Abstract
A rank-based variable selection procedure is developed for the semiparametric accelerated failure time model with censored observations where the penalized likelihood (partial likelihood) method is not directly applicable.
The new method penalizes the rank-based Gehan-type loss function with the ℓ 1 penalty. To correctly choose the tuning parameters, a novel likelihood-based χ 2-type criterion is proposed. Desirable properties of the estimator such as the oracle properties are established through the local quadratic expansion of the Gehan loss function.
In particular, our method can be easily implemented by the standard linear programming packages and hence numerically convenient. Extensions to marginal models for multivariate failure time are also considered. The performance of the new procedure is assessed through extensive simulation studies and illustrated with two real examples.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Cai, T., Huang, J., Lu, T.: Regularized estimation for the accelerated failure time model. Biometrics (2009, to appear)
Cox, D.R.: Regression models and life-tables (with Discussion). J. R. Stat. Soc. B 34, 187–220 (1972)
Dawber, T.R.: The Framingham Study. The Epidemiology of Atherosclerotic Disease. Harvard University Press, Cambridge (1980)
Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 96, 1348–1360 (2001)
Fan, J., Li, R.: Variable selection for Cox’s proportional hazards model and frailty model. Ann. Stat. 30, 74–99 (2002)
Gehan, E.A.: A generalized Wilcoxon test for comparing arbitrarily single-censored samples. Biometrika 52, 203–223 (1965)
Gumbel, E.J.: Bivariate exponential distributions. J. Am. Stat. Assoc. 55, 698–707 (1960)
Jin, Z., Ying, Z., Wei, L.J.: A simple resampling method by perturbing the minimand. Biometrika 88, 381–390 (2001)
Jin, Z., Lin, D.Y., Wei, L.J., Ying, Z.: Rank-based inference for the accelerated failure time model. Biometrika 90, 341–353 (2003)
Jin, Z., Lin, D.Y., Ying, Z.: Rank regression analysis of multivariate failure time data based on marginal linear models. Scand. J. Stat. 33, 1–23 (2006)
Johnson, B.A.: Variable selection in semiparametric linear regression with censored data. J. R. Stat. Soc. Ser. B 70, 351–370 (2008)
Johnson, B.A., Peng, L.M.: Rank-based variable selection. J. Nonparametric Stat. 20, 241–252 (2008)
Johnson, B.A., Lin, D.Y., Zeng, D.: Penalized estimating functions and variable selection in semiparametric regression models. J. Am. Stat. Assoc. 103, 672–680 (2008)
Kalbfleisch, J., Prentice, R.: The Statistical Analysis of Failure Time Data, 2nd edn. Wiley, New York (2002)
Koenker, R., D’Orey, V.: Computing regression quantiles. Appl. Stat. 36, 383–393 (1987)
Leeb, H., Pötscher, B.M.: Sparse estimators and the oracle property, or the return of Hodges’ estimator. J. Econom. 142, 201–211 (2008)
Li, Y., Zhu, J.: L1-norm quantile regression. J. Comput. Graph. Stat. 17, 163–185 (2008)
Lu, W., Zhang, H.H.: Variable selection for proportional odds model. Stat. Med. 26, 3771–3781 (2007)
Parzen, M.I., Wei, L.J., Ying, Z.: A resampling method based on pivotal estimating functions. Biometrika 81, 341–350 (1994)
Rao, C.R., Zhao, L.C.: Approximation to the distribution of M-estimates in linear models by randomly weighted bootstrap. Sankhyā A 54, 323–331 (1992)
Therneau, T.M., Grambsch, P.M.: Introduction to Nonparametric Regression. Springer, New York (2001)
Tibshirani, R.: Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. B 58, 267–288 (1996)
Tibshirani, R.: The Lasso method for variable selection in the cox model. Stat. Med. 16, 385–395 (1997)
Wang, H., Leng, C.: Unified Lasso estimation via least squares approximation. J. Am. Stat. Assoc. 102(479), 1039–1048 (2007)
Wang, H., Li, G., Jiang, G.: Robust regression shrinkage and consistent variable selection via the LAD-LASSO. J. Bus. Econ. Stat. 25, 347–355 (2007a)
Wang, H., Li, G., Tsai, C.L.: Regression coefficients and autoregressive order shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B 69, 63–78 (2007b)
Wang, H., Li, R., Tsai, C.L.: Tuning parameter selector for SCAD. Biometrika 94, 553–568 (2007c)
Wei, L.J., Ying, Z., Lin, D.Y.: Linear regression analysis for censored observations based on rank tests. Biometrika 77, 845–851 (1990)
Ying, Z.: A large sample study of rank estimation for censored regression data. Ann. Stat. 21, 76–99 (1993)
Zhang, H.H., Lu, W.: Adaptive Lasso for Cox’s proportional hazards model. Biometrika 94, 691–703 (2007)
Zou, H.: The adaptive Lasso and its oracle properties. J. Am. Stat. Assoc. 101, 1418–1429 (2006)
Zou, H.: A note on path-based variable selection in the penalized proportional hazards model. Biometrika 95, 241–247 (2008)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Xu, J., Leng, C. & Ying, Z. Rank-based variable selection with censored data. Stat Comput 20, 165–176 (2010). https://doi.org/10.1007/s11222-009-9126-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11222-009-9126-y