Abstract
Human gait analysis is a complex problem in biomechanics because of highly nonlinear human motion equations, muscle dynamics, and foot-ground contact.
Despite a large number of studies in human gait analysis, predictive human gait simulation is still challenging researchers to increase the accuracy and computational efficiency for evaluative studies (e.g., model-based assistive device controllers, surgical intervention planning, athletic training, and prosthesis and orthosis design).
To assist researchers in this area, this review article classifies recent predictive simulation methods for human gait analysis according to three categories: (1) the human models used (i.e., skeletal, musculoskeletal and neuromusculoskeletal models), (2) problem formulation, and (3) simulation solvers.
Human dynamic models are classified based on whether muscle activation and/or contraction dynamics or joint torques (instead of muscle dynamics) are employed in the analysis. Different formulations use integration and/or differentiation or implicit-declaration of the dynamic equations. A variety of simulation solvers (i.e., semi- and fully-predictive simulation methods) are studied. Finally, the pros and cons of the different formulations and simulation solvers are discussed.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Singh, J.A.: Epidemiology of knee and hip arthroplasty: a systematic review. Open Orthop. J. 5, 80–85 (2011). https://doi.org/10.2174/1874325001105010080
McLawhorn, A.S., Sculco, P.K., Weeks, K.D., Nam, D., Mayman, D.J.: Targeting a new safe zone: a step in the development of patient-specific component positioning in hip arthroplasty. Orthop. Proc. 96-B, 43 (2014). https://doi.org/10.1302/1358-992X.96BSUPP_16.CAOS2014-043
Abdel, M.P., von Roth, P., Jennings, M.T., Hanssen, A.D., Pagnano, M.W.: What safe zone? The vast majority of dislocated THAs are within the Lewinnek safe zone for acetabular component position. Clin. Orthop. Relat. Res. 474, 386–391 (2016). https://doi.org/10.1007/s11999-015-4432-5
Esposito, C.I., Carroll, K.M., Sculco, P.K., Padgett, D.E., Jerabek, S.A., Mayman, D.J.: Total hip arthroplasty patients with fixed spinopelvic alignment are at higher risk of hip dislocation. J. Arthroplast. (2017). https://doi.org/10.1016/j.arth.2017.12.005
Esposito, C.I., Gladnick, B.P., Lee, Y., Lyman, S., Wright, T.M., Mayman, D.J., Padgett, D.E.: Cup position alone does not predict risk of dislocation after hip arthroplasty. J. Arthroplast. 30, 109–113 (2015). https://doi.org/10.1016/j.arth.2014.07.009
Abujaber, S.B., Marmon, A.R., Pozzi, F., Rubano, J.J., Zeni, J.A. Jr.: Sit-to-stand biomechanics before and after total hip arthroplasty. J. Arthroplast. 30, 2027–2033 (2015). https://doi.org/10.1016/j.arth.2015.05.024
Sasaki, K., Hongo, M., Miyakoshi, N., Matsunaga, T., Yamada, S., Kijima, H., Shimada, Y.: Evaluation of sagittal spine-pelvis-lower limb alignment in elderly women with pelvic retroversion while standing and walking using a three-dimensional musculoskeletal model. Asian Spine J. 11, 562–569 (2017). https://doi.org/10.4184/asj.2017.11.4.562
Handford, M.L., Srinivasan, M.: Robotic lower limb prosthesis design through simultaneous computer optimizations of human and prosthesis costs. Sci. Rep. 6, 19983 (2016). https://doi.org/10.1038/srep19983
Geng, Y., Yang, P., Xu, X., Chen, L.: Design and simulation of active transfemoral prosthesis. In: 2012 24th Chinese Control and Decision Conference (CCDC), pp. 3724–3728. IEEE, Taiyuan (2012)
Font-Llagunes, J.M., Pàmies-Vilà, R., Alonso, J., Lugrís, U.: Simulation and design of an active orthosis for an incomplete spinal cord injured subject. Proc. IUTAM 2, 68–81 (2011). https://doi.org/10.1016/j.piutam.2011.04.007
Rosenberg, M., Steele, K.M.: Simulated impacts of ankle foot orthoses on muscle demand and recruitment in typically-developing children and children with cerebral palsy and crouch gait. PLoS ONE 12, e0180219 (2017). https://doi.org/10.1371/journal.pone.0180219
Lochner, S.J., Huissoon, J.P., Bedi, S.S.: Simulation methods in the foot orthosis development process. Comput-Aided Des. Appl. 11, 608–616 (2014). https://doi.org/10.1080/16864360.2014.914375
Wyss, U.P., McBride, I., Murphy, L., Cooke, T.D., Olney, S.J.: Joint reaction forces at the first MTP joint in a normal elderly population. J. Biomech. 23, 977–984 (1990)
Neumann, D.A.: Biomechanical analysis of selected principles of hip joint protection. Arthritis Care Res. 2, 146–155 (1989)
Kirkwood, R.N., Gomes, H. de A., Sampaio, R.F., Culham, E., Costigan, P.: Análise biomecânica das articulações do quadril e joelho durante a marcha em participantes idosos. Acta Ortop. Bras. 15, 267–271 (2007). https://doi.org/10.1590/S1413-78522007000500007
Chuanjie, Z., Zhengwei, F.: Biomechanical analysis of knee joint mechanism of the national women’s epee fencing lunge movement. Biomed. Res. 0, 104–110 (2017)
Lenhart, R.L., Thelen, D.G., Wille, C.M., Chumanov, E.S., Heiderscheit, B.C.: Increasing running step rate reduces patellofemoral joint forces. Med. Sci. Sports Exerc. 46, 557–564 (2014). https://doi.org/10.1249/MSS.0b013e3182a78c3a
Winter, D.: Human balance and posture control during standing and walking. Gait Posture 3, 193–214 (1995). https://doi.org/10.1016/0966-6362(96)82849-9
Meyer, G., Ayalon, M.: Biomechanical aspects of dynamic stability. Eur. Rev. Aging Phys. Act. 3, 29–33 (2006). https://doi.org/10.1007/s11556-006-0006-6
Prakash, C., Kumar, R., Mittal, N.: Recent developments in human gait research: parameters, approaches, applications, machine learning techniques, datasets and challenges. Artif. Intell. Rev. 49, 1–40 (2018). https://doi.org/10.1007/s10462-016-9514-6
Rockenfeller, R., Günther, M., Schmitt, S., Götz, T.: Comparative sensitivity analysis of muscle activation dynamics. Comput. Math. Methods Med. 2015, 1–16 (2015). https://doi.org/10.1155/2015/585409
Romero, F., Alonso, F.J.: A comparison among different Hill-type contraction dynamics formulations for muscle force estimation. Mech. Sci. 7, 19–29 (2016). https://doi.org/10.5194/ms-7-19-2016
Amis, A.A., Dowson, D., Wright, V.: Muscle strengths and musculoskeletal geometry of the upper limb. Eng. Med. 8, 41–48 (1979). https://doi.org/10.1243/EMED_JOUR_1979_008_010_02
Schiehlen, W.: On the historical development of human walking dynamics. In: Stein, E. (ed.) The History of Theoretical, Material and Computational Mechanics—Mathematics Meets Mechanics and Engineering, pp. 101–116. Springer, Berlin (2014)
Thelen, D.G., Anderson, F.C.: Using computed muscle control to generate forward dynamic simulations of human walking from experimental data. J. Biomech. 39, 1107–1115 (2006). https://doi.org/10.1016/j.jbiomech.2005.02.010
Lasota, P.A., Shah, J.A.: A multiple-predictor approach to human motion prediction. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 2300–2307. IEEE, Singapore (2017)
Pasciuto, I., Ausejo, S., Celigüeta, J.T., Suescun, Á., Cazón, A.: A comparison between optimization-based human motion prediction methods: data-based, knowledge-based and hybrid approaches. Struct. Multidiscip. Optim. 49, 169–183 (2014). https://doi.org/10.1007/s00158-013-0960-3
Chung, H.-J., Xiang, Y., Arora, J.S., Abdel-Malek, K.: Optimization-based dynamic 3D human running prediction: effects of foot location and orientation. Robotica 33, 413–435 (2015). https://doi.org/10.1017/S0263574714000253
Kim, Y., Lee, B., Yoo, J., Choi, S., Kim, J.: Humanoid robot HanSaRam: yawing moment cancellation and ZMP compensation. In: Proceedings of AUS International Symposium on Mechatronics, Sharjah, U.A.E. (2005)
Ackermann, M., van den Bogert, A.J.: Optimality principles for model-based prediction of human gait. J. Biomech. 43, 1055–1060 (2010). https://doi.org/10.1016/j.jbiomech.2009.12.012
Long, L.L., Srinivasan, M.: Walking, running, and resting under time, distance, and average speed constraints: optimality of walk-run-rest mixtures. J. R. Soc. Interface 10, 20120980 (2013). https://doi.org/10.1098/rsif.2012.0980
Srinivasan, M.: Optimal speeds for walking and running, and walking on a moving walkway. Chaos, Interdiscip. J. Nonlinear Sci. 19, 26112 (2009). https://doi.org/10.1063/1.3141428
Forner-Cordero, A., Koopman, H.J.F.M., van der Helm, F.C.T.: Inverse dynamics calculations during gait with restricted ground reaction force information from pressure insoles. Gait Posture 23, 189–199 (2006). https://doi.org/10.1016/J.GAITPOST.2005.02.002
Ren, L., Jones, R.K., Howard, D.: Whole body inverse dynamics over a complete gait cycle based only on measured kinematics. J. Biomech. 41, 2750–2759 (2008). https://doi.org/10.1016/J.JBIOMECH.2008.06.001
Riemer, R., Hsiao-Wecksler, E.T., Zhang, X.: Uncertainties in inverse dynamics solutions: a comprehensive analysis and an application to gait. Gait Posture 27, 578–588 (2008). https://doi.org/10.1016/J.GAITPOST.2007.07.012
Silva, M.P.T., Ambrósio, J.A.C.: Kinematic data consistency in the inverse dynamic analysis of biomechanical systems. Multibody Syst. Dyn. 8, 219–239 (2002). https://doi.org/10.1023/A:1019545530737
Pàmies-Vilà, R., Font-Llagunes, J.M., Cuadrado, J., Alonso, F.J.: Analysis of different uncertainties in the inverse dynamic analysis of human gait. Mech. Mach. Theory 58, 153–164 (2012). https://doi.org/10.1016/J.MECHMACHTHEORY.2012.07.010
Faber, H., van Soest, A.J., Kistemaker, D.A.: Inverse dynamics of mechanical multibody systems: an improved algorithm that ensures consistency between kinematics and external forces. PLoS ONE 13, e0204575 (2018). https://doi.org/10.1371/journal.pone.0204575
Porsa, S., Lin, Y.-C., Pandy, M.G.: Direct methods for predicting movement biomechanics based upon optimal control theory with implementation in OpenSim. Ann. Biomed. Eng. 44, 2542–2557 (2016). https://doi.org/10.1007/s10439-015-1538-6
Lin, Y.-C., Walter, J.P., Pandy, M.G.: Predictive simulations of neuromuscular coordination and joint-contact loading in human gait. Ann. Biomed. Eng. 46, 1216–1227 (2018). https://doi.org/10.1007/s10439-018-2026-6
Delp, S.L., Anderson, F.C., Arnold, A.S., Loan, P., Habib, A., John, C.T., Guendelman, E., Thelen, D.G.: OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54, 1940–1950 (2007). https://doi.org/10.1109/TBME.2007.901024
Millard, M., McPhee, J., Kubica, E.: Multi-step forward dynamic gait simulation. In: Bottasso, C.L. (ed.) Multibody Dynamics, pp. 25–43. Springer, Dordrecht (2009)
Tlalolini, D., Aoustin, Y., Chevallereau, C.: Design of a walking cyclic gait with single support phases and impacts for the locomotor system of a thirteen-link 3D biped using the parametric optimization. Multibody Syst. Dyn. 23, 33–56 (2010). https://doi.org/10.1007/s11044-009-9175-1
Lugrís, U., Carlín, J., Pàmies-Vilà, R., Font-Llagunes, J.M., Cuadrado, J.: Solution methods for the double-support indeterminacy in human gait. Multibody Syst. Dyn. 30, 247–263 (2013). https://doi.org/10.1007/s11044-013-9363-x
Asano, F.: Stability analysis of underactuated compass gait based on linearization of motion. Multibody Syst. Dyn. 33, 93–111 (2015). https://doi.org/10.1007/s11044-014-9416-9
Khadiv, M., Ezati, M., Moosavian, S.A.A.: A computationally efficient inverse dynamics solution based on virtual work principle for biped robots. Iran. J. Sci. Technol. Trans. Mech. Eng. (2017). https://doi.org/10.1007/s40997-017-0138-5
Martin, A.E., Schmiedeler, J.P.: Predicting human walking gaits with a simple planar model. J. Biomech. 47, 1416–1421 (2014). https://doi.org/10.1016/J.JBIOMECH.2014.01.035
Gregg, R.D., Rouse, E.J., Hargrove, L.J., Sensinger, J.W.: Evidence for a time-invariant phase variable in human ankle control. PLoS ONE 9, e89163 (2014). https://doi.org/10.1371/journal.pone.0089163
Mouzo, F., Lugris, U., Pamies Vila, R., Font Llagunes, J.M., Cuadrado Aranda, J.: Underactuated approach for the control-based forward dynamic analysis of acquired gait motions. In: Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics, pp. 1092–1100 (2015)
Shourijeh, M.S., McPhee, J.: Efficient hyper-volumetric contact dynamic modelling of the foot within human gait simulations. In: Volume 7A: 9th International Conference on Multibody Systems, Nonlinear Dynamics, and Control, p. V07AT10A012. ASME, Oregon (2013)
Pàmies-Vilà, R., Pätkau, O., Dòria-Cerezo, A., Font-Llagunes, J.M.: Influence of the controller design on the accuracy of a forward dynamic simulation of human gait. Mech. Mach. Theory 107, 123–138 (2017). https://doi.org/10.1016/J.MECHMACHTHEORY.2016.09.002
Mehrabi, N., Sharif Razavian, R., Ghannadi, B., McPhee, J.: Predictive simulation of reaching moving targets using nonlinear model predictive control. Front. Comput. Neurosci. 10, 143 (2017). https://doi.org/10.3389/fncom.2016.00143
Sun, J., Voglewede, P.A.: Dynamic simulation of human gait using a combination of model predictive and PID control. In: Volume 6: 10th International Conference on Multibody Systems, Nonlinear Dynamics, and Control, p. V006T10A008. ASME, New York (2014)
Sun, J., Wu, S., Voglewede, P.A.: Dynamic simulation of human gait model with predictive capability. J. Biomech. Eng. 140, 31008 (2018). https://doi.org/10.1115/1.4038739
Sartori, M., Reggiani, M., Farina, D., Lloyd, D.G.: EMG-driven forward-dynamic estimation of muscle force and joint moment about multiple degrees of freedom in the human lower extremity. PLoS ONE 7, e52618 (2012). https://doi.org/10.1371/journal.pone.0052618
Crowninshield, R.D., Johnston, R.C., Andrews, J.G., Brand, R.A.: A biomechanical investigation of the human hip. J. Biomech. 11, 75–85 (1978). https://doi.org/10.1016/0021-9290(78)90045-3
Ackermann, M., Schiehlen, W.: Physiological methods to solve the force-sharing problem in biomechanics. Comput. Methods Appl. Sci. 12, 1–23 (2008)
Zajac, F.E., Neptune, R.R., Kautz, S.A.: Biomechanics and muscle coordination of human walking: part II: lessons from dynamical simulations and clinical implications. Gait Posture 17, 1–17 (2003). https://doi.org/10.1016/S0966-6362(02)00069-3
Zajac, F.E., Neptune, R.R., Kautz, S.A.: Biomechanics and muscle coordination of human walking. Part I: introduction to concepts, power transfer, dynamics and simulations. Gait Posture 16, 215–232 (2002). https://doi.org/10.1016/S0966-6362(02)00068-1
Shourijeh, M.S., Mehrabi, N., McPhee, J.: Forward static optimization in dynamic simulation of human musculoskeletal systems: a proof-of-concept study. J. Comput. Nonlinear Dyn. 12, 51005 (2017). https://doi.org/10.1115/1.4036195
Yamasaki, T., Idehara, K., Xin, X.: Estimation of muscle activity using higher-order derivatives, static optimization, and forward-inverse dynamics. J. Biomech. 49, 2015–2022 (2016). https://doi.org/10.1016/j.jbiomech.2016.04.024
Tsirakos, D., Baltzopoulos, V., Bartlett, R.: Inverse optimization: functional and physiological considerations related to the force-sharing problem. Crit. Rev. Biomed. Eng. 25, 371–407 (1997). https://doi.org/10.1615/CritRevBiomedEng.v25.i4-5.20
Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. J. Biomech. 14, 793–801 (1981). https://doi.org/10.1016/0021-9290(81)90035-X
Davy, D.T., Audu, M.L.: A dynamic optimization technique for predicting muscle forces in the swing phase of gait. J. Biomech. 20, 187–201 (1987). https://doi.org/10.1016/0021-9290(87)90310-1
Davoudabadi Farahani, S., Svinin, M., Andersen, M.S., de Zee, M., Rasmussen, J.: Prediction of closed-chain human arm dynamics in a Crank-rotation task. J. Biomech. 49, 2684–2693 (2016). https://doi.org/10.1016/j.jbiomech.2016.05.034
Pandy, M.G., Anderson, F.C., Hull, D.G.: A parameter optimization approach for the optimal control of large-scale musculoskeletal systems. J. Biomech. Eng. 114, 450–460 (1992). https://doi.org/10.1115/1.2894094
Serrancolí, G., Font-Llagunes, J.M., Barjau, A.: A weighted cost function to deal with the muscle force sharing problem in injured subjects: a single case study. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 228, 241–251 (2014). https://doi.org/10.1177/1464419314530110
Frank, C.A., Pandy, M.G.: A dynamic optimization solution for vertical jumping in three dimensions. Comput. Methods Biomech. Biomed. Eng. 2, 201–231 (1999). https://doi.org/10.1080/10255849908907988
Morrow, M.M., Rankin, J.W., Neptune, R.R., Kaufman, K.R.: A comparison of static and dynamic optimization muscle force predictions during wheelchair propulsion. J. Biomech. 47, 3459–3465 (2014). https://doi.org/10.1016/j.jbiomech.2014.09.013
Menegaldo, L.L., Fleury, A. de T., Weber, H.I.: A “cheap” optimal control approach to estimate muscle forces in musculoskeletal systems. J. Biomech. 39, 1787–1795 (2006). https://doi.org/10.1016/j.jbiomech.2005.05.029
Seth, A., Pandy, M.G.: A neuromusculoskeletal tracking method for estimating individual muscle forces in human movement. J. Biomech. 40, 356–366 (2007). https://doi.org/10.1016/j.jbiomech.2005.12.017
Anderson, F.C., Pandy, M.G.: Dynamic optimization of human walking. J. Biomech. Eng. 123, 381 (2001). https://doi.org/10.1115/1.1392310
Anderson, F.C., Pandy, M.G.: Static and dynamic optimization solutions for gait are practically equivalent. J. Biomech. 34, 153–161 (2001). https://doi.org/10.1016/S0021-9290(00)00155-X
Ackermann, M.: Dynamics and energetics of walking with prostheses (2007)
Nikooyan, A.A., Veeger, H.E.J., Chadwick, E.K.J., Praagman, M., van der Helm, F.C.T.: Development of a comprehensive musculoskeletal model of the shoulder and elbow. Med. Biol. Eng. Comput. 49, 1425–1435 (2011). https://doi.org/10.1007/s11517-011-0839-7
Rasmussen, J., Damsgaard, M., Christensen, S.T.: Inverse-inverse dynamics simulation of musculo-skeletal systems. In: Proceedings of the 12th Conference of the European Society of Biomechanics Royal Academy of Medicine in Ireland. Royal Academy of Medicine in Ireland, Dublin (2000)
Quental, C., Folgado, J., Ambrósio, J.: A window moving inverse dynamics optimization for biomechanics of motion. Multibody Syst. Dyn. 38, 157–171 (2016). https://doi.org/10.1007/s11044-016-9529-4
Liu, M.Q., Anderson, F.C., Schwartz, M.H., Delp, S.L.: Muscle contributions to support and progression over a range of walking speeds. J. Biomech. 41, 3243–3252 (2008). https://doi.org/10.1016/j.jbiomech.2008.07.031
Hamner, S.R., Seth, A., Delp, S.L.: Muscle contributions to propulsion and support during running. J. Biomech. 43, 2709–2716 (2010). https://doi.org/10.1016/j.jbiomech.2010.06.025
Sharif Shourijeh, M., Mehrabi, N., McPhee, J.: Forward static optimization in dynamic simulation of human musculoskeletal systems: a proof-of-concept study. J. Comput. Nonlinear Dyn. 12, 51005 (2017). https://doi.org/10.1115/1.4036195
van den Bogert, A.J., Blana, D., Heinrich, D.: Implicit methods for efficient musculoskeletal simulation and optimal control. Proc. IUTAM 2, 297–316 (2011). https://doi.org/10.1016/J.PIUTAM.2011.04.027
Chadwick, E.K., Blana, D., Kirsch, R.F., van den Bogert, A.J.: Real-time simulation of three-dimensional shoulder girdle and arm dynamics. IEEE Trans. Biomed. Eng. 61, 1947–1956 (2014). https://doi.org/10.1109/TBME.2014.2309727
Challis, J.H., Kerwin, D.G.: An analytical examination of muscle force estimations using optimization techniques. Proc. Inst. Mech. Eng. H 207, 139–148 (1993). https://doi.org/10.1243/PIME_PROC_1993_207_286_02
Terrier, A., Aeberhard, M., Michellod, Y., Mullhaupt, P., Gillet, D., Farron, A., Pioletti, D.P.: A musculoskeletal shoulder model based on pseudo-inverse and null-space optimization. Med. Eng. Phys. 32, 1050–1056 (2010). https://doi.org/10.1016/j.medengphy.2010.07.006
Martelli, S., Calvetti, D., Somersalo, E., Viceconti, M.: Stochastic modelling of muscle recruitment during activity. Interface Focus 5, 20140094 (2015). https://doi.org/10.1098/rsfs.2014.0094
Sharif Razavian, R., McPhee, J.: Minimization of muscle fatigue as the criterion to solve muscle forces-sharing problem. In: ASME 2015 Dynamic Systems and Control Conference, p. V001T15A001. ASME, Ohio (2015)
Tresch, M.C.: Matrix factorization algorithms for the identification of muscle synergies: evaluation on simulated and experimental data sets. J. Neurophysiol. 95, 2199–2212 (2005). https://doi.org/10.1152/jn.00222.2005
Steele, K.M., Rozumalski, A., Schwartz, M.H.: Muscle synergies and complexity of neuromuscular control during gait in cerebral palsy. Dev. Med. Child Neurol. 57, 1176–1182 (2015). https://doi.org/10.1111/dmcn.12826
Smale, K.B., Sharif Shourijeh, M., Benoit, D.L.: Use of muscle synergies and wavelet transforms to identify fatigue during squatting. J. Electromyogr. Kinesiol. 28, 158–166 (2016). https://doi.org/10.1016/j.jelekin.2016.04.008
Sharif Shourijeh, M., Flaxman, T.E., Benoit, D.L.: An approach for improving repeatability and reliability of non-negative matrix factorization for muscle synergy analysis. J. Electromyogr. Kinesiol. 26, 36–43 (2016). https://doi.org/10.1016/j.jelekin.2015.12.001
Zariffa, J., Steeves, J., Pai, D.K.: Changes in hand muscle synergies in subjects with spinal cord injury: characterization and functional implications. J. Spinal Cord Med. 35, 310–318 (2012). https://doi.org/10.1179/2045772312Y.0000000037
Yoshikawa, F., Hirai, H., Watanabe, E., Nagakawa, Y., Kuroiwa, A., Grabke, E., Uemura, M., Miyazaki, F., Krebs, H.I.: Equilibrium-point-based synergies that encode coordinates in task space: a practical method for translating functional synergies from human to musculoskeletal robot arm. In: 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), pp. 1135–1140. IEEE, Cancun (2016)
Sharif Razavian, R., Mehrabi, N., McPhee, J.: A model-based approach to predict muscle synergies using optimization: application to feedback control. Front. Comput. Neurosci. 9, 121 (2015). https://doi.org/10.3389/fncom.2015.00121
De Groote, F., Kinney, A.L., Rao, A.V., Fregly, B.J.: Evaluation of direct collocation optimal control problem formulations for solving the muscle redundancy problem. Ann. Biomed. Eng. 44, 2922–2936 (2016). https://doi.org/10.1007/s10439-016-1591-9
Meyer, A.J., Patten, C., Fregly, B.J.: Lower extremity EMG-driven modeling of walking with automated adjustment of musculoskeletal geometry. PLoS ONE 12, e0179698 (2017). https://doi.org/10.1371/journal.pone.0179698
Rao, A.V.: A survey of numerical methods for optimal control. Adv. Astronaut. Sci. 135, 497–528 (2009). https://doi.org/10.1515/jnum-2014-0003
Miller, R.H., Brandon, S.C.E., Deluzio, K.J.: Predicting sagittal plane biomechanics that minimize the axial knee joint contact force during walking. J. Biomech. Eng. 135, 11007 (2012). https://doi.org/10.1115/1.4023151
Sharif Shourijeh, M., McPhee, J.: Forward dynamic optimization of human gait simulations: a global parameterization approach. J. Comput. Nonlinear Dyn. 9, 31018 (2014). https://doi.org/10.1115/1.4026266
Miller, R.H.: A comparison of muscle energy models for simulating human walking in three dimensions. J. Biomech. 47, 1373–1381 (2014). https://doi.org/10.1016/j.jbiomech.2014.01.049
Peasgood, M., Kubica, E., McPhee, J.: Stabilization of a dynamic walking gait simulation. J. Comput. Nonlinear Dyn. 2, 65 (2007). https://doi.org/10.1115/1.2389230
Shourijeh, M.S., McPhee, J.: Foot–ground contact modeling within human gait simulations: from Kelvin–Voigt to hyper-volumetric models. Multibody Syst. Dyn. 35, 393–407 (2015). https://doi.org/10.1007/s11044-015-9467-6
Rajagopal, A., Dembia, C.L., DeMers, M.S., Delp, D.D., Hicks, J.L., Delp, S.L.: Full-body musculoskeletal model for muscle-driven simulation of human gait. IEEE Trans. Biomed. Eng. 63, 2068–2079 (2016). https://doi.org/10.1109/TBME.2016.2586891
Farina, D., Merletti, R., Enoka, R.M.: The extraction of neural strategies from the surface EMG. J. Appl. Physiol. 96, 1486–1495 (2004). https://doi.org/10.1152/japplphysiol.01070.2003
De Luca, C.J., Donald Gilmore, L., Kuznetsov, M., Roy, S.H.: Filtering the surface EMG signal: movement artifact and baseline noise contamination. J. Biomech. 43, 1573–1579 (2010). https://doi.org/10.1016/J.JBIOMECH.2010.01.027
Winter, D.A.: Biomechanics and Motor Control of Human Movement. Wiley, New York (2009)
Sartori, M., Farina, D., Lloyd, D.G.: Hybrid neuromusculoskeletal modeling to best track joint moments using a balance between muscle excitations derived from electromyograms and optimization. J. Biomech. 47, 3613–3621 (2014). https://doi.org/10.1016/j.jbiomech.2014.10.009
Shourijeh, M.S., Smale, K.B., Potvin, B.M., Benoit, D.L.: A forward-muscular inverse-skeletal dynamics framework for human musculoskeletal simulations. J. Biomech. 49, 1718–1723 (2016). https://doi.org/10.1016/j.jbiomech.2016.04.007
Hainisch, R., Gfoehler, M., Zubayer-Ul-Karim, M., Pandy, M.G.: Method for determining musculotendon parameters in subject-specific musculoskeletal models of children developed from MRI data. Multibody Syst. Dyn. 28, 143–156 (2012). https://doi.org/10.1007/s11044-011-9289-0
Ma, Y., Xie, S., Zhang, Y.: A patient-specific EMG-driven neuromuscular model for the potential use of human-inspired gait rehabilitation robots. Comput. Biol. Med. 70, 88–98 (2016). https://doi.org/10.1016/j.compbiomed.2016.01.001
Ehsani, H., Rostami, M., Gudarzi, M.: A general-purpose framework to simulate musculoskeletal system of human body: using a motion tracking approach. Comput. Methods Biomech. Biomed. Eng. 19, 306–319 (2016). https://doi.org/10.1080/10255842.2015.1017722
Lee, L.-F., Umberger, B.R.: Generating optimal control simulations of musculoskeletal movement using OpenSim and MATLAB. Peer J. 4, e1638 (2016). https://doi.org/10.7717/peerj.1638
Meyer, A.J., Eskinazi, I., Jackson, J.N., Rao, A.V., Patten, C., Fregly, B.J.: Muscle synergies facilitate computational prediction of subject-specific walking motions. Front. Bioeng. Biotechnol. 4, 77 (2016). https://doi.org/10.3389/fbioe.2016.00077
Lin, Y.-C., Pandy, M.G.: Three-dimensional data-tracking dynamic optimization simulations of human locomotion generated by direct collocation. J. Biomech. 59, 1–8 (2017). https://doi.org/10.1016/j.jbiomech.2017.04.038
Schöllhorn, W.I.: Applications of artificial neural nets in clinical biomechanics. Clin. Biomech. 19, 876–898 (2004). https://doi.org/10.1016/J.CLINBIOMECH.2004.04.005
Liu, Y., Shih, S.-M., Tian, S.-L., Zhong, Y.-J., Li, L.: Lower extremity joint torque predicted by using artificial neural network during vertical jump. J. Biomech. 42, 906–911 (2009). https://doi.org/10.1016/J.JBIOMECH.2009.01.033
Song, R., Tong, K.Y.: Using recurrent artificial neural network model to estimate voluntary elbow torque in dynamic situations. Med. Biol. Eng. Comput. 43, 473–480 (2005). https://doi.org/10.1007/BF02344728
Ardestani, M.M., Zhang, X., Wang, L., Lian, Q., Liu, Y., He, J., Li, D., Jin, Z.: Human lower extremity joint moment prediction: a wavelet neural network approach. Expert Syst. Appl. 41, 4422–4433 (2014). https://doi.org/10.1016/J.ESWA.2013.11.003
Zhang, B., Horváth, I., Molenbroek, J.F.M., Snijders, C.: Using artificial neural networks for human body posture prediction. Int. J. Ind. Ergon. 40, 414–424 (2010). https://doi.org/10.1016/J.ERGON.2010.02.003
Isaksson, M., Jalden, J., Murphy, M.J.: On using an adaptive neural network to predict lung tumor motion during respiration for radiotherapy applications. Med. Phys. 32, 3801–3809 (2005). https://doi.org/10.1118/1.2134958
Bataineh, M., Marler, T., Abdel-Malek, K., Arora, J.: Neural network for dynamic human motion prediction. Expert Syst. Appl. 48, 26–34 (2016). https://doi.org/10.1016/J.ESWA.2015.11.020
Norman-Gerum, V., McPhee, J.: Constrained dynamic optimization of sit-to-stand motion driven by Bézier curves. J. Biomech. Eng. 140, 121011 (2018). https://doi.org/10.1115/1.4041527
Ghannadi, B., Mehrabi, N., Sharif Razavian, R., McPhee, J.: Nonlinear model predictive control of an upper extremity rehabilitation robot using a two-dimensional human-robot interaction model. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 502–507. IEEE, Vancouver (2017)
Mehrabi, N., McPhee, J.: Model-based control of biomechatronic systems. In: Segil, J. (ed.) Handbook of Biomechatronics, pp. 95–126. Academic Press, San Diego (2019)
Jansen, C., McPhee, J.: Predictive dynamic simulation of seated start-up cycling using Olympic cyclist and bicycle models. In: Proceedings of International Sports Engineering Association, Brisbane, Australia, p. 220 (2018)
Bertolazzi, E., Biral, F., Da Lio, M.: Symbolic-numeric efficient solution of optimal control problems for multibody systems. J. Comput. Appl. Math. 185, 404–421 (2006). https://doi.org/10.1016/J.CAM.2005.03.019
Hunt, K.H., Crossley, F.R.E.: Coefficient of restitution interpreted as damping in vibroimpact. J. Appl. Mech. 42, 440 (1975). https://doi.org/10.1115/1.3423596
Brown, P., McPhee, J.: A 3D ellipsoidal volumetric foot–ground contact model for forward dynamics. Multibody Syst. Dyn. 42, 447–467 (2018). https://doi.org/10.1007/s11044-017-9605-4
Ezati, M., Khadiv, M., Moosavian, S.A.A.: An investigation on the usefulness of employing a two-segment foot for traversing stairs. Int. J. Humanoid Robot. 14, 1750027 (2017). https://doi.org/10.1142/S021984361750027X
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Ezati, M., Ghannadi, B. & McPhee, J. A review of simulation methods for human movement dynamics with emphasis on gait. Multibody Syst Dyn 47, 265–292 (2019). https://doi.org/10.1007/s11044-019-09685-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11044-019-09685-1