Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

General Blotto: games of allocative strategic mismatch

  • Published:
Public Choice Aims and scope Submit manuscript

Abstract

The Colonel Blotto game captures strategic situations in which players attempt to mismatch an opponent’s action. We extend Colonel Blotto to a class of General Blotto games that allow for more general payoffs and externalities between fronts. These extensions make Blotto applicable to a variety of real-world problems. We find that like Colonel Blotto, most General Blotto games do not have pure strategy equilibria. Using a replicator dynamics learning model, we show that General Blotto may have more predictable dynamics than the original Blotto game. Thus, adding realistic structure to Colonel Blotto may, paradoxically, make it less complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Axelrod, R. (1984). The evolution of cooperation. New York: Basic Books.

    Google Scholar 

  • Baye, M. R., Kovenock, D., & de Vries, C. G. (1998). A general linear model of contests (Mimeo). Indiana University.

  • Bellman, R. (1969). On Colonel Blotto and analogous games. SIAM Review, 11, 66–68.

    Article  Google Scholar 

  • Borel, E. (1921). La theorie du jeu les equations integrales ‘a noyau symetrique. Comptes Rendus de lÕ’Academie, 173, 1304–1308 English translation by Savage, L. (1953). The theory of play and integral equations with skew symmetric kernels. Econometrica, 21, 97–100.

    Google Scholar 

  • Borel, E., & Ville, J. (1938). Application de la theorie des probabilities aux jeux de hasard. Paris: Gauthier-Villars. Reprinted in Borel, E., & Cheron, A. (1991) Theorie mathematique du bridge ‘a la portee de tous. Paris: Editions Jacques Gabay.

    Google Scholar 

  • de Marchi, S. (2005). Computational and mathematical modeling in the social sciences. Cambridge: Cambridge University Press.

    Google Scholar 

  • Gross, O., & Wagner, R. (1950). A continuous Colonel Blotto game (RAND Corporation RM-408).

  • Hart, S. (2006). Discrete Colonel Blotto and General Lotto games (Discussion Paper Series DP-434). Hebrew University of Jerusalem, Center for Rationality.

  • Holland, J., & Miller, J. (1991). Artificial agents in economic theory. American Economic Review Papers and Proceedings, 81, 365–370.

    Google Scholar 

  • Jervis, R. (1997). System effects: complexity in political and social life. Princeton: Princeton University Press.

    Google Scholar 

  • Laslier, J., & Picard, N. (2002). Distributive politics and electoral competition. Journal of Economic Theory, 103, 106–130.

    Article  Google Scholar 

  • Miller, J., & Page, S. E. (2007). Complex adaptive systems: an introduction to computational models of social life. Princeton: Princeton University Press.

    Google Scholar 

  • Myerson, R. B. (1993). Incentives to cultivate minorities under alternative electoral systems. American Political Science Review, 87, 856–869.

    Article  Google Scholar 

  • Roberson, B. (2006). The Colonel Blotto game. Economic Theory, 29, 1–24.

    Article  Google Scholar 

  • Savage, L. (1953). The theory of play and integral equations with skew symmetric kernels. Econometrica, 21, 97–100.

    Article  Google Scholar 

  • Schelling, T. (1960). The strategy of conflict. Cambridge: Harvard University Press.

    Google Scholar 

  • Shoham, Y., Powers, R., & Grenager, T. (2006). If multi-agent learning is the answer, what is the question? Artificial Intelligence, 171(7), 365–377.

    Article  Google Scholar 

  • Shubik, M., & Weber, R. (1981). Systems defense games: Colonel Blotto, command, and control. Naval Research Logistics Quarterly, 28(2).

  • Taylor, P. D., & Jonker, L. (1978). Evolutionarily stable strategies and game dynamics. Mathematical Biosciences, 40, 145–156.

    Article  Google Scholar 

  • Tesfatsion, L. (1997). How economists can get a-life. In W. B. Arthur, S. Durlauf, & D. Lane (Eds.), The economy as a complex evolving system II (pp. 533–565). Reading: Addison-Wesley.

    Google Scholar 

  • Tukey, J. W. (1949). A problem of strategy. Econometrica, 17, 73.

    Article  Google Scholar 

  • Weinstein, J. (2005). Two notes on the Blotto game (Mimeo). Northwestern University.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott E. Page.

Additional information

Michael Cohen, John Holland, Jim Morrow, Carl Simon, and Rick Riolo gave valuable comments on an earlier version of this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golman, R., Page, S.E. General Blotto: games of allocative strategic mismatch. Public Choice 138, 279–299 (2009). https://doi.org/10.1007/s11127-008-9359-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11127-008-9359-x

Keywords