Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Intelligent secondary control in smart microgrids: an on-line approach for islanded operations

  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

Dealing with islanded microgrids (MGs), this paper aims at improving the secondary control process to restrict the fluctuations in both the voltage and frequency signals. With the aim of retrieving these parameters at the nominal values, an intelligent control scheme is devised to adjust the corresponding control parameters. To do so, an on-line self-optimizing control approach is embedded in the MG’s central controller. In the tuning process, evolutionary-based techniques such as genetic algorithms provide proper initial adjustment for the parameters. Subsequently, an artificial neural network (ANN) is triggered to provide accurate online modification of the control parameters. Specifically, the training capability of the ANN mechanism along with its extensibility feature avoids the dependency of the controller on the operating point conditions and accommodates different changes and uncertainty reflections. Detailed simulation studies are conducted to investigate the performance of the proposed approach, and the results are discussed in depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahmadi S, Shokoohi S, Bevrani H (2015) A fuzzy logic-based droop control for simultaneous voltage and frequency regulation in an AC microgrid. Int J Electr Power Energy Syst 64:148–155

    Article  Google Scholar 

  • Bevrani H (2014) Robust power system frequency control, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  • Bevrani H, Hiyama T (2011) Intelligent automatic generation control. CRC Press, Boca Raton

    Google Scholar 

  • Bevrani H, Shokoohi S (2013) An intelligent droop control for simultaneous voltage and frequency regulation in islanded microgrids. IEEE Trans Smart Grid 4(3):1505–1513

    Article  Google Scholar 

  • Bevrani H, Watanabe M, Mitani Y (2012a) Microgrid controls. In: Beaty HW (ed) Standard handbook for electrical engineers, Section 16, 16th edn. McGraw Hill, New York

    Google Scholar 

  • Bevrani H, Habibi F, Babahajyani P, Watanabe M, Mitani Y (2012b) Intelligent frequency control in an AC microgrid: online PSO-based fuzzy tuning approach. IEEE Trans Smart Grid 3(4):1935–1944

    Article  Google Scholar 

  • Bevrani H, Habibi F, Shokoohi S (2012c) ANN-based self-tuning frequency control design for an isolated microgrid. In: Meta-heuristics optimization algorithms in engineering, business, economics, and finance, IGI Global

  • Bevrani H, Watanabe M, Mitani Y (2014) Power system monitoring and control. Wiley, Hoboken

    Book  Google Scholar 

  • Bevrani H, Feizi MR, Ataee S (2015) Robust frequency control in an islanded microgrid: H∞ and μ-synthesis approaches. IEEE Trans Smart Grids, pp 1–12

  • De Brabandere K, Bolsens B, Van den Keybus J, Woyte A, Driesen J, Belmans R (2007) A voltage and frequency droop control method for parallel inverters. IEEE Trans Power Electron 22(4):1107–1115

    Article  Google Scholar 

  • Etemadi AH, Davison EJ, Iravani R (2012) A decentralized robust control strategy for multi-DER microgrids. Part I. Fundamental concepts. IEEE Trans Power Deliv 27(4):1843–1853

    Article  Google Scholar 

  • Fathi M, Bevrani H (2013) Statistical cooperative power dispatching in interconnected microgrids. IEEE Trans Sustain Energy 4(3):586–593

    Article  Google Scholar 

  • Fogel DB, Fogel LJ (1994) Evolutionary computation. IEEE Trans Neural Netw 5(1):1–2

    Article  Google Scholar 

  • Goldberg DE, Holland JH (1988) Genetic algorithms and machine learning. Mach Learn 3(2):95–99

    Article  Google Scholar 

  • Guerrero JM, Vasquez JC, Matas J, de Vicuña LG, Castilla M (2011) Hierarchical control of droop-controlled AC and DC microgrids—a general approach toward standardization. IEEE Trans Ind Electron 58:158–172

    Article  Google Scholar 

  • Gupta MM, Jin L, Homma N (2004) Static and dynamic neural networks: from fundamentals to advanced theory. Wiley, New York

    Google Scholar 

  • Hagan MT, Demuth HB, Beale MH (1996) Neural network design. Pws Pub, Boston

    Google Scholar 

  • Hatziargyriou N, Donnelly M, Papathanassiou S, Lopes JP, Takasaki M, Chao H, Usaola J, Lasseter R, Efthymiadis A, Karoui K, Arabi S (2000) Modeling new forms of generation and storage. Cigre Technical Brochure, CIGRE TF38.01.10, pp 1–140

  • Holland J (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor

    Google Scholar 

  • IEEE standard for interconnecting distributed resources with electric power systems. IEEE Std 1547-2003, pp 1–28 (2003)

  • Khezri R, Shokoohi S, Golshannavaz S, Bevrani H (2015) Intelligent over-current protection scheme in inverter-based microgrids. In: Smart grid conference (SGC), pp 53–59

  • Khezri R, Golshannavaz S, Shokoohi S, Bevrani H (2017a) Toward intelligent transient stability enhancement in inverter-based microgrids. Neural Comput Appl. https://doi.org/10.1007/s00521-017-2859-1

    Article  Google Scholar 

  • Khezri R, Golshannavaz S, Vakili R, Memar-Esfahani B (2017b) Multi-layer fuzzy-based under-frequency load shedding in back-pressure smart industrial microgrids. Energy 132:96–105

    Article  Google Scholar 

  • Marwali MN, Keyhani A (2004) Control of distributed generation systems. Part I. Voltages and currents control. IEEE Trans Power Electron 19(6):1541–1550

    Article  Google Scholar 

  • Mishra SK (2009) Design-oriented analysis of modern active droop-controlled power supplies. IEEE Trans Ind Electron 56:3704–3708

    Article  Google Scholar 

  • Rechenberg I (1994) Evolutions strategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. frommann-holzbog, Stuttgart, 1973. Step-size adaptation based on non-local use of selection information. In: Parallel problem solving from nature (PPSN3)

  • Sarangapani J (2006) Neural network control of nonlinear discrete-time systems. CRC Press, Boca Raton

    Book  Google Scholar 

  • Schwefel H-P (1977) Numerische Optimierung von Computer-Modellen mittels der Evolutionsstrategie: mit einer vergleichenden Einführung in die Hill-Climbing-und Zufallsstrategie. Birkhäuser, Basel

    Book  Google Scholar 

  • Shokoohi S, Sabori F, Bevrani H (2014) Secondary voltage and frequency control in islanded microgrids: online ANN tuning approach. In: Smart grid conference (SGC), Tehran, pp 1–6

  • Tiwari MK, Vidyarthi NK (2000) Solving machine loading problems in a flexible manufacturing system using a genetic algorithm based heuristic approach. Int J Prod Res 38(14):3357–3384

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajjad Golshannavaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shokoohi, S., Golshannavaz, S., Khezri, R. et al. Intelligent secondary control in smart microgrids: an on-line approach for islanded operations. Optim Eng 19, 917–936 (2018). https://doi.org/10.1007/s11081-018-9382-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11081-018-9382-9

Keywords