Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Environment-Dependent Tribological Properties of Bulk Metallic Glasses

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The macroscale friction and wear properties of the Zr44Cu10Ni10Ti11Be25 metallic glass were investigated as a function of environmental oxygen concentration and contact force. We found remarkably low and predictable friction when both oxidation and frictional heating (that can lead to thermomechanically-driven crystallization) were supressed. Conversely, oxidation and the formation of a mixed metal-oxide layer was shown to increase the friction coefficient while significantly reducing wear rates. Depending on conditions, the wear rates ranged from values comparable to highly wear-resistant materials like polymer and 2D solid lubricant nanocomposites to those that are found with soft, pure, high-wear metals. These results reveal that the competition between material removal and the deformation-induced mixing of oxide particles can dramatically reduce wear rates, suggesting opportunities for optimization of tribological performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Amuzu, J.K.A.: Sliding friction of some metallic glasses. J. Phys. D 13, 127 (1980). https://doi.org/10.1088/0022-3727/13/7/005

    Article  Google Scholar 

  2. Hodge, A.M., Nieh, T.G.: Evaluating abrasive wear of amorphous alloys using nanoscratch technique. Intermetallics 12, 741–748 (2004). https://doi.org/10.1016/j.intermet.2004.02.014

    Article  CAS  Google Scholar 

  3. Zhao, Y.Y., Ye, Y.X., Liu, C.Z., Feng, R., Yao, K.F., Nieh, T.G.: Tribological behavior of an amorphous Zr20Ti20Cu20Ni20Be20 high-entropy alloy studied using a nanoscratch technique. Intermetallics 113, 106561 (2019). https://doi.org/10.1016/j.intermet.2019.106561

    Article  CAS  Google Scholar 

  4. Fu, X.-Y., Kasai, T., Falk, M.L., Rigney, D.: Sliding behavior of metallic glass: part I. Experimental investigations. Wear 250, 409–419 (2001). https://doi.org/10.1016/S0043-1648(01)00605-6

    Article  Google Scholar 

  5. Parlar, Z., Bakkal, M., Shih, A.J.: Sliding tribological characteristics of Zr-based bulk metallic glass. Intermetallics 16, 34–41 (2008). https://doi.org/10.1016/j.intermet.2007.07.011

    Article  CAS  Google Scholar 

  6. Segu, D.Z., Choi, J.H., Yi, S., Kim, S.S.: Dry sliding tribological properties of Fe-based bulk metallic glass. Tribol. Lett. 47, 131–138 (2012). https://doi.org/10.1007/s11249-012-9969-9

    Article  CAS  Google Scholar 

  7. Miyoshi, K., Buckley, D.H.: Microstructure and surface chemistry of amorphous alloys important to their friction and wear behavior. Wear 110, 295–313 (1986). https://doi.org/10.1016/0043-1648(86)90105-5

    Article  CAS  Google Scholar 

  8. Miyoshi, K., Buckley, H.D.: Mechanical-contact-induced transformation from the amorphous to the partially crystalline state in metallic glass. Thin Solid Films 118, 363–373 (1984). https://doi.org/10.1016/0040-6090(84)90206-2

    Article  CAS  Google Scholar 

  9. Bhatt, J., Kumar, S., Dong, C., Murty, B.S.: Tribological behaviour of Cu60Zr30Ti10 bulk metallic glass. Mater. Sci. Eng. A 458, 290–294 (2007). https://doi.org/10.1016/j.msea.2006.12.060

    Article  CAS  Google Scholar 

  10. Hua, N., Zheng, Z., Fang, H., Ye, X., Lin, C., Li, G., Wang, W., Chen, W., Zhang, T.: Dry and lubricated tribological behavior of a Ni- and Cu-free Zr-based bulk metallic glass. J. Non. Cryst. Solids. 426, 63–71 (2015). https://doi.org/10.1016/j.jnoncrysol.2015.06.026

    Article  CAS  Google Scholar 

  11. Wu, H., Baker, I., Liu, Y., Wu, X., Munroe, P.R., Zhang, J.: Tribological studies of a Zr-based bulk metallic glass. Intermetallics 35, 25–32 (2013). https://doi.org/10.1016/j.intermet.2012.11.010

    Article  CAS  Google Scholar 

  12. Tao, P.J., Yang, Y.Z., Ru, Q.: Effect of rotational sliding velocity on surface friction and wear behavior in Zr-based bulk metallic glass. J. Alloys Compd. 492, L36–L39 (2010). https://doi.org/10.1016/j.jallcom.2009.11.113

    Article  CAS  Google Scholar 

  13. Fleury, E., Lee, S.M., Ahn, H.S., Kim, W.T., Kim, D.H.: Tribological properties of bulk metallic glasses. Mater. Sci. Eng. A. 375–377, 276–279 (2004). https://doi.org/10.1016/j.msea.2003.10.065

    Article  CAS  Google Scholar 

  14. Jin, H.W., Ayer, R., Koo, J.Y., Raghavan, R., Ramamurty, U.: Reciprocating wear mechanisms in a Zr-based bulk metallic glass. J. Mater. Res. 22, 264–273 (2007). https://doi.org/10.1557/jmr.2007.0048

    Article  CAS  Google Scholar 

  15. Rahaman, M.L., Zhang, L.C., Ruan, H.H.: Effects of environmental temperature and sliding speed on the tribological behaviour of a Ti-based metallic glass. Intermetallics 52, 36–48 (2014). https://doi.org/10.1016/j.intermet.2014.03.011

    Article  CAS  Google Scholar 

  16. Tariq, N.H., Hasan, B.A., Akhter, J.I., Ali, F.: Mechanical and tribological properties of Zr–Al–Ni–Cu bulk metallic glasses. J. Alloys Compd. 469, 179–185 (2009). https://doi.org/10.1016/j.jallcom.2008.02.002

    Article  CAS  Google Scholar 

  17. Lee, D.H., Evetts, J.E.: Sliding friction and structural relaxation of metallic glasses. Acta Metall. 32, 1035–1043 (1984). https://doi.org/10.1016/0001-6160(84)90006-3

    Article  CAS  Google Scholar 

  18. Johnson, W.L., Samwer, K.: A universal criterion for plastic yielding of metallic glasses with a (T/Tg)2/3 temperature dependence. Phys. Rev. Lett. 95, 2–5 (2005). https://doi.org/10.1103/PhysRevLett.95.195501

    Article  CAS  Google Scholar 

  19. Schuh, C.A., Argon, A.S., Nieh, T.G., Wadsworth, J.: The transition from localized to homogeneous plasticity during nanoindentation of an amorphous metal. Philos. Mag. 83, 2585–2597 (2003). https://doi.org/10.1080/1478643031000118012

    Article  CAS  Google Scholar 

  20. Nieh, T.G., Wadsworth, J.: Homogeneous deformation of bulk metallic glasses. Scr. Mater. 54, 387–392 (2006). https://doi.org/10.1016/j.scriptamat.2005.04.052

    Article  CAS  Google Scholar 

  21. Lu, J., Ravichandran, G., Johnson, W.L.: Deformation behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass over a wide range of strain-rates and temperatures. Acta Mater. 51, 3429–3443 (2003). https://doi.org/10.1016/S1359-6454(03)00164-2

    Article  CAS  Google Scholar 

  22. Greer, A.L.: Metallic glasses. Science (80-) 267, 1947–1953 (1995). https://doi.org/10.1002/9783527619528.ch3c

    Article  CAS  Google Scholar 

  23. Higashi, K., Mukai, T., Tanimura, S., Inoue, A., Masumoto, T., Kita, K., Ohtera, K., Nagahora, J.: High strain rate superplasticity in an Al-Ni-misch metal alloy produced from its amorphous powders. Scr. Metall. Mater. 26, 191–196 (1992). https://doi.org/10.1016/0956-716X(92)90171-A

    Article  CAS  Google Scholar 

  24. Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E.H., George, E.P., Ritchie, R.O.: A fracture-resistant high-entropy alloy for cryogenic applications. Science (80-) 345, 1153–1158 (2014). https://doi.org/10.1126/science.1254581

    Article  CAS  Google Scholar 

  25. Gludovatz, B., Hohenwarter, A., Thurston, K.V.S., Bei, H., Wu, Z., George, E.P., Ritchie, R.O.: Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat. Commun. 7, 1–8 (2016). https://doi.org/10.1038/ncomms10602

    Article  CAS  Google Scholar 

  26. George, E.P., Raabe, D., Ritchie, R.O.: High-entropy alloys. Nat. Rev. Mater. 4, 515–534 (2019). https://doi.org/10.1038/s41578-019-0121-4

    Article  CAS  Google Scholar 

  27. Telford, M.: The case for bulk metallic glass. Mater. Today. 7, 36–43 (2004). https://doi.org/10.1016/S1369-7021(04)00124-5

    Article  CAS  Google Scholar 

  28. Inoue, A., Takeuchi, A.: Recent progress in bulk glassy, nanoquasicrystalline and nanocrystalline alloys. Mater. Sci. Eng. A. 375–377, 16–30 (2004). https://doi.org/10.1016/j.msea.2003.10.159

    Article  CAS  Google Scholar 

  29. Johnson, W.L.: Bulk amorphous metal—an emerging engineering material. JOM. 54, 40–43 (2002). https://doi.org/10.1007/BF02822619

    Article  CAS  Google Scholar 

  30. Yao, K.F., Ruan, F., Yang, Y.Q., Chen, N.: Superductile bulk metallic glass. Appl. Phys. Lett. 88, 2004–2007 (2006). https://doi.org/10.1063/1.2187516

    Article  CAS  Google Scholar 

  31. Schuh, C.A., Hufnagel, T.C., Ramamurty, U.: Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067–4109 (2007). https://doi.org/10.1016/j.actamat.2007.01.052

    Article  CAS  Google Scholar 

  32. Schuler, J.D., Donaldson, O.K., Rupert, T.J.: Amorphous complexions enable a new region of high temperature stability in nanocrystalline Ni-W. Scr. Mater. 154, 49–53 (2018). https://doi.org/10.1016/j.scriptamat.2018.05.023

    Article  CAS  Google Scholar 

  33. Zhong, H., Chen, J., Dai, L., Yue, Y., Zhang, Z., Zhang, X., Ma, M., Liu, R.: Tribological behaviors of Zr-based bulk metallic glass versus Zr-based bulk metallic glass under relative heavy loads. Intermetallics 65, 88–93 (2015). https://doi.org/10.1016/j.intermet.2015.06.002

    Article  CAS  Google Scholar 

  34. Rahaman, M.L., Zhang, L.: Size effect on friction and wear mechanisms of bulk metallic glass. Wear 376–377, 1522–1527 (2017). https://doi.org/10.1016/j.wear.2017.01.068

    Article  CAS  Google Scholar 

  35. Wang, W.H., Dong, C., Shek, C.H.: Bulk metallic glasses. Mater. Sci. Eng. R 44, 45–89 (2004). https://doi.org/10.1016/j.mser.2004.03.001

    Article  CAS  Google Scholar 

  36. Liu, L.F., Zhang, H.A., Shi, C.: Sliding tribological characteristics of a Zr-based bulk metallic glass near the glass transition temperature. Tribol. Lett. 33, 205–210 (2009). https://doi.org/10.1007/s11249-009-9410-1

    Article  CAS  Google Scholar 

  37. Kong, J., Xiong, D., Li, J., Yuan, Q., Tyagi, R.: Effect of flash temperature on tribological properties of bulk metallic glasses. Tribol. Lett. 35, 151–158 (2009). https://doi.org/10.1007/s11249-009-9444-4

    Article  CAS  Google Scholar 

  38. Kwon, D.H., Lee, K.M., Park, E.S., Kim, H.J., Bae, J.C., Huh, M.Y.: Wear behaviors of bulk metallic glass alloy and hardened steel having the same hardness value. J. Alloys Compd. 536, S99–S102 (2012)

    Article  CAS  Google Scholar 

  39. Materion corperation: materion data sheet: bulk metallic glass—The next metal. 4–5 (2018). https://materion.com/-/media/files/beryllium/materion-bulk-metallic-glass-data-sheet.pdf

  40. Curry, J.F., Babuska, T.F., Furnish, T.A., Lu, P., Adams, D.P., Kustas, A.B., Nation, B.L., Dugger, M.T., Chandross, M., Clark, B.G., Boyce, B.L., Schuh, C.A., Argibay, N.: Achieving ultralow wear with stable nanocrystalline metals. Adv. Mater. 30, 1802026 (2018). https://doi.org/10.1002/adma.201802026

    Article  CAS  Google Scholar 

  41. Krick, B.A., Sawyer, W.G.: Space tribometers: design for exposed experiments on orbit. Tribol. Lett. 41, 303–311 (2011). https://doi.org/10.1007/s11249-010-9689-y

    Article  CAS  Google Scholar 

  42. Erickson, G.M., Sidebottom, M.A., Curry, J.F., Kay, D.I., Kuhn-Hendricks, S., Norell, M.A., Sawyer, W.G., Krick, B.A.: Paleo-tribology: development of wear measurement techniques and a three-dimensional model revealing how grinding dentitions selfwear to enable functionality. Surf. Topogr. Metrol. Prop. 4, 024001 (2016). https://doi.org/10.1088/2051-672X/4/2/024001

    Article  Google Scholar 

  43. Argibay, N., Babuska, T.F., Curry, J.F., Dugger, M.T., Lu, P., Adams, D.P., Nation, B.L., Doyle, B.L., Pham, M., Pimentel, A., Mowry, C., Hinkle, A.R., Chandross, M.: In situ tribochemical formation of self-lubricating diamond-like carbon films. Carbon NY 138, 61–68 (2018). https://doi.org/10.1016/j.carbon.2018.06.006

    Article  CAS  Google Scholar 

  44. Bowden, F.P., Tabor, D.: Mechanism of metallic friction. Nature 150, 197–199 (1942). https://doi.org/10.1038/150197a0

    Article  Google Scholar 

  45. Argibay, N., Chandross, M., Cheng, S., Michael, J.R.: Linking microstructural evolution and macro-scale friction behavior in metals. J. Mater. Sci. 52, 2780–2799 (2017). https://doi.org/10.1007/s10853-016-0569-1

    Article  CAS  Google Scholar 

  46. Hinkle, A.R., Curry, J.F., Lim, H., Nation, B.L., Jones, M.R., Lu, P., Argibay, N., Chandross, M.: Low friction in BCC metals via grain boundary sliding. Phys. Rev. Mater. 4, 63602 (2020). https://doi.org/10.1103/PhysRevMaterials.4.063602

    Article  CAS  Google Scholar 

  47. Wu, H., Baker, I., Liu, Y., Wu, X., Munroe, P.R.: Effects of environment on the sliding tribological behaviors of Zr-based bulk metallic glass. Intermetallics 25, 115–125 (2012). https://doi.org/10.1016/j.intermet.2011.12.025

    Article  CAS  Google Scholar 

  48. Sawyer, W.G., Argibay, N., Burris, D.L., Krick, B.A.: Mechanistic studies in friction and wear of bulk materials. Annu. Rev. Mater. Res. 44, 395–427 (2014). https://doi.org/10.1146/annurev-matsci-070813-113533

    Article  Google Scholar 

  49. Caron, A., Louzguine-Luzguin, D.V., Bennewitz, R.: Structure vs chemistry: friction and wear of Pt-based metallic surfaces. ACS Appl. Mater. Interfaces. 5, 11341–11347 (2013). https://doi.org/10.1021/am403564a

    Article  CAS  Google Scholar 

  50. Lafaye, S., Troyon, M.: On the friction behaviour in nanoscratch testing. Wear 261, 905–913 (2006). https://doi.org/10.1016/j.wear.2006.01.036

    Article  CAS  Google Scholar 

  51. Lafaye, S., Gauthier, C., Schirrer, R.: The ploughing friction: analytical model with elastic recovery for a conical tip with a blunted spherical extremity. Tribol. Lett. 21, 95–99 (2006). https://doi.org/10.1007/s11249-006-9018-7

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Laboratory Directed Research and Development program at Sandia National Laboratories, a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Argibay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones, M.R., Kustas, A.B., Lu, P. et al. Environment-Dependent Tribological Properties of Bulk Metallic Glasses. Tribol Lett 68, 123 (2020). https://doi.org/10.1007/s11249-020-01364-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-020-01364-z

Keywords