Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Towards a solid solution of real-time fire and flame detection

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Although the object detection and recognition has received growing attention for decades, a robust fire and flame detection method is rarely explored. This paper presents an empirical study, towards a general and solid approach for fast detection of fire and flame in videos, with the applications in video surveillance and event retrieval. Our system consists of three cascaded steps: (1) candidate regions proposing by a background model, (2) fire region classifying with color-texture features and a dictionary of visual words, and (3) temporal verifying. The experimental evaluation and analysis are done for each step. We believe that it is a useful service to both academic research and real-world application. In addition, we release the software of the proposed system with the source code, as well as a public benchmark and data set, including 64 video clips covered both indoor and outdoor scenes under different conditions. We achieve an 82 % Recall with 93 % Precision on the data set, and greatly improve the performance by state-of-the-arts methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Project page. The data set and software of the proposed system can be downloaded from the web page: http://vision.sysu.edu.cn/systems/fire-detection/

References

  1. Abdel-Hakim A, Farag A (2006) Csift: A sift descriptor with color invariant characteristics. Comput Vision Pattern R, 2006 IEEE Comput Soc Conf :1978–1983

  2. Bay H, Ess A, Tuytelaars T, Gool LV (2008) Surf: Speeded up robust features. Comput Vision Image Underst (CVIU) 110 (3):346–359

    Article  Google Scholar 

  3. Borges PVK, Izquierdo E (2010) A probabilistic aprroach for vision-based fire detection in videos. IEEE Trans Circ Syst Vi Technol 20 (5):721–731

    Article  Google Scholar 

  4. Celik T, Demirel H, Ozkaramanli H, Uyguroglu M (2007) Fire detection using statistical color model in video sequences. J Visual C Image Represent 18 (2):176–185

    Article  Google Scholar 

  5. Cetin AE (2007) Computer vision based fire detection software. http://signal.ee.bilkent.edu.tr/VisiFire

  6. Chang CC, Lin CJ (2001) LIBSVM: a library for support vector machines. http://www.csie.ntu.edu.tw/cjlin/libsvm

  7. Chen TH, Wu PH, Chiou YC (2004) An early fire-detection method based on image processing. IEEE Int Conf Image Process (ICIP’04):1707–1710

  8. Cho BH, Bae JW, Jung SH (2008) Image processing-based fire detection system using statistic color model. Int Conf Adv Lang Process Web Inf Technol(ALPIT’08):65–76

  9. Comaniciu D, Ramesh V, Meer P (2000) Real-time tracking of non-rigid objects using mean shift. IEEE Comput Soc Conf Comput Vision Pattern R (CVPR’00):2142–2142

  10. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Comput Soc Conf 1:886–893

    Google Scholar 

  11. Duan X, Lin L, Chao H (2013) Discovering video shot categories by unsupervised stochastic graph partition. IEEE Trans Multimed 15 (1):167–180

    Article  Google Scholar 

  12. Habiboglu YH, Gnay O, Cetin AE (2012) Covariance matrix-based fire and flame detection method in video. Mach Vis Appl:1103–1113

  13. Healey G, Slater D, Lin T, Drda B, Goedeke A (1993) A system for real-time fire detection. IEEE Comput Soc Conf Comput Vision Pattern R (CVPR’93):605–606

  14. Horng W, Peng J, Chen C (2005) A new image-based real-time flame detection method using color analysis. IEEE Netw Sens Control:100–105

  15. Jurie F, Triggs B (2005) Creating efficient codebooks for visual recognition. Computer Vision, 2005. ICCV 2005. Tenth IEEE Int Conf 1:604–610

    Google Scholar 

  16. Ko BC, Cheong KH, Nam JY (2009) Fire detection based on vision sensor and support vector machines. Fire Saf J 44 (3):322–329

    Article  Google Scholar 

  17. Lai H, Pan Y, Liu C, Lin L, Wu J (2013) Sparse learning-to-rank via an efficient primal-dual algorithm. IEEE Trans Comput 62 (6):1221–1233

    Article  MathSciNet  Google Scholar 

  18. Lee B, Han D (2007) Real-time fire detection using camera sequence image in tunnel environment. In: Proceedings of the intelligent computing 3rd international conference on Advanced intelligent computing theories and applications, ICIC’07, pp. 1209–1220

  19. Lin L, Liu X, Zhu SC (2010) Layered graph matching with composite cluster sampling. IEEE Trans Pattern Anal Mach Intell 32 (8):1426–1442

    Article  Google Scholar 

  20. Lin L, Lu Y, Pan Y, Chen X (2012) Integrating graph partitioning and matching for trajectory analysis in video surveillance. IEEE Trans Image Process 21 (12):4844–4857

    Article  MathSciNet  Google Scholar 

  21. Lin L, Luo P, Chen X, Zeng K (2012) Representing and recognizing objects with massive local image patches. Pattern R 45 (1):231–240

    Article  MATH  Google Scholar 

  22. Lin L, Wang Y, Liu Y, Xiong C, Zeng K (2009) Marker-less registration based on template tracking for augmented reality. Multimedia Tools and Applications 41 (2):235–252

    Article  MATH  Google Scholar 

  23. Liu CB, Ahuja N (2004) Vision based fire detection. Pattern Recognition, 2004. ICPR 2004. Proc 17th Int Conf 4:134–137

    Google Scholar 

  24. Liu X, Lin L, Jin H (2013) Contextualized trajectory parsing with spatio-temporal graph. IEEE Trans Pattern Anal Mach Intell 35 (12):3010–3024

    Google Scholar 

  25. Liu X, Lin L, Jin H, Yan S, Tao W (2011) Integrating spatio-temporal context with multiview representation for object recognition in visual surveillance. IEEE Trans Circ Syst Vi Technol 21 (4):393–407

    Article  Google Scholar 

  26. Lowe D. (1999) Object recognition from local scale-invariant features. Computer Vision, 1999. The Proceedings of the Seventh IEEE International Conference on 2, 1150–1157

  27. Luo R, Su K (2007) Autonomous fire-detection system using adaptive sensory fusion for intelligent security robot. IEEE/ASME Trans Mechatron 12 (3):274–281

    Article  Google Scholar 

  28. Nowak E, Jurie F, Triggs B (2006) Sampling strategies for bag-of-features image classification. Eur Conf Comput Vision

  29. Podraj P, Hashimoto H (2008) Intelligent space as a framework for fire detection and evacuation. Fire Technol 44:65–76

    Article  Google Scholar 

  30. van de Sande K, Gevers T, Snoek C (2010) Evaluating color descriptors for object and scene recognition. Pattern Anal Mach Intell IEEE Trans:1582–1596

  31. Stauffer C, Grimson WEL (1999) Adaptive background mixture models for real-time tracking. IEEE Comput Soc Conf Comput Vision Pattern R (CVPR’99):2246–2252

  32. Toreyin BU, Cetin AE (2007) Online detection of fire in video. IEEE Comput Soc Conf Comput Vision Pattern R (CVPR’07):1–5

  33. Toreyin BU, Dedeoglu Y, Gdkbay U, Cetin AE (2006) Computer vision based method for real-time fire and flame detection. Pattern R Lett:49–58

  34. Walter PI, Shah M, Lobo NV (2002) Flame recognition in video. Pattern Recognition Letters 23 (1–3):319–327

    MATH  Google Scholar 

  35. van de Weijer J, Gevers T, Bagdanov A (2006) Boosting color saliency in image feature detection. Pattern Anal Mach Intell IEEE Trans:150–156

  36. Yao B, Yang X, Lin L, Lee M, Zhu SC (2010) I2t: Image parsing to text description. Proc IEEE 98 (8):1485–1508

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiying Li.

Additional information

This work was supported by Fundamental Science and Technology Program of Ministry of Public Security (no. 2013GABJC013), Program of Guangzhou Zhujiang Star of Science and Technology (no. 2013J2200067), Guangdong Science and Technology Program (no. 2012B031500006), Guangdong Natural Science Foundation (no. S2013050014548), Special Project on Integration of Industry, Education and Research of Guangdong Province (no. 2012B091000101) and Fundamental Research Funds for the Central Universities (no. 13lgjc26).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, B., Lu, Y., Li, X. et al. Towards a solid solution of real-time fire and flame detection. Multimed Tools Appl 74, 689–705 (2015). https://doi.org/10.1007/s11042-014-2106-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-014-2106-z

Keywords