Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Rank-based variable selection with censored data

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

A rank-based variable selection procedure is developed for the semiparametric accelerated failure time model with censored observations where the penalized likelihood (partial likelihood) method is not directly applicable.

The new method penalizes the rank-based Gehan-type loss function with the 1 penalty. To correctly choose the tuning parameters, a novel likelihood-based χ 2-type criterion is proposed. Desirable properties of the estimator such as the oracle properties are established through the local quadratic expansion of the Gehan loss function.

In particular, our method can be easily implemented by the standard linear programming packages and hence numerically convenient. Extensions to marginal models for multivariate failure time are also considered. The performance of the new procedure is assessed through extensive simulation studies and illustrated with two real examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Cai, T., Huang, J., Lu, T.: Regularized estimation for the accelerated failure time model. Biometrics (2009, to appear)

  • Cox, D.R.: Regression models and life-tables (with Discussion). J. R. Stat. Soc. B 34, 187–220 (1972)

    MATH  Google Scholar 

  • Dawber, T.R.: The Framingham Study. The Epidemiology of Atherosclerotic Disease. Harvard University Press, Cambridge (1980)

    Google Scholar 

  • Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 96, 1348–1360 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Fan, J., Li, R.: Variable selection for Cox’s proportional hazards model and frailty model. Ann. Stat. 30, 74–99 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Gehan, E.A.: A generalized Wilcoxon test for comparing arbitrarily single-censored samples. Biometrika 52, 203–223 (1965)

    MATH  MathSciNet  Google Scholar 

  • Gumbel, E.J.: Bivariate exponential distributions. J. Am. Stat. Assoc. 55, 698–707 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  • Jin, Z., Ying, Z., Wei, L.J.: A simple resampling method by perturbing the minimand. Biometrika 88, 381–390 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Jin, Z., Lin, D.Y., Wei, L.J., Ying, Z.: Rank-based inference for the accelerated failure time model. Biometrika 90, 341–353 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Jin, Z., Lin, D.Y., Ying, Z.: Rank regression analysis of multivariate failure time data based on marginal linear models. Scand. J. Stat. 33, 1–23 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Johnson, B.A.: Variable selection in semiparametric linear regression with censored data. J. R. Stat. Soc. Ser. B 70, 351–370 (2008)

    Article  MATH  Google Scholar 

  • Johnson, B.A., Peng, L.M.: Rank-based variable selection. J. Nonparametric Stat. 20, 241–252 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Johnson, B.A., Lin, D.Y., Zeng, D.: Penalized estimating functions and variable selection in semiparametric regression models. J. Am. Stat. Assoc. 103, 672–680 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Kalbfleisch, J., Prentice, R.: The Statistical Analysis of Failure Time Data, 2nd edn. Wiley, New York (2002)

    MATH  Google Scholar 

  • Koenker, R., D’Orey, V.: Computing regression quantiles. Appl. Stat. 36, 383–393 (1987)

    Article  Google Scholar 

  • Leeb, H., Pötscher, B.M.: Sparse estimators and the oracle property, or the return of Hodges’ estimator. J. Econom. 142, 201–211 (2008)

    Article  Google Scholar 

  • Li, Y., Zhu, J.: L1-norm quantile regression. J. Comput. Graph. Stat. 17, 163–185 (2008)

    Article  MathSciNet  Google Scholar 

  • Lu, W., Zhang, H.H.: Variable selection for proportional odds model. Stat. Med. 26, 3771–3781 (2007)

    Article  MathSciNet  Google Scholar 

  • Parzen, M.I., Wei, L.J., Ying, Z.: A resampling method based on pivotal estimating functions. Biometrika 81, 341–350 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  • Rao, C.R., Zhao, L.C.: Approximation to the distribution of M-estimates in linear models by randomly weighted bootstrap. Sankhyā A 54, 323–331 (1992)

    MATH  MathSciNet  Google Scholar 

  • Therneau, T.M., Grambsch, P.M.: Introduction to Nonparametric Regression. Springer, New York (2001)

    Google Scholar 

  • Tibshirani, R.: Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. B 58, 267–288 (1996)

    MATH  MathSciNet  Google Scholar 

  • Tibshirani, R.: The Lasso method for variable selection in the cox model. Stat. Med. 16, 385–395 (1997)

    Article  Google Scholar 

  • Wang, H., Leng, C.: Unified Lasso estimation via least squares approximation. J. Am. Stat. Assoc. 102(479), 1039–1048 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Wang, H., Li, G., Jiang, G.: Robust regression shrinkage and consistent variable selection via the LAD-LASSO. J. Bus. Econ. Stat. 25, 347–355 (2007a)

    Article  MathSciNet  Google Scholar 

  • Wang, H., Li, G., Tsai, C.L.: Regression coefficients and autoregressive order shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B 69, 63–78 (2007b)

    MathSciNet  Google Scholar 

  • Wang, H., Li, R., Tsai, C.L.: Tuning parameter selector for SCAD. Biometrika 94, 553–568 (2007c)

    Article  MATH  MathSciNet  Google Scholar 

  • Wei, L.J., Ying, Z., Lin, D.Y.: Linear regression analysis for censored observations based on rank tests. Biometrika 77, 845–851 (1990)

    Article  MathSciNet  Google Scholar 

  • Ying, Z.: A large sample study of rank estimation for censored regression data. Ann. Stat. 21, 76–99 (1993)

    Article  MATH  Google Scholar 

  • Zhang, H.H., Lu, W.: Adaptive Lasso for Cox’s proportional hazards model. Biometrika 94, 691–703 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Zou, H.: The adaptive Lasso and its oracle properties. J. Am. Stat. Assoc. 101, 1418–1429 (2006)

    Article  MATH  Google Scholar 

  • Zou, H.: A note on path-based variable selection in the penalized proportional hazards model. Biometrika 95, 241–247 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinfeng Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, J., Leng, C. & Ying, Z. Rank-based variable selection with censored data. Stat Comput 20, 165–176 (2010). https://doi.org/10.1007/s11222-009-9126-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-009-9126-y

Keywords