (1987) A set of plant expression vectors for transcriptional and translational fusions. Nucleic Acids Res 15(14):5890. https://doi.org/10.1093/nar/15.14.5890

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kumari J, Udawat P, Dubey AK, Haque MI, Rathore MS, Jha B (2017) Overexpression of SbSI-1, a nuclear protein from Salicornia brachiata confers drought and salt stress tolerance and maintains photosynthetic efficiency in transgenic tobacco. Front Plant Sci 8:1215. https://doi.org/10.3389/fpls.2017.01215

    Article  PubMed  PubMed Central  Google Scholar 

  25. Inskeep W, Bloom PR (1985) Extinction coefficients of Chlorophyll a and b in N,N-dimethylformamide and 80% acetone. Plant Physiol 77(2):483–485. https://doi.org/10.1104/pp.77.2.483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chamovitz D, Sandmann G, Hirschberg J (1993) Molecular and biochemical characterization of herbicide-resistant mutants of cyanobacteria reveals that phytoene desaturation is a rate limiting step in carotenoid biosynthesis. J Biol Chem 268(23):17348–17353

    CAS  PubMed  Google Scholar 

  27. Simkin AJ, McAusland L, Headland LR, Lawson T, Raines CA (2015) Multigene manipulation of photosynthetic carbon assimilation increases CO2 fixation and biomass yield in tobacco. J Exp Bot 66(13):4075–4090. https://doi.org/10.1093/jxb/erv204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kromdijk J, Głowacka K, Leonelli L, Gabilly ST, Iwai M, Niyogi KK, Long SP (2016) Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science 354(6314):857–861. https://doi.org/10.1126/science.aai8878

    Article  CAS  PubMed  Google Scholar 

  29. Alam MM, Tanaka T, Nakamura H, Ichikawa H, Kobayashi K, Yaeno T, Yamaoka N, Shimomoto K, Takayama K, Nishina H, Nishiguchi M (2015) Overexpression of a rice heme activator protein gene (OsHAP2E) confers resistance to pathogens, salinity and drought, and increases photosynthesis and tiller number. Plant Biotechnol J 13(1):85–96. https://doi.org/10.1111/pbi.12239

    Article  CAS  PubMed  Google Scholar 

  30. Zhu XG, Song Q, Ort DR (2012) Elements of a dynamic systems model of canopy photosynthesis. Curr Opin Plant Biol 15(3):237–244. https://doi.org/10.1016/j.pbi.2012.01.010

    Article  CAS  PubMed  Google Scholar 

  31. Long SP, Marshall-Colon A, Zhu XG (2015) Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell 161(1):56–66. https://doi.org/10.1016/j.cell.2015.03.019

    Article  CAS  PubMed  Google Scholar 

  32. Babani F, Ylli A, Lichtenthaler HK (2003) Optical properties of leaves on some wheat genotypes. In: Fifth general conference of the Balkan Physical Union, Vrnjacka Banja,Serbia and Montenegro, SP15–037:25–29

  33. Stephenson TJ, McIntyre CL, Collet C, Xue GP (2011) TaNF-YB3 is involved in the regulation of photosynthesis genes in Triticum aestivum. Funct Integr Genom 11(2):327–340. https://doi.org/10.1007/s10142-011-0212-9

    Article  CAS  Google Scholar 

  34. Flowers MD, Fiscus EL, Burkey KO, Booker FL, Dubois JJB (2007) Photosynthesis, chlorophyll fluorescence, and yield of snap bean (Phaseolus vulgaris L.) genotypes differing in sensitivity to ozone. Environ Exp Bot 61:190–198. https://doi.org/10.1016/j.envexpbot.2007.05.009

    Article  CAS  Google Scholar 

  35. Shanmugam S, Kjaer KH, Ottosen CO, Rosenqvist E, Sharma DK, Wollenweber B (2013) The alleviating effect of elevated CO2 on heat stress susceptibility of two wheat (Triticum aestivum L.) cultivars. J Agron Crop Sci 199(5):340–350. https://doi.org/10.1111/jac.12023

    Article  CAS  Google Scholar 

  36. Evans JR, Poorter H (2001) Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant Cell Environment 24(8):755–767. https://doi.org/10.1046/j.1365-3040.2001.00724.x

    Article  CAS  Google Scholar 

  37. Walters RG (2005) Towards an understanding of photosynthetic acclimation. J Exp Bot 56:435–447. https://doi.org/10.1093/jxb/eri060

    Article  CAS  PubMed  Google Scholar 

  38. Björkman O, Demmig-Adams B (1995) Regulation of photosynthetic light energy capture, conversion, and dissipation in leaves of higher plants. In: Schulze ED, Caldwell MM (eds) Ecophysiology of photosynthesis. Springer, Berlin, pp 17–47

    Chapter  Google Scholar 

  39. Maroco JP, Rodrigues ML, Lopes C et al (2002) Limitations to leaf photosynthesis in field-grown grapevine under drought-metabolic and modelling approaches. Funct Plant Biol 29(4):451–459. https://doi.org/10.1071/PP01040

    Article  PubMed  Google Scholar 

  40. Long SP, Zhu XG, Naidu SL, Ort DR (2006) Can improvement in photosynthesis increase crop yields? Plant Cell Environ 29(3):315–330. https://doi.org/10.1111/j.1365-3040.2005.01493.x

    Article  CAS  PubMed  Google Scholar 

  41. Karaba A, Dixit S, Greco R, Aharoni A, Trijatmiko KR, Marsch-Martinez N, Krishnan A, Nataraja KN, Udayakumar M, Pereira A (2007) Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. Proc Natl Acad Sci USA 104(39):15270–15275. https://doi.org/10.1073/pnas.0707294104

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yamane Y, Shikanai T, Kashino Y, Koike H, Satoh K (2000) Reduction of QA in the dark: another cause of fluorescence F0 increases by high temperatures in higher plants. Photosynth Res 63(1):23–34. https://doi.org/10.1023/A:1006350706802

    Article  CAS  PubMed  Google Scholar 

  43. Murkowski A (2002) Oddzialywanie czynnikow stresowych na luminescencje chlorofilu w aparacie fotosyntetycznym roslin uprawnych. Acta Agrophys 61:1–158

    Google Scholar 

  44. Oukarroum A, Bussotti F, Goltsev V, Kalaji HM (2015) Correlation between reactive oxygen species production and photochemistry of photosystems I and II in Lemna gibba L. plants under salt stress. Environ Exp Bot 109:80–88. https://doi.org/10.1016/j.envexpbot.2014.08.005

    Article  CAS  Google Scholar 

  45. Pereira WE, de Siqueira DL, Martínez CA, Puiatti M (2000) Gas exchange and chlorophyll fluorescence in four citrus rootstocks under aluminium stress. J Plant Physiol 157:513–520. https://doi.org/10.1016/S0176-1617(00)80106-6

    Article  CAS  Google Scholar 

  46. Guo HX, Liu WQ, Shi YC (2006) Effects of different nitrogen forms on photosynthetic rate and the chlorophyll fluorescence induction kinetics of flue-cured tobacco. Photosynthetica 44:140–142

    Article  CAS  Google Scholar 

  47. Mao LZ, Lu HF, Wang Q, Cai MM (2007) Comparative photosynthesis characteristics of Calycanthus chinensis and Chimonanthus praecox. Photosynthetica 45(4):601–605

    Article  CAS  Google Scholar 

  48. Tezara W, Martianez D, Rengifo E, Herrera A (2003) Photosynthetic responses of the tropical spiny shrub Lycium nodosum (Solanaceae) to drought, soil salinity and saline spray. Ann Bot 92:757–765. https://doi.org/10.1093/aob/mcg199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhong XM, Shi ZS, Li FH, Huang HJ (2014) Photosynthesis and chlorophyll fluorescence of infertile and fertile stalks of paired near-isogenic lines in maize (Zea mays L.) under shade conditions. Photosynthetica 52:597–603

    Article  CAS  Google Scholar 

  50. Govindjee (2002) A role for a light-harvesting antenna complex of photosystem II in photoprotection. Plant Cell 14:1663–1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Junge W (1977) Physical aspects of light harvesting, electron transport and electrochemical potential generation in photosynthesis of green plants. In: Trebst A, Avron M (eds) Encyclopedia of Plant Physiology, vol 5. Springer, New York, pp 59–93

    Google Scholar 

  52. Ding F, Wang M, Zhang S (2017) Overexpression of a Calvin cycle enzyme SBPase improves tolerance to chilling-induced oxidative stress in tomato plants. Sci Hort 214:27–33. https://doi.org/10.1016/j.scienta.2016.11.010

    Article  CAS  Google Scholar 

  53. Nunes-Nesi A, Carrari F, Lytovchenko A, Smith AM, Loureiro ME, Ratcliffe RG, Sweetlove LJ, Fernie AR (2005) Enhanced photosynthetic performance and growth as a consequence of decreasing mitochondrial malate dehydrogenase activity in transgenic tomato plants. Plant Physiol 137(2):611–622. https://doi.org/10.1104/pp.104.055566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

CSIR-CSMCRI PRIS 159/2017. Authors thankfully acknowledge the CSIR-Central Salt and Marine Chemicals Research Institute, Govt. of India for financial support (CSC0116) under XIIth five year plan project. KK acknowledge financial support from CSIR, Govt. of India in the form of CSIR-JRF. SY and KK are thankful to Academy of Council of Scientific and Industrial Research (AcSIR), New Delhi for registration in Ph.D. program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mangal S. Rathore or Bhavanath Jha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11033_2018_4318_MOESM1_ESM.jpg

In silico analysis: Nucleotide sequence of UfCyt c6 gene with derived amino acids sequence (a), predicted folding pattern of UfCyt c6 protein (b), predicated secondary and tertiary structure of UfCyt c6 protein (c – d), predicted localization of UfCyt c6 protein as a soluble lumen protein (e) and predicted phosphorylation sites in UfCyt c6 protein (f). The underline sequence represent UTR region and the asterisk denotes N glycosylation in amino acid sequence in the nucleotide / amino acid sequence. Supplementary figure S1 (JPG 58 KB)

11033_2018_4318_MOESM2_ESM.jpg

Visual growth observations of soil transplanted WC, VC and T0 generation transgenic plants under normal growth conditions in greenhouse after 30 (a), 75 (b), and 90 (c) days of growth—Supplementary figure S2 (JPG 494 KB)

11033_2018_4318_MOESM3_ESM.jpg

Comparison of leaf (3rd leaf) area after 6 weeks of growth in soil (a) and flowering (b) in WT, VC and transgenic lines (L1 and L3)—Supplementary figure S3 (JPG 524 KB)

11033_2018_4318_MOESM4_ESM.jpg

Chlorophyll a (a) and chlorophyll b (b) contents in WT, VC and transgenic lines (L1 and L3) after 15 d (a), 30 d (b), 45 d (c) and 60 d (d) growth in soil—Supplementary figure S4 (JPG 429 KB)

11033_2018_4318_MOESM5_ESM.jpg

F0 (a), FM (b), FV (c), FV / F0 (d), F0 / FM (e), FV’ / FM’ (f), 1-qP (g) and qN (h) in WT, VC and transgenic lines (L1 and L3) under field conditions after 45 days of soil transplantation—Supplementary figure S5 (JPG 556 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, S.K., Khatri, K., Rathore, M.S. et al. Introgression of UfCyt c6, a thylakoid lumen protein from a green seaweed Ulva fasciata Delile enhanced photosynthesis and growth in tobacco. Mol Biol Rep 45, 1745–1758 (2018). https://doi.org/10.1007/s11033-018-4318-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-018-4318-1

Keywords