Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Novel methods to construct nonlocal sets of orthogonal product states in an arbitrary bipartite high-dimensional system

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Nonlocal sets of orthogonal product states (OPSs) are widely used in quantum protocols owing to their good property. In [Phys. Rev. A 101, 062329 (2020)], the authors constructed some unextendible product bases in \({\mathbb {C}}^{m} \otimes {\mathbb {C}}^{n}\) quantum system for \(n\ge m\ge 3\). We find that a subset of their unextendible product basis (UPB) cannot be perfectly distinguished by local operations and classical communication (LOCC). We give a proof for the nonlocality of the subset with Vandermonde determinant and Kramer’s rule. Meanwhile, we give a novel method to construct a nonlocal set with only \(2(m+n)-4\) OPSs in \({\mathbb {C}}^{m} \otimes {\mathbb {C}}^{n}\) quantum system for \(m\ge 3\) and \(n\ge 3\). By comparing the number of OPSs in our nonlocal set with that of the existing results, we know that \(2(m+n)-4\) is the minimum number of OPSs to construct a nonlocal and completable set in \({\mathbb {C}}^{m} \otimes {\mathbb {C}}^{n}\) quantum system so far. This means that we give the minimum number of elements to construct a completable and nonlocal set in an arbitrary given space. Our work is of great help to understand the structure and classification of locally indistinguishable OPSs in an arbitrary bipartite high-dimensional system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Find the latest articles, discoveries, and news in related topics.

References

  1. Bennett, C.H., et al.: Quantum nonlocality without entanglement. Phys. Rev. A 59(2), 1070 (1999)

  2. Walgate, J., Hardy, L.: Nonlocality, asymmetry, and distinguishing bipartite states. Phys. Rev. Lett. 89, 147901 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Yang, Y.H., Yuan, J.T., Wang, C.H., Gao, F.: Local distinguishability of generalized Bell states with one ebit of entanglement. J. Phys. A: Math. Theor. 53, 385306 (2020)

    Article  MathSciNet  Google Scholar 

  4. Halder, S.: Several nonlocal sets of multipartite pure orthogonal product states. Phys. Rev. A 98, 022303 (2018)

    Article  ADS  Google Scholar 

  5. Halder, S., Banik, M., Agrawal, S., Bandyopadhyay, S.: Strong quantum nonlocality without entanglement. Phys. Rev. Lett. 122, 040403 (2019)

  6. Li, L.J., Gao, F., Zhang, Z.C., Wen, Q.Y.: Local distinguishability of orthogonal quantum states with no more than one ebit of entanglement. Phys. Rev. A 99, 012343 (2019)

    Article  ADS  Google Scholar 

  7. Bandyopadhyay, S., Halder, S., Nathanson, M.: Optimal resource states for local state discrimination. Phys. Rev. A 97, 022314 (2018)

    Article  ADS  Google Scholar 

  8. Bandyopadhyay, S., Halder, S., Nathanson, M.: Entanglement as a resource for local state discrimination in multipartite systems. Phys. Rev. A 94, 022311 (2016)

    Article  ADS  Google Scholar 

  9. Rout, S., Maity, A.G., Mukherjee, A., Halder, S., Banik, M.: Genuinely nonlocal product basis: classification and entanglement-assisted discrimination. Phy. Rev. A 100, 032321 (2019)

    Article  ADS  Google Scholar 

  10. Feng, Y., Shi, Y.Y.: Characterizing locally indistinguishable orthogonal product states. IEEE Trans. Inf. Theory 55, 2799 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bennett, C.H., DiVincenzo, D.P., Mor, T., Shor, P.W., Smolin, J.A., Terhal, B.M.: Unextendible product bases and bound entanglement. Phys. Rev. Lett. 82, 5385 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Yu, S.X., Oh, C.H., Detecting the local indistinguishability of maximally entangled states. arXiv:1502.01274v1 [quant-ph] (2015)

  13. Walgate, J., Short, A.J., Hardy, L., Vedral, V.: Local distinguishability of multipartite orthogonal quantum states. Phys. Rev. Lett. 85, 4972 (2000)

    Article  ADS  Google Scholar 

  14. Niset, J., Cerf, N.J.: Multipartite nonlocality without entanglement in many dimensions. Phys. Rev. A 74, 052103 (2006)

    Article  ADS  Google Scholar 

  15. Jiang, W., Ren, X.J., Wu, Y.C., Zhou, Z.W., Guo, G.C., Fan, H.: A sufficient and necessary condition for \(2n-1\) orthogonal states to be locally distinguishable in a \(C^{2}\otimes C^{n}\) system. J. Phys. A: Math. Theor. 43, 325303 (2010)

    Article  ADS  Google Scholar 

  16. Yu, N.K., Duan, R.Y., Ying, M.S.: Any \(2\otimes n\) subspace is locally distinguishable. Phys. Rev. A 84, 012304 (2011)

    Article  ADS  Google Scholar 

  17. Jiang, D.H., Wang, J., Liang, X.Q., Xu, G.B., Qi, H.F.: Quantum voting scheme based on locally indistinguishable orthogonal product states. Int. J. Theor. Phys. 59, 436–444 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rahaman, R., Parker, M.G.: Quantum scheme for secret sharing based on local distinguishability. Phys. Rev. A 91, 022330 (2015)

    Article  ADS  Google Scholar 

  19. Wang, J., Li, L., Peng, H., Yang, Y.: Quantum-secret-sharing scheme based on local distinguishability of orthogonal multiqudit entangled states. Phys. Rev. A 95, 022320 (2017)

    Article  ADS  Google Scholar 

  20. Guo, G.P., Li, C.F., Shi, B.S., Li, J., Guo, G.C.: Quantum key distribution scheme with orthogonal product states. Phys. Rev. A 64, 042301 (2001)

    Article  ADS  Google Scholar 

  21. Croke, S., Barnett, S.M.: Difficulty of distinguishing product states locally. Phys. Rev. A 95, 012337 (2017)

    Article  ADS  Google Scholar 

  22. Halder, S., Banik, M., Ghosh, S.: Family of bound entangled states on the boundary of the Peres set. Phys. Rev. A 99, 062329 (2019)

    Article  ADS  Google Scholar 

  23. Zhang, X., Tan, X., Weng, J., Li, Y.: LOCC indistinguishable orthogonal product quantum states. Sci. Rep. 6, 28864 (2016)

    Article  ADS  Google Scholar 

  24. Duan, R.Y., Xin, Y., Ying, M.S.: Locally indistinguishable subspaces spanned by three-qubit unextendible product bases. Phys. Rev. A 81, 032329 (2010)

    Article  ADS  Google Scholar 

  25. Zhang, Z.C., Gao, F., Tian, G.J., Cao, T.Q., Wen, Q.Y.: Nonlocality of orthogonal product basis quantum states. Phys. Rev. A 90, 022313 (2014)

    Article  ADS  Google Scholar 

  26. Wang, Y.L., Li, M.S., Zheng, Z.J., Fei, S.M.: Nonlocality of orthogonal product-basis quantum states. Phys. Rev. A 92, 032313 (2015)

    Article  ADS  Google Scholar 

  27. Zhang, Z.C., Gao, F., Qin, S.J., Yang, Y.H., Wen, Q.Y.: Nonlocality of orthogonal product states. Phys. Rev. A 92, 012332 (2015)

    Article  ADS  Google Scholar 

  28. Zhang, Z.C., Gao, F., Cao, Y., Qin, S.J., Wen, Q.Y.: Local indistinguishability of orthogonal product states. Phys. Rev. A 93, 012314 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  29. Zhang, X.Q., Weng, J., Tan, X.Q., Luo, W.Q.: Indistinguishability of pure orthogonal product states by LOCC. Quantum Inf. Process. 16, 168 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Shi, F., Zhang, X.D., Chen, L.: Unextendible product bases from tile structures and their local entanglement-assisted distinguishability. Phys. Rev. A 101, 062329 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  31. DiVincenzo, D.P., Mor, T., Shor, P.W., Smolin, J.A., Terhal, B.M.: Unextendible product bases, uncompleteable product bases and bound entanglement. Commun. Math. Phys. 238, 379 (2003)

    Article  ADS  MATH  Google Scholar 

  32. Wang, Y.L., Li, M.S., Zheng, Z.J., Fei, S.M.: The local indistinguishability of multipartite product states. Quantum Inf. Process. 16, 5 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Xu, G.B., Wen, Q.Y., Qin, S.J., Yang, Y.H., Gao, F.: Quantum nonlocality of multipartite orthogonal product states. Phys. Rev. A 93, 032341 (2016)

    Article  ADS  Google Scholar 

  34. Xu, G.B., Yang, Y.H., Wen, Q.Y., Qin, S.J., Gao, F.: Locally indistinguishable orthogonal product bases in arbitrary bipartite quantum system. Sci. Rep. 6, 31048 (2016)

    Article  ADS  Google Scholar 

  35. Department of mathematics of Tongji University, Engineering mathematics-linear algebra (sixth Edition), higher education press, Beijing, China, pp. 18 (2014)

  36. Department of mathematics of Tongji University, Engineering mathematics-linear algebra (sixth Edition), higher education press, Beijing, China, pp. 44 (2014)

  37. Gai, Y.Y., Bao, G.J.: Complex functions and integral transformations (second edition), Science Press, Beijing, China, pp. 11 (2007)

  38. Xin, Y., Duan, R.Y.: Local distinguishability of orthogonal \(2\otimes 3\) pure states. Phys. Rev. A 77, 012315 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  39. Ma, T., Zhao, M.J., Wang, Y.K., Fei, S.M.: Noncommutativity and local indistinguishability of quantum states. Sci. Rep. 4, 6336 (2014)

    Article  Google Scholar 

  40. Chen, P.X., Li, C.Z.: Distinguishing the elements of a full product basis set needs only projective measurements and classical communication. Phys. Rev. A 70, 022306 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. De Rinaldis, S.: Distinguishability of complete and unextendible product bases. Phys. Rev. A 70, 022309 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Bravyi, S.B.: Unextendible product bases and locally unconvertible bound entangled states. Quantum Inf. Process 3(6), 309–329 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  43. Johnston, N.: The structure of qubit unextendible product bases. J. Phys. A: Math. Theor. 47, 424034 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Chen, J.X., Johnston, N.: The minimum size of unextendible product bases in the bipartite case (and some multipartite cases). Commun. Math. Phys. 333, 351–365 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Johnston, N.: The minimum size of qubit unextendible product bases, Proceedings of the 8th Conference on the Theory of Quantum Computation. Communication and Cryptography, 93-105 (2013)

  46. Yang, Y.H., Gao, F., Wu, X., Qin, S.J., Zuo, H.J., Wen, Q.Y.: Quantum secret sharing via local operations and classical communication. Sci. Rep. 5, 16967 (2015)

    Article  ADS  Google Scholar 

  47. Jiang, D.H., Hu, Q.Z., Liang, X.Q., Xu, G.B.: A trusted third-party E-payment protocol based on locally indistinguishable orthogonal product states. Int. J. Theor. Phys. 59, 1442–1450 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  48. Guo, G.P., Li, C.F., et al.: Quantum key distribution scheme with orthogonal product states. Phys. Rev. A 64, 042301 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by Shandong Provincial Natural Science Foundation (Grants No. ZR2019MF023), National Natural Science Foundation of China (Grants No. 61701343) and SDUST Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Huan Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: The process to solve the equations involved in the proof of Theorem 1.

Because \((M_{k}\otimes I_{4\times 4})|\phi _{1}\rangle \) is orthogonal to \((M_{k}\otimes I_{4\times 4})|\phi _{10}\rangle \), \((M_{k}\otimes I_{4\times 4})|\phi _{11}\rangle \) and \((M_{k}\otimes I_{4\times 4})|\phi _{12}\rangle \), i.e.,

$$\begin{aligned} \left\{ \begin{aligned} \langle \phi _{1}|(M_{k}^{\dag }M_{k}\otimes I_{4\times 4})|\phi _{10}\rangle =0\\ \langle \phi _{1}|(M_{k}^{\dag }M_{k}\otimes I_{4\times 4})|\phi _{11}\rangle =0\\ \langle \phi _{1}|(M_{k}^{\dag }M_{k}\otimes I_{4\times 4})|\phi _{12}\rangle =0 \end{aligned} \right. \end{aligned}$$

and

$$\begin{aligned} \left\{ \begin{aligned} \langle \phi _{10}|(M_{k}^{\dag }M_{k}\otimes I_{4\times 4})|\phi _{1}\rangle =0\\ \langle \phi _{11}|(M_{k}^{\dag }M_{k}\otimes I_{4\times 4})|\phi _{1}\rangle =0\\ \langle \phi _{12}|(M_{k}^{\dag }M_{k}\otimes I_{4\times 4})|\phi _{1}\rangle =0 \end{aligned} \right. , \end{aligned}$$

we get two systems of linear equations

$$\begin{aligned} \left\{ \begin{aligned} a_{01}^{k}+a_{02}^{k}+a_{03}^{k}=0\qquad \quad \,\,\\ a_{01}^{k}+\omega a_{02}^{k}+\omega ^{2}a_{03}^{k}=0\quad \,\,\,\,\\ a_{01}^{k}+\omega ^{2}a_{02}^{k}+(\omega ^{2})^{2}a_{03}^{k}=0 \end{aligned} \right. \end{aligned}$$
(19)

and

$$\begin{aligned} \left\{ \begin{aligned} a_{10}^{k}+a_{20}^{k}+a_{30}^{k}=0\qquad \quad \,\,\\ a_{10}^{k}+{\overline{\omega }} a_{20}^{k}+{\overline{\omega }}^{2}a_{30}^{k}=0\quad \,\,\,\,\\ a_{10}^{k}+{\overline{\omega }}^{2}a_{20}^{k}+({\overline{\omega }}^{2})^{2}a_{30}^{k}=0 \end{aligned} \right. , \end{aligned}$$
(20)

where \({\overline{\omega }}\) is the conjugate complex number of \(\omega \).

By Lemmas 13, we get the unique solution of Eq. (19),

$$\begin{aligned} \begin{aligned} a_{01}^{k}=a_{02}^{k}=a_{03}^{k}=0\\ \end{aligned} \end{aligned}$$
(21)

and the unique solution of Eq. (20),

$$\begin{aligned} \begin{aligned} a_{10}^{k}=a_{20}^{k}=a_{30}^{k}=0. \end{aligned} \end{aligned}$$
(22)

Similarly, we can get two systems of linear equations

$$\begin{aligned} \left\{ \begin{aligned} a_{30}^{k}+a_{31}^{k}+a_{32}^{k}=0\qquad \quad \,\,\\ a_{30}^{k}+\omega a_{31}^{k}+\omega ^{2}a_{32}^{k}=0\quad \,\,\,\,\\ a_{30}^{k}+\omega ^{2}a_{31}^{k}+(\omega ^{2})^{2}a_{32}^{k}=0 \end{aligned} \right. \end{aligned}$$
(23)

and

$$\begin{aligned} \left\{ \begin{aligned} a_{03}^{k}+a_{13}^{k}+a_{23}^{k}=0\qquad \quad \,\,\\ a_{03}^{k}+{\overline{\omega }} a_{13}^{k}+{\overline{\omega }}^{2}a_{23}^{k}=0\quad \,\,\,\,\\ a_{03}^{k}+{\overline{\omega }}^{2}a_{13}^{k}+({\overline{\omega }}^{2})^{2}a_{23}^{k}=0 \end{aligned} \right. \end{aligned}$$
(24)

since \((M_{k}\otimes I_{4\times 4})|\phi _{7}\rangle \) is orthogonal to \((M_{k}\otimes I_{4\times 4})|\phi _{4}\rangle \), \((M_{k}\otimes I_{4\times 4})|\phi _{5}\rangle \) and \((M_{k}\otimes I_{4\times 4})|\phi _{6}\rangle \). By Lemmas 13, we get the unique solution of Eq. (23),

$$\begin{aligned} \begin{aligned} a_{30}^{k}=a_{31}^{k}=a_{32}^{k}=0 \end{aligned} \end{aligned}$$
(25)

and the unique solution of Eq. (24),

$$\begin{aligned} \begin{aligned} a_{03}^{k}=a_{13}^{k}=a_{23}^{k}=0. \end{aligned} \end{aligned}$$
(26)

Because these three states \((M_{k}\otimes I_{4\times 4})|\phi _{4}\rangle \), \((M_{k}\otimes I_{4\times 4})|\phi _{5}\rangle \) and \((M_{k}\otimes I_{4\times 4})|\phi _{6}\rangle \) are mutually orthogonal, we have

$$\begin{aligned}&\left\{ \begin{aligned} \langle \phi _{4}|(M_{k}^{\dag }M_{k}\otimes I_{4\times 4})|\phi _{5}\rangle =0\\ \langle \phi _{4}|(M_{k}^{\dag }M_{k}\otimes I_{4\times 4})|\phi _{6}\rangle =0 \end{aligned} \right. , \\&\left\{ \begin{aligned} \langle \phi _{5}|(M_{k}^{\dag }M_{k}\otimes I_{4\times 4})|\phi _{4}\rangle =0\\ \langle \phi _{5}|(M_{k}^{\dag }M_{k}\otimes I_{4\times 4})|\phi _{6}\rangle =0 \end{aligned} \right. \end{aligned}$$

and

$$\begin{aligned} \left\{ \begin{aligned} \langle \phi _{6}|(M_{k}^{\dag }M_{k}\otimes I_{4\times 4})|\phi _{4}\rangle =0\\ \langle \phi _{6}|(M_{k}^{\dag }M_{k}\otimes I_{4\times 4})|\phi _{5}\rangle =0 \end{aligned} \right. . \end{aligned}$$

That is,

$$\begin{aligned}&\left\{ \begin{aligned} \sum _{p=1}^{2}\left( \omega ^{p}\sum _{j=0}^{2}a_{jp}^{k}\right) =-\sum _{j=0}^{2}a_{j0}^{k}\quad \,\,\\ \sum _{p=1}^{2}\left[ (\omega ^{2})^{p}\sum _{j=0}^{2}a_{jp}^{k}\right] =-\sum _{j=0}^{2}a_{j0}^{k} \end{aligned} \right. , \end{aligned}$$
(27)
$$\begin{aligned}&\left\{ \begin{aligned} \sum _{p=1}^{2}\sum _{j=0}^{2}{\overline{\omega }}^{j}a_{jp}^{k} =-\sum _{j=0}^{2}{\overline{\omega }}^{j}a_{j0}^{k}\qquad \quad \\ \sum _{p=1}^{2}\left[ (\omega ^{2})^{p}\sum _{j=0}^{2}{\overline{\omega }}^{j}a_{jp}^{k}\right] =-\sum _{j=0}^{2}{\overline{\omega }}^{j}a_{j0}^{k}\\ \end{aligned} \right. , \end{aligned}$$
(28)

and

$$\begin{aligned} \left\{ \begin{aligned} \sum _{p=1}^{2}\sum _{j=0}^{2}({\overline{\omega }}^{2})^{j}a_{jp}^{k} =-\sum _{j=0}^{2}({\overline{\omega }}^{2})^{j}a_{j0}^{k}\quad \,\,\,\\ \sum _{p=1}^{2}\left[ \omega ^{p}\sum _{j=0}^{2}({\overline{\omega }}^{2})^{j}a_{jp}^{k}\right] =-\sum _{j=0}^{2}({\overline{\omega }}^{2})^{j}a_{j0}^{k}\\ \end{aligned} \right. , \end{aligned}$$
(29)

where \({\overline{\omega }}\) is the conjugate complex number of \(\omega \).

For simplicity, we denote the coefficient determinants of Eqs. (27), (28) and (29) as \(D_{1}\), \(D_{2}\) and \(D_{3}\), respectively. Since

$$\begin{aligned}&D_{1}= \left| \begin{array}{cc} \omega &{}\omega ^{2} \\ \omega ^{2} &{}(\omega ^{2})^{2} \\ \end{array} \right| =\omega ^{3}\left| \begin{array}{cc} 1 &{}\omega \\ 1 &{}\omega ^{2} \\ \end{array} \right| =\omega ^{2}-\omega \ne 0,\\ \\&D_{2}= \left| \begin{array}{cc} 1 &{}1 \\ \omega ^{2} &{}(\omega ^{2})^{2} \\ \end{array} \right| =(\omega ^{2})^{2}-\omega ^{2} \ne 0, \qquad \qquad \\&D_{3}= \left| \begin{array}{cc} 1 &{}1 \\ \omega &{}\omega ^{2} \\ \end{array} \right| =\omega ^{2}-\omega \ne 0, \end{aligned}$$

we obtain the unique solutions of Eqs. (27), (28) and (29), respectively, i.e.,

$$\begin{aligned}&\left\{ \begin{aligned} \sum _{j=0}^{2}a_{j1}^{k}=\sum _{j=0}^{2}a_{j0}^{k}\\ \sum _{j=0}^{2}a_{j2}^{k}=\sum _{j=0}^{2}a_{j0}^{k} \end{aligned} \right. , \end{aligned}$$
(30)
$$\begin{aligned}&\left\{ \begin{aligned} \sum _{j=0}^{2}{\overline{\omega }}^{j}a_{j1}^{k}= {\overline{\omega }}\sum _{j=0}^{2}{\overline{\omega }}^{j}a_{j0}^{k}\\ \sum _{j=0}^{2}{\overline{\omega }}^{j}a_{j2}^{k}= {\overline{\omega }}^{2}\sum _{j=0}^{2}{\overline{\omega }}^{j}a_{j0}^{k}\\ \end{aligned} \right. ,\quad \end{aligned}$$
(31)

and

$$\begin{aligned} \left\{ \begin{aligned} \sum _{j=0}^{2}({\overline{\omega }}^{2})^{j}a_{j1}^{k}={\overline{\omega }}^{2} \sum _{j=0}^{2}({\overline{\omega }}^{2})^{j}a_{j0}^{k}\quad \\ \sum _{j=0}^{2}({\overline{\omega }}^{2})^{j}a_{j2}^{k}=({\overline{\omega }}^{2})^{2} \sum _{j=0}^{2}({\overline{\omega }}^{2})^{j}a_{j0}^{k}\\ \end{aligned} \right. . \end{aligned}$$
(32)

By Eqs. (22), (30), (31) and (32), we get

$$\begin{aligned} \left\{ \begin{aligned} \sum _{j=0}^{2}a_{j1}^{k}=a_{00}^{k}\qquad \quad \\ \sum _{j=0}^{2}{\overline{\omega }}^{j}a_{j1}^{k}={\overline{\omega }} a_{00}^{k}\quad \,\,\\ \sum _{j=0}^{2}({\overline{\omega }}^{2})^{j}a_{j1}^{k}={\overline{\omega }}^{2}a_{00}^{k} \end{aligned} \right. \end{aligned}$$
(33)

and

$$\begin{aligned} \left\{ \begin{aligned} \sum _{j=0}^{2}a_{j2}^{k}=a_{00}^{k}\qquad \qquad \\ \sum _{j=0}^{2}{\overline{\omega }}^{j}a_{j2}^{k}={\overline{\omega }}^{2} a_{00}^{k}\qquad \\ \sum _{j=0}^{2}({\overline{\omega }}^{2})^{j}a_{j2}^{k}=({\overline{\omega }}^{2})^{2}a_{00}^{k} \end{aligned} \right. . \end{aligned}$$
(34)

By Lemmas 13, we easily get the unique solutions of Eqs. (33) and (34), respectively, i.e.,

$$\begin{aligned} \left\{ \begin{aligned} a_{11}^{k}=a_{00}^{k}\qquad \\ a_{01}^{k}=a_{21}^{k}=0 \end{aligned} \right. \end{aligned}$$
(35)

and

$$\begin{aligned} \left\{ \begin{aligned} a_{22}^{k}=a_{00}^{k}\quad \,\,\,\,\,\\ a_{02}^{k}=a_{12}^{k}=0 \end{aligned} \right. . \end{aligned}$$
(36)

Similarly, because the three product states \(\{(M_{k}\otimes I_{4\times 4})|\phi _{10}\rangle \), \((M_{k}\otimes I_{4\times 4})|\phi _{11}\rangle \) and \((M_{k}\otimes I_{4\times 4})|\phi _{12}\rangle \}\) are mutually orthogonal, we have

$$\begin{aligned}&\left\{ \begin{aligned} \sum _{p=0}^{1}\left[ \omega ^{p}\sum _{j=1}^{3}a_{j(p+1)}^{k}\right] =-\omega ^{2}\sum _{j=1}^{3}a_{j3}^{k}\qquad \,\,\\ \sum _{p=0}^{1}\left[ (\omega ^{2})^{p}\sum _{j=1}^{3}a_{j(p+1)}^{k}\right] =-(\omega ^{2})^{2}\sum _{j=1}^{3}a_{j3}^{k}\\ \end{aligned} \right. , \end{aligned}$$
(37)
$$\begin{aligned}&\left\{ \begin{aligned} \sum _{p=0}^{1}\sum _{j=1}^{3}{\overline{\omega }}^{j-1}a_{j(p+1)}^{k} =-\sum _{j=1}^{3}{\overline{\omega }}^{j-1}a_{j3}^{k}\qquad \qquad \quad \,\\ \sum _{p=0}^{1}\left[ (\omega ^{2})^{p}\sum _{j=1}^{3}{\overline{\omega }}^{j-1}a_{j(p+1)}^{k}\right] =-(\omega ^{2})^{2}\sum _{j=1}^{3}{\overline{\omega }}^{j-1}a_{j3}^{k}\\ \end{aligned} \right. \end{aligned}$$
(38)

and

$$\begin{aligned} \left\{ \begin{aligned} \sum _{p=0}^{1}\sum _{j=1}^{3}({\overline{\omega }}^{2})^{j-1}a_{j(p+1)}^{k} =-\sum _{j=1}^{3}({\overline{\omega }}^{2})^{j-1}a_{j3}^{k}\qquad \,\,\,\,\\ \sum _{p=0}^{1}\left[ \omega ^{p}\sum _{j=1}^{3}({\overline{\omega }}^{2})^{j-1}a_{j(p+1)}^{k}\right] =-\omega ^{2}\sum _{j=1}^{3}({\overline{\omega }}^{2})^{j-1}a_{j3}^{k}\\ \end{aligned} \right. . \end{aligned}$$
(39)

For simplicity, we denote the coefficient determinants of Eqs. (37), (38) and (39) as \(D_{4}\), \(D_{5}\) and \(D_{6}\), respectively. Since

$$\begin{aligned} \begin{aligned} D_{4}&=\left| \begin{array}{cc} 1 &{}\omega \\ 1 &{}\omega ^{2} \\ \end{array} \right| \ne 0, \\ D_{5}&=\left| \begin{array}{cc} 1 &{}1 \\ 1 &{}\omega ^{2} \\ \end{array} \right| \ne 0, \\ D_{6}&=\left| \begin{array}{cc} 1 &{}1 \\ 1 &{}\omega \\ \end{array} \right| \ne 0, \end{aligned} \end{aligned}$$

we can get the unique solutions of Eqs. (37), (38) and (39), respectively, i.e.,

$$\begin{aligned}&\left\{ \begin{aligned} \sum _{j=1}^{3}a_{j1}^{k}=\sum _{j=1}^{3}a_{j3}^{k}\\ \sum _{j=1}^{3}a_{j2}^{k}=\sum _{j=1}^{3}a_{j3}^{k} \end{aligned} \right. , \end{aligned}$$
(40)
$$\begin{aligned}&\left\{ \begin{aligned} \sum _{j=1}^{3}{\overline{\omega }}^{j-1}a_{j1}^{k}= \omega ^{2}\sum _{j=1}^{3}{\overline{\omega }}^{j-1}a_{j3}^{k}\\ \sum _{j=1}^{3}{\overline{\omega }}^{j-1}a_{j2}^{k}= \omega \sum _{j=1}^{3}{\overline{\omega }}^{j-1}a_{j3}^{k}\,\,\\ \end{aligned} \right. , \end{aligned}$$
(41)

and

$$\begin{aligned} \left\{ \begin{aligned} \sum _{j=1}^{3}({\overline{\omega }}^{2})^{j-1}a_{j1}^{k}=(\omega ^{2})^{2} \sum _{j=1}^{3}({\overline{\omega }}^{2})^{j-1}a_{j3}^{k}\\ \sum _{j=1}^{3}({\overline{\omega }}^{2})^{j-1}a_{j2}^{k}=\omega ^{2} \sum _{j=1}^{3}({\overline{\omega }}^{2})^{j-1}a_{j3}^{k}\quad \\ \end{aligned} \right. . \end{aligned}$$
(42)

By Eqs. (26), (40), (41) and (42), we can get

$$\begin{aligned} \left\{ \begin{aligned} \sum _{j=1}^{3}a_{j1}^{k}=a_{33}^{k}\qquad \quad \\ \sum _{j=1}^{3}{\overline{\omega }}^{j-1}a_{j1}^{k}= a_{33}^{k}\quad \\ \sum _{j=1}^{3}({\overline{\omega }}^{2})^{j-1}a_{j1}^{k}=a_{33}^{k} \end{aligned} \right. \end{aligned}$$
(43)

and

$$\begin{aligned} \left\{ \begin{aligned} \sum _{j=1}^{3}a_{j2}^{k}=a_{33}^{k}\qquad \quad \quad \\ \sum _{j=1}^{3}{\overline{\omega }}^{j-1}a_{j2}^{k}={\overline{\omega }} a_{33}^{k}\quad \\ \sum _{j=1}^{3}({\overline{\omega }}^{2})^{j-1}a_{j2}^{k}={\overline{\omega }}^{2}a_{33}^{k} \end{aligned} \right. . \end{aligned}$$
(44)

By Lemmas 13, we can immediately get the unique solutions of Eqs. (43) and (44), i.e.,

$$\begin{aligned} \left\{ \begin{aligned} a_{11}^{k}=a_{33}^{k}\quad \quad \\ a_{21}^{k}=a_{31}^{k}=0 \end{aligned} \right. \end{aligned}$$
(45)

and

$$\begin{aligned} \left\{ \begin{aligned} a_{22}^{k}=a_{33}^{k}\quad \quad \\ a_{12}^{k}=a_{32}^{k}=0 \end{aligned} \right. . \end{aligned}$$
(46)

Appendix B: Proof of Theorem 2

Proof

Suppose that Alice firstly performs a POVM measurement with a set of general \(m\times m\) POVM elements \(\{M_{k}^{\dag }M_{k}: k=1,\,2,\,\cdots ,\,l\}\), where

$$\begin{aligned} \begin{aligned} M_{k}^{\dag }M_{k}= \left[ \begin{array}{ccccc} a_{00}^{k} &{}a_{01}^{k} &{}\cdots &{}a_{0(m-1)}^{k}\\ a_{10}^{k} &{}a_{11}^{k} &{}\cdots &{}a_{1(m-1)}^{k}\\ \vdots &{}\vdots &{}\ddots &{}\vdots \\ a_{(m-1)0}^{k} &{}a_{(m-1)1}^{k} &{}\cdots &{}a_{(m-1)(m-1)}^{k}\\ \end{array} \right] \end{aligned} \end{aligned}$$

in the basis \(\{|0\rangle ,\) \(|1\rangle ,\) \(\cdots ,\) \(|(m-1)\rangle \}\). The post-measurement states \(\{(M_{k}\otimes I_{n\times n})|\phi _{j}\rangle :\) \(j=1,\) 2, \(\cdots \), \(2(m+n)-4\}\) should be mutually orthogonal to make further discrimination possible.

Because \((M_{k}\otimes I_{n\times n})|\phi _{1}\rangle \) should be orthogonal to \((M_{k}\otimes I_{n\times n})|\phi _{\eta +2n+m-2}\rangle \) on Alice’s side for \(\eta =0,\,1,\,\cdots ,\,m-2\), we get

$$\begin{aligned} \left\{ \begin{aligned} \sum _{j=1}^{m-1}a_{0j}^{k}=0\qquad \qquad \quad \\ \sum _{j=1}^{m-1}(\omega _{2})^{j-1} a_{0j}^{k}=0\qquad \\ \sum _{j=1}^{m-1}[(\omega _{2})^{2}]^{j-1} a_{0j}^{k}=0\quad \\ \vdots \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\\ \sum _{j=1}^{m-1}[(\omega _{2})^{m-2}]^{j-1} a_{0j}^{k}=0\\ \end{aligned} \right. \end{aligned}$$
(47)

and

$$\begin{aligned} \left\{ \begin{aligned} \sum _{j=1}^{m-1}a_{j0}^{k}=0\qquad \qquad \,\,\,\\ \sum _{j=1}^{m-1}\overline{\omega _{2}}^{j-1}a_{j0}^{k}=0\qquad \\ \sum _{j=1}^{m-1}(\overline{\omega _{2}}^{2})^{j-1}a_{j0}^{k}=0\quad \\ \vdots \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\\ \sum _{j=1}^{m-1}(\overline{\omega _{2}}^{m-2})^{j-1}a_{j0}^{k}=0\\ \end{aligned} \right. , \end{aligned}$$
(48)

where \(\overline{\omega _{2}}\) is the conjugate complex number of \(\omega _{2}\). The coefficient determinants the two systems of Eqs. (47) and (48) are not equal to zero by Lemma 1 and Lemma 3, i.e.,

$$\begin{aligned} \begin{aligned} \left| \begin{array}{ccccc} 1 &{}1 &{}1 &{}\cdots &{}1\\ 1 &{}\omega _{2} &{}(\omega _{2})^{2} &{}\cdots &{}(\omega _{2})^{m-2}\\ 1 &{}(\omega _{2})^{2} &{}[(\omega _{2})^{2}]^{2} &{}\cdots &{}[(\omega _{2})^{2}]^{m-2}\\ \vdots &{}\vdots &{}\vdots &{}\ddots &{}\vdots \\ 1 &{}(\omega _{2})^{m-2}&{}[(\omega _{2})^{m-2}]^{2} &{}\cdots &{}[(\omega _{2})^{m-2}]^{m-2} \end{array} \right| \ne 0, \end{aligned} \\ \begin{aligned} \left| \begin{array}{ccccc} 1 &{}1 &{}1 &{}\cdots &{}1\\ 1 &{}\overline{\omega _{2}} &{}\overline{\omega _{2}}^{2} &{}\cdots &{}\overline{\omega _{2}}^{m-2}\\ 1 &{}\overline{\omega _{2}}^{2} &{}(\overline{\omega _{2}}^{2})^{2} &{}\cdots &{}(\overline{\omega _{2}}^{2})^{m-2}\\ \vdots &{}\vdots &{}\vdots &{}\ddots &{}\vdots \\ 1 &{}\overline{\omega _{2}}^{m-2} &{}(\overline{\omega _{2}}^{m-2})^{2} &{}\cdots &{}(\overline{\omega _{2}}^{m-2})^{m-2} \end{array} \right| \ne 0, \end{aligned} \end{aligned}$$

we have the unique solutions of Eqs. (47) and (48), respectively, i.e.,

$$\begin{aligned} \begin{aligned} a_{01}^{k}=a_{02}^{k}=\cdots =a_{0(m-1)}^{k}=0 \end{aligned} \end{aligned}$$
(49)

and

$$\begin{aligned} \begin{aligned} a_{10}^{k}=a_{20}^{k}=\cdots =a_{(m-1)0}^{k}=0 \end{aligned} \end{aligned}$$
(50)

by Lemma 2. Similarly, because \((M_{k}\otimes I_{n\times n})|\phi _{n+m-1}\rangle \) should be orthogonal to \((M_{k}\otimes I_{n\times n})|\phi _{\eta +n}\rangle \) on Alice’s side for \(\eta =0\), 1, \(\cdots \), \(m-2\), we have

$$\begin{aligned} \left\{ \begin{aligned} \sum _{j=0}^{m-2}a_{(m-1)j}^{k}=0\qquad \qquad \,\\ \sum _{j=0}^{m-2}(\omega _{2})^{j}a_{(m-1)j}^{k}=0\qquad \\ \sum _{j=0}^{m-2}[(\omega _{2})^{2}]^{j}a_{(m-1)j}^{k}=0\quad \\ \vdots \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\\ \sum _{j=0}^{m-2}[(\omega _{2})^{m-2}]^{j}a_{(m-1)j}^{k}=0 \end{aligned} \right. \end{aligned}$$
(51)

and

$$\begin{aligned} \left\{ \begin{aligned} \sum _{j=0}^{m-2}a_{j(m-1)}^{k}=0\qquad \quad \,\,\\ \sum _{j=0}^{m-2}\overline{\omega _{2}}^{j}a_{j(m-1)}^{k}=0\qquad \\ \sum _{j=0}^{m-2}(\overline{\omega _{2}}^{2})^{j}a_{j(m-1)}^{k}=0\quad \\ \vdots \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\\ \sum _{j=0}^{m-2}(\overline{\omega _{2}}^{m-2})^{j}a_{j(m-1)}^{k}=0\\ \end{aligned} \right. . \end{aligned}$$
(52)

By Lemmas 13, we get the unique solutions of Eqs. (51) and (52), respectively, i.e.,

$$\begin{aligned} a_{(m-1)0}^{k}= & {} a_{(m-1)1}^{k}=\cdots =a_{(m-1)(m-2)}^{k}=0, \end{aligned}$$
(53)
$$\begin{aligned} a_{0(m-1)}^{k}= & {} a_{1(m-1)}^{k}=\cdots =a_{(m-2)(m-1)}^{k}=0. \end{aligned}$$
(54)

Because the states in \(\{(M_{k}\otimes I_{n\times n})|\phi _{\eta +2n+m-2}\rangle :\) \(\eta =0,\) 1,  \(\cdots \), \(m-2\}\) should be mutually orthogonal on Alice’s side, we get the following \(m-1\) systems of equations

$$\begin{aligned}&\left\{ \begin{aligned} \sum _{p=0}^{m-3}\left[ (\omega _{2})^{p}\sum _{j=1}^{m-1}a_{j(p+1)}^{k}\right] =-(\omega _{2})^{m-2}\sum _{j=1}^{m-1}a_{j(m-1)}^{k}\qquad \qquad \,\,\\ \sum _{p=0}^{m-3}\{[(\omega _{2})^{2}]^{p}\sum _{j=1}^{m-1}a_{j(p+1)}^{k}\} =-[(\omega _{2})^{2}]^{m-2}\sum _{j=1}^{m-1}a_{j(m-1)}^{k}\qquad \\ \vdots \qquad \qquad \qquad \qquad \qquad \qquad \quad \,\,\,\\ \sum _{p=0}^{m-3}\{[(\omega _{2})^{m-2}]^{p}\sum _{j=1}^{m-1}a_{j(p+1)}^{k}\} =-[(\omega _{2})^{m-2}]^{m-2}\sum _{j=1}^{m-1}a_{j(m-1)}^{k} \end{aligned} \right. , \\&\left\{ \begin{aligned} \sum _{p=0}^{m-3}\left( \sum _{j=1}^{m-1}\overline{\omega _{2}}^{j-1}a_{j(p+1)}^{k}\right) =-\sum _{j=1}^{m-1}\overline{\omega _{2}}^{j-1}a_{j(m-1)}^{k}\qquad \qquad \qquad \qquad \qquad \,\,\\ \sum _{p=0}^{m-3}\{[(\omega _{2})^{2}]^{p}\sum _{j=1}^{m-1}\overline{\omega _{2}}^{j-1}a_{j(p+1)}^{k}\} =-[(\omega _{2})^{2}]^{m-2}\sum _{j=1}^{m-1}\overline{\omega _{2}}^{j-1}a_{j(m-1)}^{k}\qquad \\ \sum _{p=0}^{m-3}\{[(\omega _{2})^{3}]^{p}\sum _{j=1}^{m-1}\overline{\omega _{2}}^{j-1}a_{j(p+1)}^{k}\} =-[(\omega _{2})^{3}]^{m-2}\sum _{j=1}^{m-1}\overline{\omega _{2}}^{j-1}a_{j(m-1)}^{k}\qquad \\ \vdots \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \\ \sum _{p=0}^{m-3}\{[(\omega _{2})^{m-2}]^{p}\sum _{j=1}^{m-1}{\overline{\omega }}^{j-1}a_{j(p+1)}^{k}\} =-[(\omega _{2})^{m-2}]^{m-2}\sum _{j=1}^{m-1}\overline{\omega _{2}}^{j-1}a_{j(m-1)}^{k} \end{aligned} \right. , \\&\left\{ {\begin{aligned} \sum _{p=0}^{m-3}\left[ \sum _{j=1}^{m-1}(\overline{\omega _{2}}^{2})^{j-1}a_{j(p+1)}^{k}\right] =-\sum _{j=1}^{m-1}(\overline{\omega _{2}}^{2})^{j-1}a_{j(m-1)}^{k}\qquad \qquad \qquad \qquad \qquad \,\,\,\,\,\\ \sum _{p=0}^{m-3}\left[ (\omega _{2})^{p}\sum _{j=1}^{m-1}(\overline{\omega _{2}}^{2})^{j-1}a_{j(p+1)}^{k}\right] =-(\omega _{2})^{m-2}\sum _{j=1}^{m-1}(\overline{\omega _{2}}^{2})^{j-1}a_{j(m-1)}^{k}\qquad \qquad \,\,\,\\ \sum _{p=0}^{m-3}\{[(\omega _{2})^{3}]^{p}\sum _{j=1}^{m-1}(\overline{\omega _{2}}^{2})^{j-1}a_{j(p+1)}^{k}\} =-[(\omega _{2})^{3}]^{m-2}\sum _{j=1}^{m-1}(\overline{\omega _{2}}^{2})^{j-1}a_{j(m-1)}^{k}\qquad \,\,\\ \vdots \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad \\ \sum _{p=0}^{m-3}\{[(\omega _{2})^{m-2}]^{p}\sum _{j=1}^{m-1}(\overline{\omega _{2}}^{2})^{j-1}a_{j(p+1)}^{k}\} =-[(\omega _{2})^{m-2}]^{m-2}\sum _{j=1}^{m-1}(\overline{\omega _{2}}^{2})^{j-1}a_{j(m-1)}^{k}\\ \end{aligned}} \right. , \\&\vdots \quad \\&\left\{ {\begin{aligned} \sum _{p=0}^{m-3}\left[ \sum _{j=1}^{m-1}(\overline{\omega _{2}}^{m-2})^{j-1}a_{j(p+1)}^{k}\right] =-\sum _{j=1}^{m-1}(\overline{\omega _{2}}^{d-2})^{j-1}a_{j(m-1)}^{k}\qquad \qquad \qquad \qquad \qquad \,\,\,\,\,\,\\ \sum _{p=0}^{m-3}\left[ (\omega _{2})^{p}\sum _{j=1}^{m-1}(\overline{\omega _{2}}^{m-2})^{j-1}a_{j(p+1)}^{k}\right] =-(\omega _{2})^{m-2}\sum _{j=1}^{m-1}(\overline{\omega _{2}}^{m-2})^{j-1}a_{j(m-1)}^{k}\qquad \qquad \,\,\,\\ \sum _{p=0}^{m-3}\{[(\omega _{2})^{2}]^{p}\sum _{j=1}^{m-1}(\overline{\omega _{2}}^{m-2})^{j-1}a_{j(p+1)}^{k}\} =-[(\omega _{2})^{2}]^{m-2}\sum _{j=1}^{m-1}(\overline{\omega _{2}}^{m-2})^{j-1}a_{j(m-1)}^{k}\qquad \,\,\\ \vdots \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \\ \sum _{p=0}^{m-3}\{[(\omega _{2})^{m-3}]^{p}\sum _{j=1}^{m-1}(\overline{\omega _{2}}^{m-2})^{j-1}a_{j(p+1)}^{k}\} =-[(\omega _{2})^{d-3}]^{m-2}\sum _{j=1}^{m-1}(\overline{\omega _{2}}^{m-2})^{j-1}a_{j(m-1)}^{k}\\ \end{aligned}} \right. , \end{aligned}$$

By Lemmas 13 and Eq. (54), we can get the unique solutions of the above \(m-1\) systems of equations, i.e., 

$$\begin{aligned} \left\{ \begin{aligned} \sum _{j=1}^{m-1}a_{jq}^{k}=a_{(m-1)(m-1)}^{k}\qquad \qquad \qquad \qquad \quad \,\,\,\,\\ \sum _{j=1}^{m-1}\overline{\omega _{2}}^{j-1}a_{jq}^{k}=\overline{\omega _{2}}^{q-1}a_{(m-1)(m-1)}^{k} \qquad \qquad \,\,\\ \sum _{j=1}^{m-1}(\overline{\omega _{2}}^{2})^{j-1}a_{jq}^{k}=(\overline{\omega _{2}}^{2})^{q-1} a_{(m-1)(m-1)}^{k}\qquad \\ \vdots \qquad \qquad \qquad \\ \sum _{j=1}^{m-1}(\overline{\omega _{2}}^{m-2})^{j-1}a_{jq}^{k}=(\overline{\omega _{2}}^{m-2})^{q-1} a_{(m-1)(m-1)}^{k} \end{aligned} \right. , \end{aligned}$$
(55)

where \(q=1,\,2,\,\cdots ,\,m-2.\)

By Lemmas 1-3 and Eq. (55), we have

$$\begin{aligned} \left\{ \begin{aligned} a_{jq}^{k}=0\qquad \qquad \quad \,\,\\ a_{qq}^{k}=a_{(m-1)(m-1)}^{k}\\ \end{aligned} \right. \end{aligned}$$
(56)

for \(q=1,2,\cdots ,m-2;\) \(j=1,2,\cdots ,m-1\) and \(j\ne q.\)

Similarly, since the states in the set \(\{(M_{k}\otimes I_{n\times n})|\phi _{\eta +n}\rangle :\) \(\eta =0,\) 1,  \(\cdots \), \(m-2\}\) should be orthogonal on Alice’s side, we have

$$\begin{aligned} \left\{ \begin{aligned} a_{jq}^{k}=0\,\,\,\,\,\,\,\\ a_{qq}^{k}=a_{00}^{k}\\ \end{aligned} \right. \end{aligned}$$
(57)

for \(q=1,\,2,\,\cdots ,\,m-2;\) \(j=0,1,\,2,\,\cdots ,\,m-2\) and \(j\ne q.\)

By Eqs. (49), (50), (53), (54), (56) and (57), we have

$$\begin{aligned} \begin{aligned} M_{k}^{\dag }M_{k}= \left[ \begin{array}{cccc} a_{(m-1)(m-1)}^{k} &{}0 &{}\cdots &{}0\\ 0 &{}a_{(m-1)(m-1)}^{k} &{}\cdots &{}0\\ 0 &{}0 &{}\ddots &{}0\\ 0 &{}0 &{}\cdots &{}a_{(m-1)(m-1)}^{k}\\ \end{array} \right] \end{aligned} \end{aligned}$$

for \(k=1,2,\cdots ,l.\) This means that all the POVM elements are proportional to identity matrix. That is, Alice cannot start with a nontrivial measurement to keep the post-measurement states orthogonal.

In fact, Bob will face a similar case as Alice does since the set of these \(2(m+n)-4\) states has a symmetrical structure. Therefore, these \(2(m+n)-4\) states cannot be exactly distinguished by using only LOCC. This completes the proof. \(\square \)

Appendix C: Proof of Theorem 3

To discriminate these states, someone needs to perform a measurement of preserving orthogonality. That is, the states that are orthogonal only on Alice’s (Bob’s) side are still orthogonal on this side after measurement. Thus we need to show that Alice or Bob only can perform a nontrivial measurement no matter who goes first. Without loss of generality, suppose that Alice performs a general measurement with POVM element

$$\begin{aligned} \begin{aligned} M_{k}^{\dag }M_{k}= \left[ \begin{array}{cccc} a_{00}^{k} &{}a_{01}^{k} &{}\cdots &{}a_{0,m-1}^{k}\\ a_{10}^{k} &{}a_{11}^{k} &{}\cdots &{}a_{1,m-1}^{k}\\ \vdots &{}\vdots &{}\ddots &{}\vdots \\ a_{m-1,0}^{k} &{}a_{m-1,1}^{k} &{}\cdots &{}a_{m-1,m-1}^{k} \\ \end{array} \right] \end{aligned} \end{aligned}$$

in the basis \(\{|0\rangle ,\,|1\rangle ,\,\cdots ,\,|(m-1)\rangle \}.\)

Because \((M_{k}\otimes I_{n\times n} )|\phi _{1}\rangle \) is orthogonal to each state of the set \(\{(M_{k}\otimes I_{n\times n})|\phi _{2n+m-2+2\sigma }\rangle ,\, (M_{k}\otimes I_{n\times n})|\phi _{2n+m-1+2\sigma }\rangle \}\), we have

$$\begin{aligned} \left\{ \begin{aligned} \langle \phi _{1}|M_{k}^{\dag }M_{k}\otimes I_{n\times n}|\phi _{2n+m-2+2\sigma }\rangle =0\\ \langle \phi _{1}|M_{k}^{\dag }M_{k}\otimes I_{n\times n}|\phi _{2n+m-1+2\sigma }\rangle =0\\ \langle \phi _{2n+m-2+2\sigma }|M_{k}^{\dag }M_{k}\otimes I_{n\times n}|\phi _{1}\rangle =0\\ \langle \phi _{2n+m-1+2\sigma }|M_{k}^{\dag }M_{k}\otimes I_{n\times n}|\phi _{1}\rangle =0\\ \end{aligned} \right. , \end{aligned}$$

where \(\sigma =0,\) 1,  \(\cdots ,\) \(d_{1}-1\). Thus we have

$$\begin{aligned} \left\{ \begin{aligned} a_{01}^{k}=a_{02}^{k}=a_{03}^{k}=\cdots =a_{0,m-1}^{k}=0\\ a_{10}^{k}=a_{20}^{k}=a_{30}^{k}=\cdots =a_{m-1,0}^{k}=0\\ \end{aligned} \right. . \end{aligned}$$
(58)

Similarly, we have

$$\begin{aligned} \left\{ \begin{aligned} a_{0,m-1}^{k}=a_{1,m-1}^{k}=\cdots =a_{m-2,m-1}^{k}=0\\ a_{m-1,0}^{k}=a_{m-1,1}^{k}=\cdots =a_{m-1,m-2}^{k}=0\\ \end{aligned} \right. \end{aligned}$$
(59)

by the orthogonality of \((M_{k}\otimes I_{n\times n})|\phi _{2n+m-3}\rangle \) and each state of the set \(\{(M_{k}\otimes I_{n\times n})|\phi _{n+2\sigma }\rangle ,\, (M_{k}\otimes I_{n\times n})|\phi _{n+1+2\sigma }\rangle \}\).

Due to the orthogonality of \((M_{k}\otimes I_{n\times n})|\phi _{2n+m-2+2\sigma }\rangle \) and \((M_{k}\otimes I_{n\times n})|\phi _{2n+m-1+2\sigma }\rangle \), we have

$$\begin{aligned} \left\{ \begin{aligned} \sum _{i=2\sigma +1}^{2\sigma +2}(-1)^{i+1}a_{2\sigma +1,i}^{k}+ \sum _{i=2\sigma +1}^{2\sigma +2}(-1)^{i+1}a_{2\sigma +2,i}^{k}=0\\ \sum _{i=2\sigma +1}^{2\sigma +2}a_{2\sigma +1,i}^{k}- \sum _{i=2\sigma +1}^{2\sigma +2}a_{2\sigma +2,i}^{k}=0\qquad \qquad \qquad \,\,\\ \end{aligned} \right. . \end{aligned}$$

Therefore, we obtain

$$\begin{aligned} a_{2\sigma +1,2\sigma +1}^{k}=a_{2\sigma +2,2\sigma +2}^{k} \end{aligned}$$

for \(\sigma =0,\) 1,  2,  \(\cdots ,\) \(d_{1}-1\). Thus we have

$$\begin{aligned} a_{11}^{k}=a_{22}^{k}=\cdots =a_{m-1,m-1}^{k}. \end{aligned}$$
(60)

Similarly, due to the orthogonality of \((M_{k}\otimes I_{n\times n})|\phi _{n+2\sigma } \rangle \) and \((M_{k}\otimes I_{n\times n})|\phi _{n+1+2\sigma }\rangle \), we have

$$\begin{aligned} \left\{ \begin{aligned} a_{2\sigma ,2\sigma }^{k}-a_{2\sigma ,2\sigma +1}^{k}+a_{2\sigma +1,2\sigma }^{k} -a_{2\sigma +1,2\sigma +1}^{k}=0\\ a_{2\sigma ,2\sigma }^{k}+a_{2\sigma ,2\sigma +1}^{k}-a_{2\sigma +1,2\sigma }^{k}- a_{2\sigma +1,2\sigma +1}^{k}=0\\ \end{aligned} \right. . \end{aligned}$$

So

$$\begin{aligned} a_{2\sigma ,2\sigma }^{k}=a_{2\sigma +1,2\sigma +1}^{k}\\ \end{aligned}$$

where \(\sigma =0,\) 1,  2,  \(\cdots ,\) \(d_{1}-1\). Thus we can get

$$\begin{aligned} a_{00}^{k}=a_{11}^{k}=\cdots =a_{m-2,m-2}^{k}. \end{aligned}$$
(61)

Because \((M_{k}\otimes I_{n\times n})|\phi _{2n+m-2+2\mu }\rangle \) and \((M_{k}\otimes \) \(I_{n\times n})|\phi _{2n+m-1+2\mu }\rangle \) are orthogonal to \((M_{k}\otimes I_{n\times n})|\phi _{2n+m-2+2\lambda }\rangle \) and \((M_{k}\otimes I_{n\times n})|\phi _{2n+m-1+2\lambda }\rangle \), where \(\mu ,\,\lambda =0,\) 1,  2,  \(\cdots ,\) \(d_{1}-1\) and \(\mu \ne \lambda \), i.e.,

$$\begin{aligned} \left\{ \begin{aligned} \langle \phi _{2n+m-2+2\mu }|M_{k}^{\dag }M_{k}\otimes I_{n\times n}|\phi _{2n+m-2+2\lambda } \rangle =0\\ \langle \phi _{2n+m-2+2\mu }|M_{k}^{\dag }M_{k}\otimes I_{n\times n}|\phi _{2n+m-1+2\lambda } \rangle =0\\ \langle \phi _{2n+m-1+2\mu }|M_{k}^{\dag }M_{k}\otimes I_{n\times n}|\phi _{2n+m-2+2\lambda } \rangle =0\\ \langle \phi _{2n+m-1+2\mu }|M_{k}^{\dag }M_{k}\otimes I_{n\times n}|\phi _{2n+m-1+2\lambda } \rangle =0 \end{aligned} \right. , \end{aligned}$$

so we have

$$\begin{aligned} \left\{ \begin{aligned} \sum _{i=2\lambda +1}^{2\lambda +2}a_{2\mu +1,i}^{k}+ \sum _{i=2\lambda +1}^{2\lambda +2}a_{2\mu +2,i}^{k}=0\qquad \qquad \qquad \,\,\\ \sum _{i=2\lambda +1}^{2\lambda +2}(-1)^{i+1}a_{2\mu +1,i}^{k}+ \sum _{i=2\lambda +1}^{2\lambda +2}(-1)^{i+1}a_{2\mu +2,i}^{k}=0 \\ \sum _{i=2\lambda +1}^{2\lambda +2}a_{2\mu +1,i}^{k}- \sum _{i=2\lambda +1}^{2\lambda +2}a_{2\mu +2,i}^{k}=0\qquad \qquad \qquad \,\,\\ \sum _{i=2\lambda +1}^{2\lambda +2}(-1)^{i+1}a_{2\mu +1,i}^{k}+ \sum _{i=2\lambda +1}^{2\lambda +2}(-1)^{i}a_{2\mu +2,i}^{k}=0\,\,\,\, \\ \end{aligned} \right. . \end{aligned}$$

Thus we get

$$\begin{aligned} \begin{aligned} a_{2\mu +1,2\lambda +1}^{k}=a_{2\mu +1,2\lambda +2}^{k}=0,\\ a_{2\mu +2,2\lambda +1}^{k}=a_{2\mu +2,2\lambda +2}^{k}=0, \end{aligned} \end{aligned}$$
(62)

where \(\mu ,\,\lambda =0,\) 1,  2,  \(\cdots ,\) \(d_{1}-1\) and \(\mu \ne \lambda \). Similarly, because \((M_{k}\otimes I_{n\times n})|\phi _{n+2\mu }\rangle \) and \((M_{k}\otimes I_{n\times n})|\phi _{n+1+2\mu }\rangle \) are orthogonal to \((M_{k}\otimes I)|\phi _{n+2\lambda }\rangle \) and \((M_{k}\otimes I)|\phi _{n+1+2\lambda }\rangle \), we get

$$\begin{aligned} \begin{aligned} a_{2\mu ,2\lambda }^{k}=a_{2\mu ,2\lambda +1}^{k}=0,\\ a_{2\mu +1,2\lambda }^{k}=a_{2\mu +1,2\lambda +1}^{k}=0. \end{aligned} \end{aligned}$$
(63)

where \(\mu ,\,\lambda =0,\) 1,  2,  \(\cdots ,\) \(d_{1}-1\) and \(\mu \ne \lambda \).

By Eqs. (58), (59), (60), (61), (62) and (63), we have

$$\begin{aligned} \begin{aligned} M_{k}^{\dag }M_{k}= \left[ \begin{array}{cccc} a_{00}^{k} &{}0 &{}\cdots &{}0\\ 0 &{}a_{00}^{k} &{}\cdots &{}0\\ \vdots &{}\vdots &{}\ddots &{}\vdots \\ 0 &{}0 &{}\cdots &{}a_{00}^{k} \\ \end{array} \right] \end{aligned} \end{aligned}$$

for \(i=1,2,\cdots ,l.\) This means that all the POVM elements of Alice are proportional to identity operator. Therefore, Alice only can perform a trivial measurement to preserve the orthogonality of the post-measurement states. So does Bob by the symmetry of the set of these \(2(m+n)-4\) product states. Therefore, these states cannot be reliably discriminated by LOCC no matter who goes first. This completes the proof.

Appendix D: Proof of Theorem 4

Proof

We prove whether Alice or Bob cannot perform a nontrivial POVM measurement to preserve the orthogonality of the OPSs that are orthogonal only on one side. Without loss of generality, Suppose that Alice firstly performs a general POVM measurement with a set of POVM elements

$$\begin{aligned} \begin{aligned} M_{k}^{\dag }M_{k}= \left[ \begin{array}{cccc} a_{00}^{k} &{}a_{01}^{k} &{}\cdots &{}a_{0(m-1)}^{k}\\ a_{10}^{k} &{}a_{11}^{k} &{}\cdots &{}a_{1(m-1)}^{k}\\ \vdots &{}\vdots &{}\ddots &{}\vdots \\ a_{(m-1)0}^{k} &{}a_{(m-1)1}^{k} &{}\cdots &{}a_{(m-1)(m-1)}^{k}\\ \end{array} \right] \end{aligned} \end{aligned}$$

in the basis \(\{|0\rangle ,\,|1\rangle ,\,|2\rangle ,\,\cdots ,\, |(m-1)\rangle \}\).

Because \((M_{k}\otimes I_{n\times n})|\phi _{1}\rangle \) is orthogonal to \((M_{k}\otimes I_{n\times n})|\phi _{2n+m-2}\rangle \), \((M_{k}\otimes I_{n\times n})|\phi _{2n+m-1}\rangle \) and \((M_{k}\otimes I_{n\times n})|\phi _{2n+m}\rangle \), i.e.,

$$\begin{aligned} \left\{ \begin{aligned} \langle \phi _{1}|M^{\dag }_{k}M_{k}\otimes I_{n\times n}|\phi _{2n+m-2}\rangle =0\\ \langle \phi _{1}|M^{\dag }_{k}M_{k}\otimes I_{n\times n}|\phi _{2n+m-1}\rangle =0\\ \langle \phi _{1}|M^{\dag }_{k}M_{k}\otimes I_{n\times n}|\phi _{2n+m}\rangle =0\quad \\ \end{aligned} \right. \end{aligned}$$

and

$$\begin{aligned} \left\{ \begin{aligned} \langle \phi _{2n+m-2}|M^{\dag }_{k}M_{k}\otimes I_{n\times n}|\phi _{1}\rangle =0\\ \langle \phi _{2n+m-1}|M^{\dag }_{k}M_{k}\otimes I_{n\times n}|\phi _{1}\rangle =0\\ \langle \phi _{2n+m}|M^{\dag }_{k}M_{k}\otimes I_{n\times n}|\phi _{1}\rangle =0\quad \\ \end{aligned} \right. , \end{aligned}$$

we have

$$\begin{aligned} \left\{ \begin{aligned} a_{01}^{k}+a_{02}^{k}+a_{03}^{k}=0\qquad \quad \,\,\\ a_{01}^{k}+\omega a_{02}^{k}+\omega ^{2}a_{03}^{k}=0\quad \,\,\,\,\\ a_{01}^{k}+\omega ^{2} a_{02}^{k}+(\omega ^{2})^{2}a_{03}^{k}=0\\ \end{aligned} \right. \end{aligned}$$
(64)

and

$$\begin{aligned} \left\{ \begin{aligned} a_{10}^{k}+a_{20}^{k}+a_{30}^{k}=0\qquad \quad \,\,\\ a_{10}^{k}+{\overline{\omega }} a_{20}^{k}+{\overline{\omega }}^{2}a_{30}^{k}=0\quad \,\,\,\,\\ a_{10}^{k}+{\overline{\omega }}^{2}a_{20}^{k}+({\overline{\omega }}^{2})^{2}a_{30}^{k}=0\\ \end{aligned} \right. , \end{aligned}$$
(65)

where \({\overline{\omega }}\) is the conjugate complex number of \(\omega \). By Lemmas 13, Eqs. (64) and (65), we have

$$\begin{aligned} a_{01}^{k}=a_{02}^{k}=a_{03}^{k}=a_{10}^{k}=a_{20}^{k}=a_{30}^{k}=0. \end{aligned}$$
(66)

Because \((M_{k}\otimes I_{n\times n})|\phi _{1}\rangle \) is orthogonal to \((M_{k}\otimes I_{n\times n})|\phi _{2n+m+2\sigma +1}\rangle \) and \((M_{k}\otimes I_{n\times n})|\phi _{2n+m+2\sigma +2}\rangle \) for \(\sigma =0,\,\, 1,\,\, 2,\,\, \cdots ,\,\, d_{1}-3\), we have

$$\begin{aligned} \left\{ \begin{aligned} a_{0,2\sigma +4}^{k}+a_{0,2\sigma +5}^{k}=0\\ a_{0,2\sigma +4}^{k}-a_{0,2\sigma +5}^{k}=0\\ \end{aligned} \right. \end{aligned}$$
(67)

and

$$\begin{aligned} \left\{ \begin{aligned} a_{2\sigma +4,0}^{k}+a_{2\sigma +5,0}^{k}=0\\ a_{2\sigma +4,0}^{k}-a_{2\sigma +5,0}^{k}=0\\ \end{aligned} \right. . \end{aligned}$$
(68)

By Eqs. (67) and (68), we have

$$\begin{aligned} \begin{aligned} a_{0,2\sigma +4}^{k}=a_{0,2\sigma +5}^{k}=a_{2\sigma +4,0}^{k}=a_{2\sigma +5,0}^{k}=0\\ \end{aligned} \end{aligned}$$
(69)

for \(\sigma =0,\,\, 1,\,\, 2,\,\, \cdots ,\,\, d_{1}-3\).

Because any two states of \(\{(M_{k}\otimes I_{n\times n})|\phi _{2n+m-2}\rangle \), \((M_{k}\otimes I_{n\times n})|\phi _{2n+m-1}\rangle \) and \((M_{k}\otimes I_{n\times n})|\phi _{2n+m}\rangle \}\), i.e.,

$$\begin{aligned}&\left\{ \begin{aligned} \langle \phi _{2n+m-2}|M_{k}^{\dag }M_{k}\otimes I_{n\times n}|\phi _{2n+m-1}\rangle =0\\ \langle \phi _{2n+m-2}|M_{k}^{\dag }M_{k}\otimes I_{n\times n}|\phi _{2n+m}\rangle =0\quad \\ \end{aligned} \right. , \\&\left\{ \begin{aligned} \langle \phi _{2n+m-1}|M_{k}^{\dag }M_{k}\otimes I_{n\times n}|\phi _{2n+m-2}\rangle =0\\ \langle \phi _{2n+m-1}|M_{k}^{\dag }M_{k}\otimes I_{n\times n}|\phi _{2n+m}\rangle =0\quad \\ \end{aligned} \right. , \\&\left\{ \begin{aligned} \langle \phi _{2n+m}|M_{k}^{\dag }M_{k}\otimes I_{n\times n}|\phi _{2n+m-2}\rangle =0\\ \langle \phi _{2n+m}|M_{k}^{\dag }M_{k}\otimes I_{n\times n}|\phi _{2n+m-1}\rangle =0\\ \end{aligned} \right. , \end{aligned}$$

we have

$$\begin{aligned}&\left\{ \begin{aligned} \sum _{j=1}^{3}a_{j1}+\omega \sum _{j=1}^{3}a_{j2}=-\omega ^{2}\sum _{j=1}^{3}a_{j3}\quad \,\,\,\\ \sum _{j=1}^{3}a_{j1}+\omega ^{2}\sum _{j=1}^{3}a_{j2}=-(\omega ^{2})^{2}\sum _{j=1}^{3}a_{j3}\\ \end{aligned} \right. , \end{aligned}$$
(70)
$$\begin{aligned}&\left\{ \begin{aligned} \sum _{i=1}^{2}\sum _{j=1}^{3}{\overline{\omega }}^{j-1}a_{ji} =-\sum _{j=1}^{3}{\overline{\omega }}^{j-1}a_{j3}\qquad \qquad \,\,\\ \sum _{i=1}^{2}[(\omega ^{2})^{i-1}\sum _{j=1}^{3}{\overline{\omega }}^{j-1}a_{ji}] =-\omega ^{4}\sum _{j=1}^{3}{\overline{\omega }}^{j-1}a_{j3}\\ \end{aligned} \right. , \end{aligned}$$
(71)
$$\begin{aligned}&\left\{ \begin{aligned} \sum _{i=1}^{2}\sum _{j=1}^{3}({\overline{\omega }}^{2})^{j-1}a_{ji} =-\sum _{j=1}^{3}({\overline{\omega }}^{2})^{j-1}a_{j3}\qquad \quad \\ \sum _{i=1}^{2}[\omega ^{i-1}\sum _{j=1}^{3}({\overline{\omega }}^{2})^{j-1}a_{ji}] =-\omega ^{2}\sum _{j=1}^{3}({\overline{\omega }}^{2})^{j-1}a_{j3}\\ \end{aligned} \right. . \end{aligned}$$
(72)

By Eqs. (70), (71) and (72), we have

$$\begin{aligned}&\left\{ \begin{aligned} \sum _{j=1}^{3}a_{j1}=\sum _{j=1}^{3}a_{j3}\\ \sum _{j=1}^{3}a_{j2}=\sum _{j=1}^{3}a_{j3}\\ \end{aligned} \right. , \end{aligned}$$
(73)
$$\begin{aligned}&\left\{ \begin{aligned} \sum _{j=1}^{3}{\overline{\omega }}^{j-1}a_{j1}= \omega ^{2}\sum _{j=1}^{3}{\overline{\omega }}^{j-1}a_{j3}\\ \sum _{j=1}^{3}{\overline{\omega }}^{j-1} a_{j2}=\omega \sum _{j=1}^{3}{\overline{\omega }}^{j-1}a_{j3}\\ \end{aligned} \right. , \end{aligned}$$
(74)

and

$$\begin{aligned} \left\{ \begin{aligned} \sum _{j=1}^{3}({\overline{\omega }}^{2})^{j-1}a_{j1} =\omega \sum _{j=1}^{3}({\overline{\omega }}^{2})^{j-1}a_{j3}\\ \sum _{j=1}^{3}({\overline{\omega }}^{2})^{j-1}a_{j2} =\omega ^{2}\sum _{j=1}^{3}({\overline{\omega }}^{2})^{j-1}a_{j3}\\ \end{aligned} \right. , \end{aligned}$$
(75)

respectively. By Eqs. (73), (74) and (75), we have

$$\begin{aligned} \left\{ \begin{aligned} a_{11}^{k}=a_{33}^{k}\\ a_{21}^{k}=a_{13}^{k}\\ a_{31}^{k}=a_{23}^{k}\\ \end{aligned} \right. , \end{aligned}$$
(76)
$$\begin{aligned} \left\{ \begin{aligned} a_{22}^{k}=a_{33}^{k}\\ a_{12}^{k}=a_{23}^{k}\\ a_{32}^{k}=a_{13}^{k}\\ \end{aligned} \right. . \end{aligned}$$
(77)

Similarly, because any two states of \(\{(M_{k}\otimes I_{n\times n})|\phi _{n}\rangle \), \((M_{k}\otimes I_{n\times n})|\phi _{n+1}\rangle \) and \((M_{k}\otimes I_{n\times n})|\phi _{n+2}\rangle \}\), we have

$$\begin{aligned}&\left\{ \begin{aligned} a_{00}^{k}=a_{22}^{k}\\ a_{10}^{k}=a_{02}^{k}\\ a_{20}^{k}=a_{12}^{k}\\ \end{aligned} \right. , \end{aligned}$$
(78)
$$\begin{aligned}&\left\{ \begin{aligned} a_{11}^{k}=a_{22}^{k}\\ a_{01}^{k}=a_{12}^{k}\\ a_{21}^{k}=a_{02}^{k}\\ \end{aligned} \right. . \end{aligned}$$
(79)

By Eqs. (66), (76), (77), (78) and (79), we have

$$\begin{aligned} \left\{ \begin{aligned} a_{00}^{k}=a_{11}^{k}=a_{22}^{k}=a_{33}^{k}\qquad \qquad \qquad \quad \,\\ a_{12}^{k}=a_{13}^{k}=a_{21}^{k}=a_{23}^{k}=a_{31}^{k}=a_{32}^{k}=0\\ \end{aligned} \right. . \end{aligned}$$
(80)

Because \((M_{k}\otimes I_{n\times n})|\phi _{2n+m+2\sigma +1}\rangle \) and \((M_{k}\otimes I_{n\times n})\) \(|\phi _{2n+m+2\sigma +2}\rangle \) are mutually orthogonal only on Alice’s side, i.e.,

$$\begin{aligned} \left\{ \begin{aligned} \langle \phi _{2n+m+2\sigma +1}|M_{k}^{\dag }M_{k}\otimes I_{n\times n}|\phi _{2n+m+2\sigma +2}\rangle =0\\ \langle \phi _{2n+m+2\sigma +2}|M_{k}^{\dag }M_{k}\otimes I_{n\times n}|\phi _{2n+m+2\sigma +1}\rangle =0\\ \end{aligned} \right. , \end{aligned}$$
(81)

we have

$$\begin{aligned} \left\{ \begin{aligned} a^{k}_{2\sigma +4,\,2\sigma +4}=a^{k}_{2\sigma +5,\,2\sigma +5}\\ a^{k}_{2\sigma +4,\,2\sigma +5}=a^{k}_{2\sigma +5,\,2\sigma +4}\\ \end{aligned} \right. , \end{aligned}$$
(82)

for \(\sigma =0,\,\, 1,\,\, 2,\,\, \cdots ,\,\, d_{1}-3\). Similarly, because \((M_{k}\otimes I_{n\times n})|\phi _{n+2\sigma +3}\rangle \) and \((M_{k}\otimes I_{n\times n})|\phi _{n+2\sigma +4}\rangle \) are mutually orthogonal only on Alice’s side, i.e., we have

$$\begin{aligned} \left\{ \begin{aligned} a^{k}_{2\sigma +3,\,2\sigma +3}=a^{k}_{2\sigma +4,\,2\sigma +4}\\ a^{k}_{2\sigma +3,\,2\sigma +4}=a^{k}_{2\sigma +4,\,2\sigma +3}\\ \end{aligned} \right. , \end{aligned}$$
(83)

for \(\sigma =0,\,\, 1,\,\, 2,\,\, \cdots ,\,\, d_{1}-3\).

Because any of \(\{(M_{k}\otimes I_{n\times n})|\phi _{2n+m-2}\rangle \), \((M_{k}\otimes I_{n\times n})|\phi _{2n+m-1}\rangle \), \((M_{k}\otimes I_{n\times n})|\phi _{2n+m}\rangle \}\) is orthogonal to each of \(\{(M_{k}\otimes I_{n\times n})|\phi _{2n+m+2\sigma +1}\rangle \), \((M_{k}\otimes I_{n\times n})|\phi _{2n+m+2\sigma +2}\rangle \}\) only on Alice’s side, we have

$$\begin{aligned}&\langle \phi _{t}|M^{\dag }_{k}M_{k}\otimes I_{n\times n}|\phi _{j}\rangle =0, \end{aligned}$$
(84)
$$\begin{aligned}&\langle \phi _{j}|M^{\dag }_{k}M_{k}\otimes I_{n\times n}|\phi _{t}\rangle =0, \end{aligned}$$
(85)

for \(t=2n+m-2,\,2n+m-1,\,2n+m\) and \(j=2n+m+2\sigma +1,\,2n+m+2\sigma +2.\) By Eqs. (84 and 85), we have

$$\begin{aligned} \left\{ \begin{aligned} a^{k}_{1,\,2\sigma +4}=a^{k}_{2,\,2\sigma +4}=a^{k}_{3,\,2\sigma +4}=0\\ a^{k}_{1,\,2\sigma +5}=a^{k}_{2,\,2\sigma +5}=a^{k}_{3,\,2\sigma +5}=0\\ \end{aligned} \right. \end{aligned}$$
(86)

and

$$\begin{aligned} \left\{ \begin{aligned} a^{k}_{2\sigma +4,\,1}=a^{k}_{2\sigma +4,\,2}=a^{k}_{2\sigma +4,\,3}=0\\ a^{k}_{2\sigma +5,\,1}=a^{k}_{2\sigma +5,\,2}=a^{k}_{2\sigma +5,\,3}=0\\ \end{aligned} \right. \end{aligned}$$
(87)

respectively, for \(\sigma =0,\,\, 1,\,\, 2,\,\, \cdots ,\,\, d_{1}-3\).

Because \((M_{k}\otimes I_{n\times n})|\phi _{2n+m+2\sigma +1}\rangle \) and \((M_{k}\otimes \) \( I_{n\times n})|\phi _{2n+m+2\sigma +2}\rangle \) are orthogonal to \((M_{k}\otimes \) \(I_{n\times n})|\phi _{2n+m+2\lambda +1}\rangle \) and \((M_{k}\otimes I_{n\times n})|\phi _{2n+m+2\lambda +2}\rangle \) only on Alice’s side for \(\sigma ,\) \(\lambda \) = 0, 1, 2, \(\cdots \), \(d_{1}-3\) and \(\sigma \ne \lambda \), i.e.,

$$\begin{aligned} \left\{ \begin{aligned} \langle \phi _{2n+m+2\sigma +1}|M_{k}^{\dag }M_{k}\otimes I_{n\times n}|\phi _{2n+m+2\lambda +1}\rangle =0\\ \langle \phi _{2n+m+2\sigma +1}|M_{k}^{\dag }M_{k}\otimes I_{n\times n}|\phi _{2n+m+2\lambda +2}\rangle =0\\ \langle \phi _{2n+m+2\sigma +2}|M_{k}^{\dag }M_{k}\otimes I_{n\times n}|\phi _{2n+m+2\lambda +1}\rangle =0\\ \langle \phi _{2n+m+2\sigma +2}|M_{k}^{\dag }M_{k}\otimes I_{n\times n}|\phi _{2n+m+2\lambda +2}\rangle =0\\ \end{aligned} \right. , \end{aligned}$$

so we have

$$\begin{aligned} \left\{ \begin{aligned} \sum _{i=2\lambda +4}^{2\lambda +5}a_{2\sigma +4,i}^{k}+ \sum _{i=2\lambda +4}^{2\lambda +5}a_{2\sigma +5,i}^{k}=0\qquad \qquad \quad \\ \sum _{i=2\lambda +4}^{2\lambda +5}(-1)^{i}a_{2\sigma +4,i}^{k}+ \sum _{i=2\lambda +4}^{2\lambda +5}(-1)^{i}a_{2\sigma +5,i}^{k} =0\quad \\ \sum _{i=2\lambda +4}^{2\lambda +5}a_{2\sigma +4,i}^{k}- \sum _{i=2\lambda +4}^{2\lambda +5}a_{2\sigma +5,i}^{k} =0\qquad \qquad \quad \\ \sum _{i=2\lambda +4}^{2\lambda +5}(-1)^{i}a_{2\sigma +4,i}^{k}+ \sum _{i=2\lambda +4}^{2\lambda +5}(-1)^{i+1}a_{2\sigma +5,i}^{k} =0\\ \end{aligned} \right. . \end{aligned}$$

Thus we get

$$\begin{aligned} \begin{aligned} a_{2\sigma +4,2\lambda +4}^{k}=a_{2\sigma +4,2\lambda +5}^{k}=0,\\ a_{2\sigma +5,2\lambda +4}^{k}=a_{2\sigma +5,2\lambda +5}^{k}=0, \end{aligned} \end{aligned}$$
(88)

where \(\sigma ,\) \(\lambda \) = 0, 1, 2, \(\cdots \), \(d_{1}-3\) and \(\sigma \ne \lambda \). Similarly, because \((M_{k}\otimes I_{n\times n})|\phi _{n+2\sigma +3}\rangle \) and \((M_{k}\otimes I_{n\times n})|\phi _{n+2\sigma +4}\rangle \) are orthogonal to \((M_{k}\otimes I_{n\times n})|\phi _{n+2\lambda +3}\rangle \) and \((M_{k}\otimes I_{n\times n})|\phi _{n+2\lambda +4}\rangle \) for \(\sigma ,\) \(\lambda \) = 0, 1, 2, \(\cdots \), \(d_{1}-3\) and \(\sigma \ne \lambda \), we have

$$\begin{aligned} \begin{aligned} a_{2\sigma +3,2\lambda +3}^{k}=a_{2\sigma +3,2\lambda +4}^{k}=0,\\ a_{2\sigma +4,2\lambda +3}^{k}=a_{2\sigma +4,2\lambda +4}^{k}=0, \end{aligned} \end{aligned}$$
(89)

where \(\sigma ,\) \(\lambda \) = 0, 1, 2, \(\cdots \), \(d_{1}-3\) and \(\sigma \ne \lambda \).

By Eqs. (66), (69), (80), (82), (83), (86), (87), (88) and (89), we get

$$\begin{aligned} \begin{aligned} M_{k}^{\dag }M_{k}= \left[ \begin{array}{cccc} a_{00}^{k} &{}0 &{}\cdots &{}0\\ 0 &{}a_{00}^{k} &{}\cdots &{}0\\ \vdots &{}\vdots &{}\ddots &{}\vdots \\ 0 &{}0 &{}\cdots &{}a_{00}^{k}\\ \end{array} \right] _{m\times m.} \end{aligned} \end{aligned}$$

This means that Alice only can perform a trivial measurement to preserve the orthogonality of the post-measurement states. So does Bob because of the symmetry of the set of these states. Therefore, the set is nonlocal, i.e., these states cannot be perfectly discriminated by LOCC. This completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, GB., Jiang, DH. Novel methods to construct nonlocal sets of orthogonal product states in an arbitrary bipartite high-dimensional system. Quantum Inf Process 20, 128 (2021). https://doi.org/10.1007/s11128-021-03062-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03062-8

Keywords