Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Modified Wear Model Considering Contact Temperature for Spur Gears in Mixed Elastohydrodynamic Lubrication

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

In this study, a modified wear model considering contact temperature for spur gears in mixed elastohydrodynamic lubrication (EHL) is proposed. The contact temperature consists of bulk temperature and flash temperature. The bulk temperature is determined by the thermal network model, whereas the flash temperature is estimated through the published method. The bulk temperature, which was rarely included in the previous works, substantially has a considerable influence on the tooth wear in mixed EHL. It is also found that the lower contact temperature contributes to the reduction of gear wear depth. Furthermore, the effects of gear basic geometrical parameter and operating parameter on wear depth are investigated. The results show that the wear depth decreases with the increased tooth width, module, pressure angle and rotational velocity but increases with the surface roughness and torque. It indicates that wear resistance of tooth surfaces can be enhanced by optimising the design parameters of gear drives.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

B :

Tooth width (mm)

b :

Half contact width (mm)

ϲ :

Specific heat coefficient (J/(kg·K))

E a :

Adsorption heat of lubricant (J/mol)

E eq :

Comprehensive elasticity modulus (Pa)

F n :

Normal meshing force (N)

f c :

Frictional coefficient of asperity contact

G :

Dimensionless elasticity modulus

H :

Surface hardness (GPa)

H c :

Dimensionless central film thickness

H min :

Dimensionless minimum film thickness

h v :

Convective heat transfer coefficient (W/(m2 K))

K :

Dimensionless wear coefficient

k 0 :

Dimensional wear coefficient (m2/N)

L a :

Asperity contact ratio (%)

n i :

Rotational speed (rpm)

P ei :

Peclet coefficients

p :

Contact pressure (Pa)

p a :

Asperity contact pressure (Pa)

q :

Heat flux (W/m2)

R :

Curvature radius (mm)

R a :

Surface roughness (μm)

R g :

Molar gas constant (J/mol)

[R] :

Thermal resistance matrix

S e :

Area of convective heat transfer (mm2)

S hj :

Area of heat conduction along tooth thickness (mm2)

S mi :

Area of involute tooth surface (mm2)

S tj :

Area of heat conduction along tooth height (mm2)

s :

Relative sliding distance (mm)

[T] :

Temperature matrix

T a :

Ambient temperature (K)

T B :

Bulk temperature (K)

T s :

Contact temperature (K)

t 0 :

Basic time of molecular vibration (s)

U :

Dimensionless rolling speed

u i :

Tangential velocity (mm/s)

u r :

Rolling speed (mm/s)

u s :

Relative sliding speed (mm/s)

V :

Dimensionless surface hardness

V′ :

Wear volume (mm3)

W :

Dimensionless load

W a :

Normal load (N)

X :

Diameter of the lubricant molecule (mm)

[Ф] :

Heat flow matrix

ΔT :

Flash temperature (K)

α c :

Pressure-viscosity coefficient (Pa−1)

β :

Heat flux density distribution coefficient

\( \bar{\sigma } \) :

Dimensionless surface roughness

λ i :

Heat conduction coefficient (W/(m K))

ν :

Poisson ratio

γ :

Thermal conversion coefficient

ρ :

Material density coefficient (kg/m3)

μ 0 :

Lubricating oil viscosity (Pa s)

Λ :

Film thickness ratio

τ lim :

Limiting shear stress (Pa)

1,2:

Driving gear, driven gear

References

  1. Rowe, C.: Some aspects of the heat of adsorption in the function of a boundary lubricant. Asle Trans. 9, 101–111 (1966)

    Article  CAS  Google Scholar 

  2. Wang, H., Zhou, C., Lei, Y., Liu, Z.: An adhesive wear model for helical gears in line-contact mixed elastohydrodynamic lubrication. Wear 426, 896–909 (2019)

    Article  Google Scholar 

  3. Masjedi, M., Khonsari, M.M.: Film thickness and asperity load formulas for line-contact elastohydrodynamic lubrication with provision for surface roughness. J. Tribol. 134, 011503 (2012)

    Article  Google Scholar 

  4. Masjedi, M., Khonsari, M.M.: A study on the effect of starvation in mixed elastohydrodynamic lubrication. Tribol. Int. 85, 26–36 (2015)

    Article  Google Scholar 

  5. Akin, L.: EHD lubricant film thickness formulas for power transmission gears. J. Lubr. Tech. 96(3), 426–430 (1974)

    Article  Google Scholar 

  6. Shi, X., Sun, W., Lu, X., Ma, X., Zhu, D., Zhao, B., et al.: Three-dimensional mixed lubrication analysis of spur gears with machined roughness. Tribol. Int. 140, 105864 (2019)

    Article  Google Scholar 

  7. Johnson, K., Greenwood, J., Poon, S.: A simple theory of asperity contact in elastohydro-dynamic lubrication. Wear 19, 91–108 (1972)

    Article  Google Scholar 

  8. Akchurin, A., Bosman, R., Lugt, P.M., van Drogen, M.: On a model for the prediction of the friction coefficient in mixed lubrication based on a load-sharing concept with measured surface roughness. Tribol. Lett. 59, 19 (2015)

    Article  Google Scholar 

  9. Zhu, D., Hu, Y.-Z.: Effects of rough surface topography and orientation on the characteristics of EHD and mixed lubrication in both circular and elliptical contacts. Tribol. Trans. 44, 391–398 (2001)

    Article  CAS  Google Scholar 

  10. Ebrahimi Serest, A., Akbarzadeh, S.: Mixed-elastohydrodynamic analysis of helical gears using load-sharing concept. Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. 228, 320–331 (2014)

    Article  Google Scholar 

  11. Parsa, M., Akbarzadeh, S.: A new load-sharing-based approach to model mixed-lubrication contact of spur gears. Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. 228, 1319–1329 (2014)

    Article  Google Scholar 

  12. Akbarzadeh, S., Khonsari, M.M.: Performance of spur gears considering surface roughness and shear thinning lubricant. J. Tribol. 130(2), 021503 (2008)

    Article  Google Scholar 

  13. Ghahnavieh, A.B., Akbarzadeh, S., Mosaddegh, P.: A numerical study on the performance of straight bevel gears operating under mixed lubrication regime. Mech. Mach. Theory 75, 27–40 (2014)

    Article  Google Scholar 

  14. Beheshti, A., Khonsari, M.M.: An engineering approach for the prediction of wear in mixed lubricated contacts. Wear 308, 121–131 (2013)

    Article  CAS  Google Scholar 

  15. Akbarzadeh, S., Khonsari, M.M.: Prediction of steady state adhesive wear in spur gears using the EHL load sharing concept. J. Tribol. 131(2), 024503 (2009)

    Article  Google Scholar 

  16. Kimiaei, M., Akbarzadeh, S.: Effect of profile modification on the performance of spur gears in isothermal mixed-EHL regime using load-sharing concept. Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. 233, 936–948 (2019)

    Article  Google Scholar 

  17. Akbarzadeh, S., Khonsari, M.M.: On the prediction of running-in behavior in mixed-lubrication line contact. J. Tribol. 132(3), 032102 (2010)

    Article  Google Scholar 

  18. Bergseth, E.Z., Zhu, Y., Soderberg, A.: Study of surface roughness on friction in rolling/sliding contacts: ball-on-disc versus twin-disc. Tribol. Lett. 68, 15 (2020)

    Article  Google Scholar 

  19. Chang, L., Jeng, Y.-R.: A mathematical model for the mixed lubrication of non-conformable contacts with asperity friction, plastic deformation, flash temperature, and tribo-chemistry. J. Tribol. 136(2), 022301 (2014)

    Article  Google Scholar 

  20. Zhu, D., Hu, Y.-Z.: A computer program package for the prediction of EHL and mixed lubrication characteristics, friction, subsurface stresses and flash temperatures based on measured 3-D surface roughness. Tribol. Trans. 44, 383–390 (2001)

    Article  CAS  Google Scholar 

  21. Yang, Y., Li, W., Wang, J., Zhou, Q.: On the mixed EHL characteristics, friction and flash temperature in helical gears with consideration of 3D surface roughness. Ind. Lubr. Tribol. (2019). https://doi.org/10.1108/ILT-04-2017-0113/full/html

    Article  Google Scholar 

  22. Qiu, L., Cheng, H.S.: Temperature rise simulation of three-dimensional rough surfaces in mixed lubricated contact. J. Tribol. 120(2), 310–318 (1998)

    Article  Google Scholar 

  23. Gan, L., Xiao, K., Wang, J., Pu, W., Cao, W.: A numerical method to investigate the temperature behavior of spiral bevel gears under mixed lubrication condition. Appl. Therm. Eng. 147, 866–875 (2019)

    Article  Google Scholar 

  24. Wang, D., Ren, S., Zhang, Y., Pu, W.: A mixed TEHL model for the prediction of thermal effect on lubrication performance in spiral bevel gears. Tribol. Trans. (2019). https://doi.org/10.1080/10402004.2019.1688442

    Article  Google Scholar 

  25. Dong, H.L., Hu, J.B., Li, X.Y.: Temperature analysis of involute gear based on mixed elastohydrodynamic lubrication theory considering tribo-dynamic behaviors. J. Tribol. 136(2), 021504 (2014)

    Article  Google Scholar 

  26. Singh, P.K., Singh, A.K.: An investigation on the thermal and wear behavior of polymer based spur gears. Tribol. Int. 118, 264–272 (2018)

    Article  CAS  Google Scholar 

  27. Masjedi, M., Khonsari, M.M.: Theoretical and experimental investigation of traction coefficient in line-contact EHL of rough surfaces. Tribol. Int. 70, 179–189 (2014)

    Article  Google Scholar 

  28. Masjedi, M., Khonsari, M.M.: An engineering approach for rapid evaluation of traction coefficient and wear in mixed EHL. Tribol. Int. 92, 184–190 (2015)

    Article  Google Scholar 

  29. Masjedi, M., Khonsari, M.M.: On the prediction of steady-state wear rate in spur gears. Wear 342, 234–243 (2015)

    Article  Google Scholar 

  30. Wu, S., Cheng, H.: A sliding wear model for partial-EHL contacts. J. Tribol. 113, 134–141 (1991)

    Article  Google Scholar 

  31. Stolarski, T.: A probabilistic approach to wear prediction. J. Phys. D Appl. Phys. 23, 1143 (1990)

    Article  Google Scholar 

  32. Zhu, D., Martini, A., Wang, W., Hu, Y., Lisowsky, B., Wang, Q.J.: Simulation of sliding wear in mixed lubrication. J. Tribol. 129(3), 544–552 (2007)

    Article  Google Scholar 

  33. Li, G., Wang, Z., Zhu, W.: Prediction of surface wear of involute gears based on a modified fractal method. J. Tribol. 141(3), 031603 (2019)

    Article  CAS  Google Scholar 

  34. Zhang, J.-G., Liu, S.-J., Fang, T.: On the prediction of friction coefficient and wear in spiral bevel gears with mixed TEHL. Tribol. Int. 115, 535–545 (2017)

    Article  Google Scholar 

  35. Archard, J.: Contact and rubbing of flat surfaces. J. Appl. Phys. 24, 981–988 (1953)

    Article  Google Scholar 

  36. Tian, X., Kennedy Jr., F.E.: Maximum and average flash temperatures in sliding contacts. J. Tribol. 116(1), 167–174 (1994)

    Article  Google Scholar 

  37. Fernandes, C.M., Rocha, D.M., Martins, R.C., Magalhães, L., Seabra, J.H.: Finite element method model to predict bulk and flash temperatures on polymer gears. Tribol. Int. 120, 255–268 (2018)

    Article  Google Scholar 

  38. Takabi, J., Khonsari, M.M.: Experimental testing and thermal analysis of ball bearings. Tribol. Int. 60, 93–103 (2013)

    Article  Google Scholar 

  39. Shi, Y., Yao, Y.-P., Fei, J.-Y.: Analysis of bulk temperature field and flash temperature for locomotive traction gear. Appl. Therm. Eng. 99, 528–536 (2016)

    Article  Google Scholar 

  40. Li, W., Zhai, P., Ding, L.: Analysis of thermal characteristic of spur/helical gear transmission. J. Therm. Sci. Eng. Appl. 11, 021003 (2019)

    Article  CAS  Google Scholar 

  41. Parthasarathi, N., Borah, U., Albert, S.K.: Effect of temperature on sliding wear of AISI 316 L (N) stainless steel–Analysis of measured wear and surface roughness of wear tracks. Mater. Des. 51, 676–682 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support by the National Natural Science Foundation of China (NSFC) through Grant No. 51675168, and Natural Science Foundation of Hunan Province 2019JJ40020, and Open Research Fund of State Key Laboratory of High Performance Complex Manufacturing, Central South University Kfkt2017-10.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changjiang Zhou or Bo Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, C., Xing, M., Hu, B. et al. A Modified Wear Model Considering Contact Temperature for Spur Gears in Mixed Elastohydrodynamic Lubrication. Tribol Lett 68, 110 (2020). https://doi.org/10.1007/s11249-020-01350-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-020-01350-5

Keywords