Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Verification of ARMA identification for modelling temporal correlations of GNSS observations using the ARMASA toolbox

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

The classical least-squares (LS) algorithm is widely applied in practice of processing observations from Global Satellite Navigation Systems (GNSS). However, this approach provides reliable estimates of unknown parameters and realistic accuracy measures only if both the functional and stochastic models are appropriately specified. One essential deficiency of the stochastic model implemented in many available GNSS software products consists in neglecting temporal correlations of GNSS observations. Analysing time series of observation residuals resulting from the LS evaluation, the temporal correlation behaviour of GNSS measurements can be efficiently described by means of socalled autoregressive moving average (ARMA) processes. For a given noise realisation, a well-fitting ARMA model can be automatically estimated and identified using the ARMASA toolbox available free of charge in MATLAB® Central.

In the preliminary stage of applying the ARMASA toolbox to residual-based modelling of temporal correlations of GNSS observations, this paper presents an empirical performance analysis of the automatic ARMA estimation tool using a large amount of simulated noise time series with representative temporal correlation properties comparable to the GNSS residuals. The results show that the rate of unbiased model estimates increases with data length and decreases with model complexity. For large samples, more than 80% of the identified ARMA models are unbiased. Additionally, the model error representing the deviation between the true data-generating process and the model estimate converges rapidly to the associated asymptotical value for a sufficiently large sample size with respect to the correlation length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaike H., 1973. Information theory and an extension of the maximum likelihood principle. In: Petrov B.N. and Csaki F. (Eds.), 2nd International Symposium on Information Theory, Tsahkadsor, Armenia, USSR, September 2–8, 1971. Akadémiai Kiadó, Budapest, Hungary, 267–281.

    Google Scholar 

  • Borre K. and Tiberius C., 2000. Time series analysis of GPS observables. Proceedings of the 13th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 2000), Salt Lake City, UT, September 2000, 1885–1894 (online at http://kom.aau.dk/~borre/engineer/ion00.pdf).

  • Brockwell P.J. and Davis R.A., 2002. Introduction to Time Series and Forecasting, 2nd Edition. Springer, New York.

    Book  Google Scholar 

  • Broersen P.M.T., 1998. The quality of models for ARMA processes. IEEE Trans. Signal Process., 46, 1749–1752.

    Article  Google Scholar 

  • Broersen P.M.T, 2000a. Finite sample criteria for autoregressive order selection. IEEE Trans. Signal Process., 48, 3550–3558.

    Article  Google Scholar 

  • Broersen P.M.T., 2000b. Facts and fiction in spectral analysis. IEEE. Trans. Instrum. Meas., 49, 766–772.

    Article  Google Scholar 

  • Broersen P.M.T., 2000c. Autoregressive model orders for Durbin’s MA and ARMA estimators. IEEE Trans. Signal Process., 48, 2454–2457.

    Article  Google Scholar 

  • Broersen P.M.T., 2002. Automatic spectral analysis with time series models. IEEE Trans. Instrum. Meas., 51, 211–216.

    Article  Google Scholar 

  • Broersen P.M.T., 2006. Automatic Autocorrelation and Spectral Analysis. Springer-Verlag, London, U.K.

    Google Scholar 

  • Broersen P.M.T. and de Waele S., 2004. Finite sample properties of ARMA order selection. IEEE Trans. Instrum. Meas., 53, 645–651.

    Article  Google Scholar 

  • Broersen P.M.T. and Wensink H.E., 1993. On finite sample theory for autoregressive model order selection. IEEE Trans. Signal Process., 41, 194–204.

    Article  Google Scholar 

  • Brunner F.K., Hartinger H. and Troyer L., 1999. GPS signal diffraction modelling: the stochastic SIGMAΔ model. J. Geodesy, 73, 259–267, DOI: 10.1007/s001900050242.

    Article  Google Scholar 

  • Burg J.P., 1967. Maximum entropy spectral analysis. Proceedings of the 37th Meeting of Society Exploration Geophysicists, 1967. Reprinted in: Childers D.G. (Ed.), Modern Spectrum Analysis. IEEE Press, New York, 1978, 34–39.

    Google Scholar 

  • Dach R., Hugentobler U., Fridez P. and Meindl M., 2007. Bernese GPS Software Version 5.0. Astronomical Institute, University of Bern, Bern, Switzerland.

    Google Scholar 

  • Durbin J., 1959. Efficient estimation of parameters in moving average models. Biometrika, 46, 306–316, DOI: 10.1093/biomet/46.3-4.306.

    Google Scholar 

  • Durbin J., 1960. The fitting of time series models. Rev. Inst. Int. Stat., 28, 233–243.

    Article  Google Scholar 

  • Euler H.J. and Goad C.C., 1991. On optimal filtering of GPS dual frequency observations without using orbit information. Bull. Geod., 65, 130–143, DOI: 10.1007/BF00806368.

    Article  Google Scholar 

  • Hannen E.J. and Rissanen J., 1982. Recursive estimation of mixed autoregressive moving-average order. Biometrika, 69, 81–94, DOI: 10.1093/biomet/69.1.81.

    Article  Google Scholar 

  • Howind J., 2005. Analyse des stochastischen Modells von GPS-Trägerphasenbeobachtungen. Deutsche Geodätische Kommission, DGK C584, Munich, Germany.

    Google Scholar 

  • Klees R. and Broersen P., 2002. How to Handle Colored Observation Noise in Large-Scale Least-Squares Problems — Building the Optimal Filter. DUP Science, Delft University Press, Delft, The Netherlands.

    Google Scholar 

  • Klees R., Ditmar P. and Broersen P., 2003. How to handle colored observation noise in large least-squares problems. J. Geodesy, 76, 629–640, DOI: 10.1007/s00190-002-0291-4.

    Article  Google Scholar 

  • Li J., Miyashita K., Kato T. and Miyazaki S., 2000. GPS time series modeling by autoregressive moving average method: application to the crustal deformation in central Japan. Earth Planets Space, 52, 155–162.

    Google Scholar 

  • Luo X., Mayer M. and Heck B., 2008. Improving the stochastic model of GNSS observations by means of SNR-based weighting. In: Sideris M.G. (Ed.), Observing our Changing Earth. International Association of Geodesy Symposia, 133. Springer Verlag, Berlin, Heidelberg, Germany, 725–734, DOI: 10.1007/978-3-540-85426-5_83.

    Chapter  Google Scholar 

  • Luo X., Mayer M. and Heck B., 2011. Analysing time series of GNSS residuals by means of AR(I)MA processes. In: Sneeuw N., Novák P., Sansò F. and Crespi M. (Eds.), VII Hotine-Marussi Symposium. International Association of Geodesy Symposia, 137. Springer-Verlag, Berlin, Heidelberg, Germany (in print).

    Google Scholar 

  • Priestly M.B., 1981. Spectral Analysis and Time Series. Academic Press, London, U.K.

    Google Scholar 

  • Schön S. and Brunner F.K., 2008. A proposal for modelling physical correlations of GPS phase observations. J. Geodesy, 82, 601–612, DOI: 10.1007/s00190-008-0211-3.

    Article  Google Scholar 

  • Shibata R., 1976. Selection of the order of an autoregressive mode by Akaike’s information criterion. Biometrika, 63, 117–126, DOI: 10.1093/biomet/63.1.117.

    Article  Google Scholar 

  • Stoica P. and Moses R., 1997. Introduction to Spectral Analysis. Prentice Hall, New Jersey, U.S.

    Google Scholar 

  • Tiberius C. and Kenselaar F., 2003. Variance component estimation and precise GPS positioning: case study. J. Surv. Engn., 129, 11–18, DOI: 10.1061/(ASCE)0733-9453(2003)129:1(11)).

    Article  Google Scholar 

  • Wang J., Satirapod C. and Rizos C., 2002. Stochastic assessment of GPS carrier phase measurements for precise static relative positioning. J. Geodesy, 76, 95–104, DOI: 10.1007/s00190-001-0225-6.

    Article  Google Scholar 

  • Wheelon A.D., 2001. Electromagnetic Scintillation — I. Geometricaloptics. Cambridge University Press, Cambridge, U.K.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoguang Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, X., Mayer, M. & Heck, B. Verification of ARMA identification for modelling temporal correlations of GNSS observations using the ARMASA toolbox. Stud Geophys Geod 55, 537–556 (2011). https://doi.org/10.1007/s11200-011-0033-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-011-0033-2

Keywords