Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Direct Formation of Lubricious and Wear-Protective Carbon Films from Phosphorus- and Sulfur-Free Oil-Soluble Additives

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Extreme pressure (EP) lubricant additives form protective tribofilms at the site of contact using the heat and pressure of contact and relative motion. Common EP additives contain undesirable elements such as phosphorus and sulfur. A novel EP lubricant additive, which contains no phosphorus and sulfur, is presented for generating lubricious carbon films. The additive consists of a surface-active molecule with a metastable cycloalkane ring, which dissociates readily during tribological contact to form lubricious carbon films. Friction and wear performance of PAO4 with this additive under a range of loads and speeds were shown to be superior to that without the additive. Optical and scanning electron microscopy and Raman spectroscopy were used to analyze the tribofilms formed on post-test contact surfaces, providing direct evidence for the formation of carbon films. Quantitative kinetics for the carbon tribofilm formation was analyzed as a function of temperature and stress, from which the activation energy for carbon tribofilm formation was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Explore related subjects

Find the latest articles, discoveries, and news in related topics.

References

  1. Holmberg, K., Erdemir, A.: Influence of tribology on global energy consumption, costs and emissions. Friction 5(3), 263–284 (2017). https://doi.org/10.1007/s40544-017-0183-5

    Article  Google Scholar 

  2. Nosonovsky, M., Bhushan, B.: SpringerLink (Online service): Green Tribology: Biomimetics, Energy Conservation and Sustainability. Green Energy and Technology. Springer, Berlin (2012)

    Google Scholar 

  3. Holmberg, K., Andersson, P., Nylund, N.-O., Mäkelä, K., Erdemir, A.: Global energy consumption due to friction in trucks and buses. Tribol. Int. 78, 94–114 (2014). https://doi.org/10.1016/j.triboint.2014.05.004

    Article  Google Scholar 

  4. Holmberg, K., Siilasto, R., Laitinen, T., Andersson, P., Jäsberg, A.: Global energy consumption due to friction in paper machines. Tribol. Int. 62, 58–77 (2013). https://doi.org/10.1016/j.triboint.2013.02.003

    Article  Google Scholar 

  5. Russell, L.S.D.J.A.: A review of DOE ECUT tribology. J. Tribol. 108(4), 497–501 (1986)

    Article  Google Scholar 

  6. Holmberg, K., Andersson, P., Erdemir, A.: Global energy consumption due to friction in passenger cars. Tribol. Int. 47, 221–234 (2012). https://doi.org/10.1016/j.triboint.2011.11.022

    Article  Google Scholar 

  7. Marr, L.C., Kirchstetter, T.W., Harley, R.A., Miguel, A.H., Hering, S.V., Hammond, S.K.: Characterization of polycyclic aromatic hydrocarbons in motor vehicle fuels and exhaust emissions. Environ. Sci. Technol. 33(18), 3091–3099 (1999)

    Article  Google Scholar 

  8. Jost, H.P.: Tribology—origin and future. Wear 136(1), 1–17 (1990)

    Article  Google Scholar 

  9. Jost, H.P., Schofield, J.: Energy saving through tribology: a techno-economic study. Proc. Inst. Mech. Eng. 195(1), 151–173 (1981)

    Article  Google Scholar 

  10. Bishop, J., Nedungadi, A., Ostrowski, G., Surampudi, B., Armiroli, P., Taspinar, E.: An engine start/stop system for improved fuel economy. In: SAE Technical Paper, (2007)

  11. Tanaka, K., Korematsu, K., Yamazaki, Y.: Study on intelligent idling stop system. In: 2000 FISITA World Automotive Congress: Automotive Innovation for the New Millennium Seoul, pp. 1–4 (2000)

  12. Rudnick, L.R.: Lubricant Additives: Chemistry and Applications. CRC Press, Boca Raton (2010)

    Google Scholar 

  13. Dake, L., Russel, J., Debrodt, D.: A review of DOE ECUT tribology surveys. J. Tribol. 108(4), 497–501 (1986)

    Article  Google Scholar 

  14. Elo, R., Jacobson, S.: Formation and breakdown of oil residue tribofilms protecting the valves of diesel engines. Wear 330, 193–198 (2015)

    Article  Google Scholar 

  15. Speed, L.: Engine oils. Engine Professional, pp. 46–47 (2009)

  16. Guinther, G.H., Danner, M.M.: Development of an engine-based catalytic converter poisoning test to assess the impact of volatile ZDDP decomposition products from passenger car engine oils. In: SAE Technical Paper, (2007)

  17. Bardasz, E.A.: 26 Crankcase Lubricants. Synthetics, Mineral Oils, and Bio-Based Lubricants: Chemistry and Technology, p. 433 (2013)

  18. Parekh, K., Mourhatch, R., Aswath, P.: ZDDP-additive-catalyst interactions in engine oil. In: World Tribology Congress III 2005, pp. 661–662. American Society of Mechanical Engineers

  19. Grill, A.: Review of the tribology of diamond-like carbon. Wear 168(1–2), 143–153 (1993)

    Article  Google Scholar 

  20. Grill, A.: Tribology of diamondlike carbon and related materials: an updated review. Surf. Coat. Technol. 94, 507–513 (1997)

    Article  Google Scholar 

  21. Ferrari, A.C., Robertson, J.: Raman spectroscopy of amorphous, nanostructured, diamond–like carbon, and nanodiamond. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 362(1824), 2477–2512 (2004)

    Article  Google Scholar 

  22. Lemoine, P., Quinn, J., Maguire, P., McLaughlin, J.: Mechanical characterisation and properties of DLC films. In: Tribology of Diamond-Like Carbon Films. pp. 83–101. Springer, (2008)

  23. Chung, Y.-W., Bhatia, S.: Tribological behavior of amorphous carbon nitride overcoats for magnetic thin-film rigid disks. J. Tribol. 118, 543 (1996)

    Article  Google Scholar 

  24. Kovalchenko, A., Ajayi, O.O., Erdemir, A., Fenske, G.R.: Friction and wear performance of low-friction carbon coatings under oil lubrication. In: SAE Technical Paper, (2002)

  25. Singer, I.L., Dvorak, S.D., Wahl, K.J., Scharf, T.W.: Role of third bodies in friction and wear of protective coatings. J. Vac. Sci. Technol., A 21(5), S232 (2003). https://doi.org/10.1116/1.1599869

    Article  Google Scholar 

  26. Bull, S.: Tribology of carbon coatings: DLC, diamond and beyond. Diam. Relat. Mater. 4(5–6), 827–836 (1995)

    Article  Google Scholar 

  27. Haque, T., Morina, A., Neville, A., Kapadia, R., Arrowsmith, S.: Study of the ZDDP antiwear tribofilm formed on the DLC coating using AFM and XPS techniques. J. ASTM Int. 4(7), 1–11 (2007)

    Article  Google Scholar 

  28. Gupta, P.: Iron-Doped Diamond-Like Carbon Coatings (Fe-DLCs): Synthesis, Characterization, and Tribology. Northwestern University (2016)

  29. Vlad, M., Szczerek, M., Michalczewski, R., Kajdas, C., Tomastik, C., Osuch-SŁomka, E.: The influence of antiwear additive concentration on the tribological behaviour of aC: H: W/steel tribosystem. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 224(10), 1079–1089 (2010)

    Article  Google Scholar 

  30. Hoffman, E.E., Marks, L.D.: Graphitic carbon films across systems. Tribol. Lett. 63(3), 32 (2016)

    Article  Google Scholar 

  31. Erdemir, A., Ramirez, G., Eryilmaz, O.L., Narayanan, B., Liao, Y., Kamath, G., Sankaranarayanan, S.K.: Carbon-based tribofilms from lubricating oils. Nature 536(7614), 67–71 (2016)

    Article  Google Scholar 

  32. Erdemir, A.A.E.O.,: Tribochemically driven diamond-like carbon boundary films from base lubricating oils. 2013 STLE Annual Meeting (2013)

  33. Gao, F., Furlong, O., Kotvis, P., Tysoe, W.: Tribological properties of films formed by the reaction of carbon tetrachloride with iron. Tribol. Lett. 20(2), 171–176 (2005)

    Article  Google Scholar 

  34. Hsu, S., Klaus, E., Cheng, H.: A mechano-chemical descriptive model for wear under mixed lubrication conditions. Wear 128(3), 307–323 (1988)

    Article  Google Scholar 

  35. Hsu, S.M., Gates, R.S.: Effect of materials on tribochemical reactions between hydrocarbons and surfaces. J. Phys. D Appl. Phys. 39(15), 3128 (2006)

    Article  Google Scholar 

  36. Yu, Y., Gu, J., Kang, F., Kong, X., Mo, W.: Surface restoration induced by lubricant additive of natural minerals. Appl. Surf. Sci. 253(18), 7549–7553 (2007)

    Article  Google Scholar 

  37. Yuansheng, J., Shenghua, L.: Superlubricity of in situ generated protective layer on worn metal surfaces in presence of Mg 6 Si 4 O 10 (OH) 8. Superlubricity 447 (2007)

  38. Yuansheng, J., Shenghua, L., Zhengye, Z., He, Y., Feng, W.: In situ mechanochemical reconditioning of worn ferrous surfaces. Tribol. Int. 37(7), 561–567 (2004)

    Article  Google Scholar 

  39. Blanchet, T., Lauer, J., Liew, Y.-F., Rhee, S., Sawyer, W.: Solid lubrication by decomposition of carbon monoxide and other gases. Surf. Coat. Technol. 68, 446–452 (1994)

    Article  Google Scholar 

  40. Yeon, J., He, X., Martini, A., Kim, S.H.: Mechanochemistry at solid surfaces: polymerization of adsorbed molecules by mechanical shear at tribological interfaces. ACS Appl. Mater. Interface 9(3), 3142–3148 (2017)

    Article  Google Scholar 

  41. He, X., Barthel, A.J., Kim, S.H.: Tribochemical synthesis of nano-lubricant films from adsorbed molecules at sliding solid interface: tribo-polymers from α-pinene, pinane, and n-decane. Surf. Sci. 648, 352–359 (2016)

    Article  Google Scholar 

  42. Faust, R.: Fascinating natural and artificial cyclopropane architectures. Angew. Chem. Int. Ed. 40(12), 2251–2253 (2001)

    Article  Google Scholar 

  43. de Meijere, A.: Bonding properties of cyclopropane and their chemical consequences. Angew. Chem., Int. Ed. Engl. 18(11), 809–826 (1979)

    Article  Google Scholar 

  44. Liu, S., Wang, Q.: Studying contact stress fields caused by surface tractions with a discrete convolution and fast fourier transform algorithm. J. Tribol. 124(1), 36–45 (2002)

    Article  Google Scholar 

  45. Liu, G., Wang, Q., Liu, S.: A three-dimensional thermal-mechanical asperity contact model for two nominally flat surfaces in contact. J. Tribol. 123(3), 595–602 (2001)

    Article  Google Scholar 

  46. Liu, Y., Wang, Q.J., Zhu, D., Shi, F.: A Generalized thermal EHL model for point contact problems. In: STLE/ASME 2008 International Joint Tribology Conference 2008, pp. 281–282. American Society of Mechanical Engineers

  47. Chen, W.W., Wang, Q.J., Kim, W.: Transient thermomechanical analysis of sliding electrical contacts of elastoplastic bodies, thermal softening, and melting inception. J. Tribol. 131(2), 021406 (2009)

    Article  Google Scholar 

  48. Chen, W.W., Wang, Q.J.: Thermomechanical analysis of elastoplastic bodies in a sliding spherical contact and the effects of sliding speed, heat partition, and thermal softening. J. Tribol. 130(4), 041402 (2008)

    Article  Google Scholar 

  49. Martini, A., Liu, S., Wang, Q.J.: Transient three-dimensional solution for thermoelastic displacement due to surface heating and convective cooling. J. Tribol. 127(4), 750–755 (2005)

    Article  Google Scholar 

  50. Zhang, C., Cheng, H., Wang, Q.J.: Scuffing behavior of piston-pin/bore bearing in mixed lubrication—part II: scuffing mechanism and failure criterion. Tribol. Trans. 47(1), 149–156 (2004)

    Article  Google Scholar 

  51. Wang, Y., Zhang, C., Wang, Q.J., Lin, C.: A mixed-TEHD analysis and experiment of journal bearings under severe operating conditions. Tribol. Int. 35(6), 395–407 (2002)

    Article  Google Scholar 

  52. Bhushan, B., Fuchs, H., Tomitori, M.: Applied Scanning Probe Methods VIII: Scanning Probe Microscopy Techniques. Nanoscience and Technology. Springer, Berlin (2008)

    Book  Google Scholar 

  53. Erdemir, A., Eryilmaz, O., Kim, S.: Effect of tribochemistry on lubricity of DLC films in hydrogen. Surf. Coat. Technol. 257, 241–246 (2014)

    Article  Google Scholar 

  54. Totolin, V., Ripoll, M.R., Jech, M., Podgornik, B.: Enhanced tribological performance of tungsten carbide functionalized surfaces via in situ formation of low-friction tribofilms. Tribol. Int. 94, 269–278 (2016)

    Article  Google Scholar 

  55. Field, S., Jarratt, M., Teer, D.: Tribological properties of graphite-like and diamond-like carbon coatings. Tribol. Int. 37(11), 949–956 (2004)

    Article  Google Scholar 

  56. Steiner, L., Bouvier, V., May, U., Hegadekatte, V., Huber, N.: Modelling of unlubricated oscillating sliding wear of DLC-coatings considering surface topography, oxidation and graphitisation. Wear 268(9), 1184–1194 (2010)

    Article  Google Scholar 

  57. Morina, A., Neville, A.: Understanding the composition and low friction tribofilm formation/removal in boundary lubrication. Tribol. Int. 40(10), 1696–1704 (2007)

    Article  Google Scholar 

  58. Wang, Y., Wang, Q.J., Lin, C., Shi, F.: Development of a set of Stribeck curves for conformal contacts of rough surfaces. Tribol. Trans. 49(4), 526–535 (2006)

    Article  Google Scholar 

  59. Jung, I., Rhyee, J.-S., Son, J.Y., Ruoff, R.S., Rhee, K.-Y.: Colors of graphene and graphene-oxide multilayers on various substrates. Nanotechnology 23(2), 025708 (2011)

    Article  Google Scholar 

  60. Kim, D.-W., Kim, K.-W.: Effects of sliding velocity and normal load on friction and wear characteristics of multi-layered diamond-like carbon (DLC) coating prepared by reactive sputtering. Wear 297(1), 722–730 (2013)

    Article  Google Scholar 

  61. Farrow, R., Benner, R., Nagelberg, A., Mattern, P.: Characterization of surface oxides by Raman spectroscopy. Thin Solid Films 73(2), 353–358 (1980)

    Article  Google Scholar 

  62. Ferrari, A.C., Robertson, J.: Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61(20), 14095–14107 (2000)

    Article  Google Scholar 

  63. Furlong, O., Gao, F., Kotvis, P., Tysoe, W.: Understanding the tribological chemistry of chlorine-, sulfur-and phosphorus-containing additives. Tribol. Int. 40(5), 699–708 (2007)

    Article  Google Scholar 

  64. Lara, J., Surerus, K., Kotvis, P., Contreras, M., Rico, J., Tysoe, W.: The surface and tribological chemistry of carbon disulfide as an extreme-pressure additive. Wear 239(1), 77–82 (2000)

    Article  Google Scholar 

  65. Spikes, H., Tysoe, W.: On the commonality between theoretical models for fluid and solid friction, wear and tribochemistry. Tribol. Lett. 59(1), 21 (2015)

    Article  Google Scholar 

  66. Tysoe, W.: On stress-induced tribochemical reaction rates. Tribol. Lett. 65(2), 48 (2017)

    Article  Google Scholar 

  67. Gosvami, N., Bares, J., Mangolini, F., Konicek, A., Yablon, D., Carpick, R.: Mechanisms of antiwear tribofilm growth revealed in situ by single-asperity sliding contacts. Science 348(6230), 102–106 (2015)

    Article  Google Scholar 

  68. Hirani, H.: Fundamentals of Engineering Tribology with Applications. Cambridge University Press, Cambridge (2016)

    Book  Google Scholar 

  69. Anslyn, E.V., Dougherty, D.A.: Modern Physical Organic Chemistry. University Science Books, Sausalito, CA (2006)

    Google Scholar 

  70. Steele, W., Chirico, R., Knipmeyer, S., Nguyen, A.: Measurements of vapor pressure, heat capacity, and density along the saturation line for ε-caprolactam, pyrazine, 1, 2-propanediol, triethylene glycol, phenyl acetylene, and diphenyl acetylene. J. Chem. Eng. Data 47(4), 689–699 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the support from the US National Science Foundation (Grant No. CMMI-1662606) and Northwestern University (the McCormick Research Catalyst Awards Fund Grant No. 10038293). This work made use of the Keck-II Facility of Northwestern University’s NUANCE Center, which has received support from the Keck Foundation, the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-1542205), the Materials Research Center (NSF DMR-1121262), the McCormick Research Catalyst Awards Fund, Grant No. 10038293, and the International Institute for Nanotechnology (IIN) at Northwestern University. Hongxing Wu would also like to acknowledge the scholarship support from China Scholarship Council (CSC, No. 201606280181).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yip-Wah Chung or Q. Jane Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnson, B., Wu, H., Desanker, M. et al. Direct Formation of Lubricious and Wear-Protective Carbon Films from Phosphorus- and Sulfur-Free Oil-Soluble Additives. Tribol Lett 66, 2 (2018). https://doi.org/10.1007/s11249-017-0945-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-017-0945-2

Keywords