Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Benson-Bassham-Calvin cycle contribution to the organic life on our planet

  • Review
  • Published:
Photosynthetica

Science is more about failure than success.”

A.A. Benson

Abstract

The review is devoted to the outstanding contributions to the path of carbon in photosynthesis by Professor Emeritus Andrew A. Benson, on the occasion of his death at the age of 97, on January 16, 2015. Benson is the legendary co-discoverer of the photosynthetic reductive pentose phosphate cycle, known to every student of photosynthesis as the Benson-Bassham-Calvin cycle. This pathway evolved into the dominant assimilation mechanism for atmospheric carbon into metabolites. The fundamental ecological and biochemical optimization and evolutionary stability of this mechanism unfolded elegantly in Benson’s hands, as he was the first to recognize the building blocks for the synthesis of essential organic compounds that satisfy the energetic needs and demands of most life forms. Photosynthetic carbon metabolism together with other energy and oxidative reactions and secondary biosynthetic processes are critical for the formation of organic matter; and, thereby, the Benson-Bassham-Calvin cycle ensures maintenance of the biosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BisP:

bisphosphate

DOAP:

dihydroxyacetone phosphate

P:

phosphate

PES:

phosphoric esters of sugars

3-PGA:

3-phosphoglyceric acid

RuBP:

ribulose-1,5-bisphosphate

TPNH:

reduced triphosphopyridine nucleotide

References

  • Adrianov A.V., Vaskovsky V.E., Pudovkin A.I. et al.: On the 90th anniversary of Andrew Alm Benson great scientist and excellent man. — Russ. J. Mar. Biol. 33: 343–346, 2007.

    Article  Google Scholar 

  • Bassham J.A., Benson A.A., Kay L.D. et al.: The path of carbon dioxide in photosynthesis. XXI. The cyclic regeneration of carbon dioxide acceptor. — J. Am. Chem. Soc. 76: 1760–1770, 1954.

    Article  CAS  Google Scholar 

  • Bassham J.A., Buchanan B.B.: Carbon dioxide fixation pathways in plants and bacteria. — In: Govindjee (ed.): Photosynthesis. Vol. 2: Development, Carbon Metabolism, and Plant Productivity. Pp. 141–189. Academic Press, New York 1982.

    Google Scholar 

  • Benson A.A.: Mechanism of biochemical photosynthesis. — Z. Elektrochem. 56: 848–854, 1952.

    CAS  Google Scholar 

  • Benson A.A.: Paving the Path. — Annu. Rev. Plant Biol. 53: 1–25, 2002a.

    Article  CAS  PubMed  Google Scholar 

  • Benson A.A.: Following the path of carbon in photosynthesis: a personal story. — Photosynth. Res. 73: 29–49, 2002b.

    Article  CAS  PubMed  Google Scholar 

  • Benson A.A., Bassham J.A., Calvin M. et al.: The path of carbon in photosynthesis. 5. Paper chromatography and radioautography of the products. — J. Am. Chem. Soc. 72: 1710–1718, 1950.

    Article  CAS  Google Scholar 

  • Benson A.A., Calvin M.: Carbon dioxide fixation by green plants. — Annu. Rev. Plant Phys. 1: 25–42, 1950a.

    Article  Google Scholar 

  • Benson A.A., Calvin M.: The path of carbon in photosynthesis. VII. Respiration and photosynthesis. — J. Exp. Bot. 1: 63–68, 1950b.

    Article  Google Scholar 

  • Benson A.A, Muscatine L.: Wax in coral mucus: Energy transfer from corals to reef fishes. — Limnol. Oceanogr. 19: 810–814, 1974.

    Article  Google Scholar 

  • Benson A.A., Nonomura A.M.: The path of carbon in photosynthesis: Methanol inhibition of glycolic acid accumulation. — In: Murata N. (ed.): Research in Photosynthesis 1, Proceedings of the IX International Congress on Photosynthesis. P-522. Kluver, Nagoya 1992.

    Google Scholar 

  • Benson A.A., Nonomura A.M., Gerard V.A.: The path of carbon in photosynthesis. XXV. Plant and algal growth responses to glycopyranosides. — J. Plant Nutr. 32: 1185–1200, 2009.

    Article  CAS  Google Scholar 

  • Benson A.A., Patton J.S., Abraham S.: Energy exchange in coral reef ecosystems. — Atoll Res. Bull. 220: 33–54, 1978.

    Article  Google Scholar 

  • Biel K. Y.: [Ecology of Photosynthesis.] Pp. 1–221. Nauka, Moscow 1993. [In Russian]

    Google Scholar 

  • Biel K.Y., Fomina I.R., Nazarova G.N. et al.: Untangling metabolic and spatial interactions of stress tolerance in plants. 1. Patterns of carbon metabolism within leaves. — Protoplasma 245: 49–73, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Biel K.Y., Fomina I.R., Yensen N.P. et al.: Complex Biological Systems: Adaptation and Tolerance to Extreme Environments. Pp. 1–343. Gorod, Pushchino-Krasnoyarsk 2014.

    Google Scholar 

  • Biel K.Y., Nonomura A.M., Benson A.A., Nishio J.N.: The path of carbon in photosynthesis. XXVI. Uptake and transport of methylglucopyranoside throughout plants. — J. Plant Nutr. 33: 902–913, 2010.

    Article  CAS  Google Scholar 

  • Bil’ K.Y., Gedemov T.: Structural and functional properties of assimilation apparatus in Suaeda arcuata Bunge (Chenopodiaceae) related to cooperative photosynthesis. — Proc. Acad. Sci. USSR 250: 9–13, 1980.

    Google Scholar 

  • Bil’ K.Y., Lyubimov V.Y., Demidova R.N., Gedemov T.: [Assimilation of CO2 by plants of the family Chenopodiaceae with three types of autotrophic tissues in the leaves.] — Soviet Plant Physiol. 28: 1119–1127, 1981. [In Russian]

    Google Scholar 

  • Bil’ K.Y., Lyubimov V.Y., Trusov M. F. et al.: [Participation of three types of autotrophic tissues in diurnal dynamics of assimilation CO2 in some plants of Chenopodiaceae family.] — Bot. Zhurnal 68: 54–61, 1983. [In Russian]

    Google Scholar 

  • Blanquet R.S., Nevenzel J.C., Benson A.A.: Acetate incorporation into the lipids of the sea anemone Anthopleura elegantissima and its associated zooxanthellae. — Mar. Biol. 54: 185–194, 1979.

    Article  CAS  Google Scholar 

  • Buchanan B.B., Arnon D.I.: A reverse Krebs cycle in photosynthesis: consensus at last. — Photosynth. Res. 24: 47–53, 1990.

    Article  CAS  Google Scholar 

  • Buchanan B.B., Sirevåg R.: Ribulose-l,5-diphosphate carboxylase and Chlorobium thiosulfatophilum. — Arch. Microbiol. 109: 15–19, 1977.

    Article  Google Scholar 

  • Buchanan B.B., Wong J.H.: A conversation with Andrew Benson: reflections on the discovery of the Calvin-Benson cycle. — Photosynth. Res. 114: 207–214, 2013.

    Article  CAS  Google Scholar 

  • Calvin M., Benson A.A.: The path of carbon in photosynthesis. — Science 107: 476–480, 1948.

    Article  CAS  PubMed  Google Scholar 

  • Doman N.G.: [A question about the nature of rapidly labeled photosynthetic products.] — Dokl. Akad. Nauk SSSR 84: 1017–1019, 1952. [In Russian]

    CAS  PubMed  Google Scholar 

  • Doman N.G., Khadzhi-Murat L.N., Demina S.E.: [Unities and peculiarities of carbon assimilation pathway(s) in different plant species.] — Dokl. Akad. Nauk SSSR 122: 111–113, 1958. [In Russian]

    CAS  Google Scholar 

  • Evans M.C.W., Buchanan B.B., Arnon D.I.: A new ferredoxindependent carbon reduction cycle in a photosynthetic bacterium. — P. Natl. Acad. Sci. USA 55: 928–934, 1966.

    Article  CAS  Google Scholar 

  • Fomina I.R., Biel K.Y.: [Photosynthetic carbon metabolism: Strategy of adaptation.] — In: Allakhverdiev S.I., Rubin A.B., Shuvalov V.A. (ed.): [Contemporary Problems of Photosynthesis. Vol. 2.] Pp. 415–484. Institute of Computer Science, Moscow-Izhevsk 2014. [In Russian]

    Google Scholar 

  • Guralnick L.J., Edwards G.E., Ku M.S.B. et al.: Photosynthetic and anatomical characteristics in the C4/CAM-cycling species, Portulaca grandiflora. — Funct. Plant Biol. 29: 763–773, 2002.

    Article  CAS  Google Scholar 

  • Hatch M.D., Slack C.R.: Photosynthesis by sugar-cane leaves: a new carboxylation reaction and the pathway of sugar formation. — Biochem. J. 101: 103–111, 1966.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hartt C.E., Kortschak H.P., Burr G.O.: Photosynthesis by sugar cane fed radioactive carbon dioxide. — P. Hawaii Acad. Sci. 13–14, 1953.

  • Herter S., Fuchs G., Bacher A., Eisenreich W.: A bicyclic autotrophic CO2 fixation pathway in Chloroflexus aurantiacus. — J. Biol. Chem. 277: 20277–20283, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Karpilov Y.S.: [Distribution of 14C among the photosynthetic products of maize.] — Trudy Kazan. Sel’skokhoz. Inst. 41: 15–24, 1960. [In Russian]

    CAS  Google Scholar 

  • Karpilov Y.S.: [Features of the functions and structure of the photosynthetic apparatus of some plant species of tropical origin.] — Trudy Mold. N.I.I. Orosh. Zemledel. Ovoshchevod. 11: 1–35, 1969. [In Russian]

    Google Scholar 

  • Kluge M.: Crassulacean acid metabolism (CAM): CO2 and water economy. — In: Lange O.L., Kappen L., Schulze E.-D. (ed.): Water and Plant Life: Problems and Modern Approaches. Ecological Studies. Vol. 19. Pp. 313–322. Springer, Berlin Heidelberg 1976.

    Chapter  Google Scholar 

  • Kondratieva E.N.: [Photosynthetic Bacteria.] Pp. 1–314. Izd. AN SSSR, Moscow 1963. [In Russian]

    Google Scholar 

  • Kondratieva E.N.: [Autotrophic Prokaryotes.] Pp. 1–304. Publ. Moscow University, Moscow 1996. [In Russian]

    Google Scholar 

  • Kortschak H.P., Hartt C.E., Burr G.O.: Carbon dioxide fixation in sugarcane leaves. — Plant Physiol. 40: 209–213, 1965.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lichtenthaler H.K., Buchanan B.B., Douce R.: Honoring Andrew Benson in Paris. A tribute on his 90th birthday. — Photosynth. Res. 96: 181–183, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Marakushev S.A.: Transformation of hydrocarbons into components of archaic chemoautotrophic CO2 fixation cycle. — Doklady Biochem. Biophys. 418: 18–23, 2008.

    Article  CAS  Google Scholar 

  • Marakushev S.A., Belonogova, O.V.: Emergence of the chemoautotrophic metabolism in hydrothermal environments and the origin of ancestral bacterial taxa. — Doklady Biochem. Biophys. 439: 161–166, 2011.

    Article  CAS  Google Scholar 

  • Mokronosov A.T.: [Ontogenetic Aspects of Photosynthesis.] Pp. 1–196. Nauka, Moscow 1981. [In Russian]

    Google Scholar 

  • Mokronosov A.T.: [Genotypic and phenotypic factors in the determination of photosynthetic carbon metabolism] — In: Mokronosov A.T. (ed.): [Photosynthetic Carbon Metabolism.] Pp. 7–23. Uralskii Rabochii, Sverdlovsk 1983. [In Russian]

    Google Scholar 

  • Monson R.K., Edwards G.E., Ku M.S.B.: C3-C4 intermediate photosynthesis in plants. — Bio. Sci. 34: 563–574, 1984.

    CAS  Google Scholar 

  • Nezgovorova L.A.: [To a question about the products of photosynthesis.] — Soviet Plant Physiol. 3: 497–507, 1956. [In Russian]

    CAS  Google Scholar 

  • Nezgovorova L.A.: [Influence of water regime of plants on the receipt and distribution of carbon in photosynthesis.] — Soviet Plant Physiol. 4: 440–449, 1957. [In Russian]

    CAS  Google Scholar 

  • Nichiporovich A.A.: Photosynthetic products and the physiological function of the photosynthetic apparatus of plants. — Trudy Inst. Fiziol. Rast. AN SSSR 8: 3–41, 1953. [In Russian]

    CAS  Google Scholar 

  • Nishio J.N., Ting I.P.: Carbon flow and metabolic specialization in the tissue layers of the Crassulacean acid metabolism plant, Peperomia camptotricha. — Plant Physiol. 84: 600–604, 1987.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nonomura A.M., Benson A.A.: The path of carbon in photosynthesis: Improved crop yields with methanol. — P. Natl. Acad. Sci. USA 89: 9794–9798, 1992.

    Article  CAS  Google Scholar 

  • Nonomura A.M., Benson A.A., Biel K.Y.: The path of carbon in photosynthesis. XXVII. Sugar-conjugated plant growth regulators enhance general productivity. — J. Plant Nutr. 34: 653–664, 2011.

    Article  CAS  Google Scholar 

  • Nonomura A.M., Benson A.A.: The path of carbon in photosynthesis — XXX — α-mannosides. — In: Dubinsky Z. (ed.): Photosynthesis. Pp. 3–22. InTech, Rijeka 2013.

    Google Scholar 

  • Nonomura A.M., Benson A.A.: The path of carbon in photosynthesis. XXXI. The role of lectins. — J. Plant Nutr. 37: 785–794, 2014.

    Article  CAS  Google Scholar 

  • Osmond C.B.: Crassulacean acid metabolism: A curiosity in context. — Annu. Rev. Plant Physiol. 29: 379–414, 1978.

    Article  CAS  Google Scholar 

  • Osmond C.B., Allaway W.G.: Pathway of CO2 fixation in the CAM plant Kalanchoe daigremontiana. I. Patterns of 14CO2 fixation in the light. — Aust. J. Plant Physiol. 1: 503–511, 1974.

    Article  CAS  Google Scholar 

  • Shomer-Ilan A., Nissenbaum A., Waisel Y.: Photosynthetic pathway and ecological distribution of the Chenopodiaceae in Israel. — Oecologia 48: 244–248, 1981.

    Article  Google Scholar 

  • Tarchevsky I.A.: [Photosynthesis and Drought.] Pp. 1–198. Publ. Kazan University, Kazan 1964 [In Russian]

    Google Scholar 

  • Tarchevsky I.A.: [Mechanisms of drought effects on photosynthetic absorption of CO2.] — In: Nichiporovich, A.A. (ed.): Physiology of Photosynthesis. Pp. 118–129. Nauka, Moscow 1982. [In Russian]

    Google Scholar 

  • Titlyanov E.A., Titlyanova T.V.: Andy Benson in Russia and at Home. — Russian J. Mar. Biol. 33: 347–348, 2007.

    Article  Google Scholar 

  • Tolbert N.E.: Metabolic pathways in peroxisomes and glyoxysomes. — Annu. Rev. Biochem. 50: 133–157, 1981.

    Article  CAS  PubMed  Google Scholar 

  • Tolbert N.E.: The C2 oxidative photosynthetic carbon cycle — Annu. Rev. Plant Phys. 48: 1–25, 1997.

    Article  CAS  Google Scholar 

  • Vacquier V.D., Aguilera M., Nonomura A.: Obituary Notice: Andrew Benson: World-Renowned Scripps Plant Biochemist. https://scripps.ucsd.edu/news/obituary-notice-andrew-benson-world-renowned-scripps-plant-biochemist, 2015.

  • Winter K., Troughton J.H.: Carbon assimilation pathway in Mesembryanthemum nodiflorum under natural conditions. — Z. Pflanzenphysiol. 88: 153–162, 1978.

    Article  CAS  Google Scholar 

  • Zarzycki J., Brecht V., Müller M., Fuchs G. Identifying the missing steps of the autotrophic 3-hydroxypropionate CO2 fixation cycle in Chloroflexus aurantiacus. — P. Natl. Acad. Sci. USA 106: 21317–21322, 2009.

    Article  CAS  Google Scholar 

  • Zelitch I.: The photooxidation of glyoxylate by envelope-free spinach chloroplasts and its relation to photorespiration. — Arch. Biochem. Biophys. 150: 698–707, 1972.

    Article  CAS  PubMed  Google Scholar 

  • Zelitch I.: Alternate pathways of glycolate synthesis in tobacco and maize leaves in relation to rates of photorespiration. — Plant Physiol. 51: 299–305, 1973.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Biel.

Additional information

Acknowledgements: We are grateful to Dr. Calvin Nii (Principal, O2B Group, LLC, Boulder, Colorado, USA) for editing English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biel, K., Fomina, I. Benson-Bassham-Calvin cycle contribution to the organic life on our planet. Photosynthetica 53, 161–167 (2015). https://doi.org/10.1007/s11099-015-0112-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-015-0112-7

Additional key words