Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Fractional regression models for second stage DEA efficiency analyses

  • Published:
Journal of Productivity Analysis Aims and scope Submit manuscript

Abstract

Data envelopment analysis (DEA) is commonly used to measure the relative efficiency of decision-making units. Often, in a second stage, a regression model is estimated to relate DEA efficiency scores to exogenous factors. In this paper, we argue that the traditional linear or tobit approaches to second-stage DEA analysis do not constitute a reasonable data-generating process for DEA scores. Under the assumption that DEA scores can be treated as descriptive measures of the relative performance of units in the sample, we show that using fractional regression models is the most natural way of modeling bounded, proportional response variables such as DEA scores. We also propose generalizations of these models and, given that DEA scores take frequently the value of unity, examine the use of two-part models in this framework. Several tests suitable for assessing the specification of each alternative model are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. See Duan (1983) for a seminal paper on the consequences for prediction of using logged dependent variables.

  2. Note that, under the assumption that S(·) is an invertible function, we may write \(L\left( x\theta \right) =S\left\{ S^{-1}\left[ L\left( x\theta \right) \right] \right\} \), where \( S^{-1}\left[ L\left( x\theta \right) \right] \) is a nonlinear function of xθ that can be approximated by a polynomial.

  3. Full results are available from the authors on request.

References

  • Aranda-Ordaz FJ (1981) On two families of transformations to additivity for binary response data. Biometrika 68(2):357-363

    Article  Google Scholar 

  • Banker RD, Natarajan R (2008) Evaluating contextual variables affecting productivity using data envelopment analysis. Oper Res 56(1):48–58

    Article  Google Scholar 

  • Chilingerian JA (1995) Evaluating physician efficiency in hospitals: a multivariate analysis of best practices. Eur J Oper Res 80:548–574

    Article  Google Scholar 

  • Coelli TJ, Rao DS, O’Donnell CJ, Battese GE (2005) An introduction to efficiency and productivity analysis, 2nd edn. Springer, New York

    Google Scholar 

  • Czado C (1994) Parametric link modification of both tails in binary regression. Stat Papers 35:189-201

    Article  Google Scholar 

  • Daraio C, Simar L (2005) Introducing environmental variables in nonparametric frontier models: a probabilistic approach. J Prod Anal 24:93–121

    Article  Google Scholar 

  • Davidson R, MacKinnon JG (1981) Several tests for model specification in the presence of alternative hypotheses. Econometrica 49(3):781–793

    Article  Google Scholar 

  • Duan N (1983) Smearing estimate: a nonparametric retransformation method. J Am Stat Assoc 78:605–610

    Article  Google Scholar 

  • Gillespie J, Schupp A, Taylor G (1997) New alternative enterprise: the case of ratite industry. J Agric Appl Econ 29(2):409–418

    Google Scholar 

  • Gouriéroux C, Monfort A (1994) Testing non-nested hypotheses. In: Engle RF, McFadden DL (eds) Handbook of econometrics, volume IV. Elsevier Science, Amsterdam, pp 2585–2637

    Google Scholar 

  • Gouriéroux C, Monfort A, Trognon A (1984) Pseudo maximum likelihood methods: applications to Poisson models. Econometrica 52(3):701–720

    Article  Google Scholar 

  • Grosskopf S (1996) Statistical inference and nonparametric efficiency: a selective survey. J Prod Anal 7:161–176

    Article  Google Scholar 

  • Hoff A (2007) Second stage DEA: comparison of approaches for modelling the DEA score. Eur J Oper Res 181:425–435

    Article  Google Scholar 

  • Kneip A, Park BU, Simar L (1998) A note on the convergence of nonparametric DEA estimators for production efficiency scores. Econ Theory 14:783–793

    Article  Google Scholar 

  • Kravtsova V (2008) Foreign presence and efficiency in transition economies. J Prod Anal 29:91–102

    Article  Google Scholar 

  • Latruffe L, Davidova S, Balcombe K (2008) Application of a double bootstrap to investigation of determinants of technical efficiency of farms in Central Europe. J Prod Anal 29:183–191

    Article  Google Scholar 

  • McDonald J (2009) Using least squares and tobit in second stage DEA efficiency analyses. Eur J Oper Res 197(2):792–798

    Article  Google Scholar 

  • McDonald JF, Moffitt RA (1980) The uses of tobit analysis. Rev Econ Stat 62(2):318–321

    Article  Google Scholar 

  • Nagler J (1994) Scobit: an alternative estimator to logit and probit. Am J Polit Sci 38(1):230–255

    Article  Google Scholar 

  • Pagan A, Vella F (1989) Diagnostic tests for models based on individual data: a survey. J Appl Econ 4:S29–S59

    Article  Google Scholar 

  • Papke LE, Wooldridge JM (1996) Econometric methods for fractional response variables with an application to 401(k) plan participation rates. J Appl Econ 11(6):619-632

    Article  Google Scholar 

  • Poirier DJ (1980) A Lagrange multiplier test for skewness in binary models. Econ Lett 5:141–143

    Article  Google Scholar 

  • Pregibon D (1980) Goodness of link tests for generalized linear models. Appl Stat 29(1):15–24

    Article  Google Scholar 

  • Prentice RL (1976) A generalization of the probit and logit methods for dose response curves. Biometrics 32:761–768

    Article  Google Scholar 

  • Ray SC (1991) Resource-use efficiency in public schools: a study of Connecticut data. Manag Sci 37(12):1620–1628

    Article  Google Scholar 

  • Ramalho EA, Ramalho JJS, Murteira J (2010) Alternative estimating and testing empirical strategies for fractional regression models. J Econ Surv. doi:10.1111/j.1467-6419.2009.00602.x

  • Ruggiero J (1998) Non-discretionary inputs in data envelopment analysis. Eur J Oper Res 111:461–469

    Article  Google Scholar 

  • Simar L, Wilson P (2007) Estimation and inference in two-stage, semi-parametric models of production processes. J Econ 136:31–64

    Google Scholar 

  • Smith RJ (1989) On the use of distributional misspecification checks in limited dependents variable models. Econ J 99:178–192

    Article  Google Scholar 

  • Stukel TA (1988) Generalized logistic models. J Am Stat Assoc 83(402):426–431

    Article  Google Scholar 

  • Taylor JMG (1988) The cost of generalizing logistic regression. J Am Stat Assoc 83(404):1078–1083

    Article  Google Scholar 

  • Wang H, Schmidt P (2002) One-step and two-step estimation of the effects of exogenous variables on technical efficiency levels. J Prod Anal 18:129–144

    Article  Google Scholar 

  • Whitemore AS (1983) Transformations to linearity in binary regression. SIAM J Appl Math 43(4):703–710

    Article  Google Scholar 

  • Wooldridge JM (2002) Econometric analysis of cross section and panel data. The MIT Press, Cambridge

    Google Scholar 

  • Zelenyuk V, Zheka V (2006) Corporate governance and firm’s efficiency: the case of a transitional country, Ukraine. J Prod Anal 25:143–157

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the editor, an associate editor and the referees for valuable comments that helped to substantially improve the paper. Financial support from Fundação para a Ciência e a Tecnologia is also gratefully acknowledged (grant PTDC/ECO/64693/2006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmeralda A. Ramalho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramalho, E.A., Ramalho, J.J.S. & Henriques, P.D. Fractional regression models for second stage DEA efficiency analyses. J Prod Anal 34, 239–255 (2010). https://doi.org/10.1007/s11123-010-0184-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11123-010-0184-0

Keywords

JEL Classification