Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Tribological Performance of Cu–rGO–MoS2 Nanocomposites Under Dry Sliding

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Nanostructured MoS2 grown on reduced graphene oxide (rGO–MoS2) is demonstrated as a lubricating reinforcement material for copper matrix composite. The Cu–rGO–MoS2 nanocomposites having variable dosages of rGO–MoS2 (0.5 to 2.0 wt%) are prepared via a combinational approach of powder metallurgy and then spark plasma sintering at 700 °C. The XRD and Raman analyses suggested the preparation of rGO–MoS2 hybrid, whereas HRTEM images revealed the thorough distribution of MoS2 nanosheets over the rGO. The tribological properties of Cu–rGO–MoS2 nanocomposites were evaluated against the EN 31 steel ball under the variable loads (4–10 N). The coefficient of friction was found to decrease with increasing of rGO–MoS2 content. The Cu–rGO–MoS2 nanocomposite with a 2.0 wt% of rGO–MoS2 hybrid exhibited the lowest and stable coefficient of friction (μ = 0.2) among all the nanocomposites. The high mechanical strength and low shearing properties driven by the lamellar structure of rGO–MoS2 furnished the self-lubricating properties to Cu–rGO–MoS2 nanocomposites. A combination of adhesion, oxidation, abrasion, and delamination of materials are revealed as major events for the wear mechanisms. These wear events are governed by the dosage of rGO–MoS2 reinforcement in the Cu–rGO–MoS2 nanocomposites and applied load. The results indicate that rGO–MoS2 has the potential to be used as a solid lubricant in the metal matrix composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Zhou, H., Yao, P., Xiao, Y., Fan, K., Zhang, Z., Gong, T., Zhao, L., Deng, M., Liu, C., Ling, P.: Friction and wear maps of copper metal matrix composites with different iron volume content. Tribol. Int. 132, 199–210 (2019)

    CAS  Google Scholar 

  2. Zou, C., Chen, Z., Guo, E., Kang, H., Fan, G., Wang, W., Li, R., Zhang, S., Wang, T.: A nano-micro dual-scale particulate-reinforced copper matrix composite with high strength, high electrical conductivity and superior wear resistance. RSC Adv. 8, 30777–30782 (2018)

    CAS  Google Scholar 

  3. Zhao, S., Wu, Y., Sun, Z., Zhou, B., Liu, X.: Superhard copper matrix composite reinforced by ultrafine boron for wear-resistant bearings. ACS Appl. Nano Mater. 1, 5382–5388 (2018)

    CAS  Google Scholar 

  4. Furlan, K.P., Mello, J.D.B., Klein, A.N.: Self-lubricating composites containing MoS2: a review. Tribol. Int. 120, 280–298 (2018)

    CAS  Google Scholar 

  5. Bravunovic, M., Konchits, V.V., Myshkin, N.K.: Electrical Contacts: Fundamentals, Applications and Technology, 1st edn. CRC Press, New York (2007)

    Google Scholar 

  6. Surekha, K., Els-Botes, A.: Development of high strength, high conductivity copper by friction stir processing. Mater. Design 32, 911–916 (2011)

    CAS  Google Scholar 

  7. Xiao, J.K., Zhang, W., Liu, L.M., Zhang, L., Zhang, C.: Tribological behavior of copper-molybdenum disulfide composites. Wear 384–385, 61–71 (2017)

    Google Scholar 

  8. Kovalchenko, A.M., Fushchich, O.I., Danyluk, S.: The tribological properties and mechanism of wear of Cu-based sintered powder materials containing molybdenum disulfide and molybdenum diselenide under unlubricated sliding against copper. Wear 290–291, 106–123 (2012)

    Google Scholar 

  9. Watanabe, Y.: High-speed sliding characteristics of Cu–Sn-based composite materials containing lamellar solid lubricants by contact resistance studies. Wear 264, 624–631 (2008)

    CAS  Google Scholar 

  10. Kato, H., Takama, M., Iwai, Y., Washida, K., Sasaki, Y.: Wear and mechanical properties of sintered copper-tin composites containing graphite or molybdenum disulfide. Wear 255, 573–578 (2003)

    CAS  Google Scholar 

  11. Yusoff, A.R.M., Dai, L., Cheng, H.M., Liu, J.: Graphene based energy devices. Nanoscale 7, 6881–6882 (2015)

    Google Scholar 

  12. Nag, A., Mitra, A., Mukhopadhyay, S.C.: Graphene and its sensor-based applications: a review. Sensor Actuat. A 270, 177–194 (2018)

    CAS  Google Scholar 

  13. Randviir, E.P., Brownson, D.A.C., Banks, C.E.: A decade of graphene research: production, applications and outlook. Mater. Today 17, 426–432 (2014)

    CAS  Google Scholar 

  14. Nine, M.J., Cole, M.A., Tran, D.N.H., Losic, D.: Graphene: a multipurpose material for protective coatings. J. Mater. Chem. A 3, 12580–12602 (2015)

    CAS  Google Scholar 

  15. Prasai, D., Tuberquia, J.C., Harl, R.R., Jennings, G.K., Bolotin, K.I.: Graphene: corrosion-inhibiting coating. ACS Nano 6, 1102–1108 (2012)

    CAS  Google Scholar 

  16. Berman, D., Erdemir, A., Sumant, A.V.: Graphene: a new emerging lubricant. Mater. Today 17, 31–42 (2014)

    CAS  Google Scholar 

  17. Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)

    CAS  Google Scholar 

  18. Chu, K., Wang, J., Liu, Y., Li, Y., Jia, C., Zhang, H.: Creating defects on graphene basal-plane toward interface optimization of graphene/CuCr composites. Carbon 143, 85–96 (2019)

    CAS  Google Scholar 

  19. Chen, F.Y., Ying, J.M., Wang, Y.F., Du, S.Y., Liu, Z.P., Huang, Q.: Effects of graphene content on the microstructure and properties of copper matrix composites. Carbon 96, 836–842 (2016)

    CAS  Google Scholar 

  20. Nautiyal, H., Kumari, S., Khatri, O.P., Tyagi, R.: Copper matrix composites reinforced by rGO-MoS2 hybrid: strengthening effect to enhancement of tribological properties. Compos. Part B 173, 106931 (2019)

    CAS  Google Scholar 

  21. Zhang, C., Lu, C., Pei, L., Li, J., Wang, R., Tieu, K.: The negative Poisson's ratio and strengthening mechanism of nanolayered graphene/Cu composites. Carbon 143, 125–137 (2019)

    CAS  Google Scholar 

  22. Zhang, D., Zhan, Z.: Strengthening effect of graphene derivatives in copper matrix composites. J. Alloy Compd. 654, 226–233 (2016)

    CAS  Google Scholar 

  23. Zhao, X., Tang, J., Yu, F., Ye, N.: Preparation of graphene nanoplatelets reinforcing copper matrix composites by electrochemical deposition. J. Alloy Compd. 766, 266–273 (2018)

    CAS  Google Scholar 

  24. Chu, K., Wang, J., Liu, Y., Geng, Z.: Graphene defect engineering for optimizing the interface and mechanical properties of graphene/copper composites. Carbon 140, 112–123 (2018)

    CAS  Google Scholar 

  25. Khobragade, N., Sikdar, K., Kumar, B., Bera, S., Roy, D.: Mechanical and electrical properties of copper-graphene nanocomposite fabricated by high pressure torsion. J. Alloy Compd. 776, 123–132 (2019)

    CAS  Google Scholar 

  26. Lu, G., Shia, X., Liu, X., Zhou, H., Chen, Y., Yang, Z., Huang, Y.: Tribological performance of functionally gradient structure of graphene nanoplatelets reinforced Ni3Al metal matrix composites prepared by laser melting deposition. Wear 428–429, 417–429 (2019)

    Google Scholar 

  27. Zhai, W., Lu, W., Chen, Y., Liu, X., Zhou, L., Lin, D.: Gas-atomized copper-based particles encapsulated in graphene oxide for high wear-resistant composites. Compos. Part B 157, 131–139 (2019)

    CAS  Google Scholar 

  28. Gao, X., Yue, H., Guo, E., Zhang, S., Yao, L., Lin, X., Wang, B., Guan, E.: Tribological properties of copper matrix composites reinforced with homogeneously dispersed graphene nanosheets. J. Mater. Sci. Technol. 34, 1925–1931 (2018)

    Google Scholar 

  29. Zhang, X., Dong, P., Chen, Y., Yang, W., Zhan, Y., Wu, K., Chao, Y.: Fabrication and tribological properties of copper matrix composite with short carbon fiber/reduced graphene oxide filler. Tribol. Int. 103, 406–411 (2016)

    CAS  Google Scholar 

  30. Krishnan, U., Kaur, M., Singh, K., Kumar, M., Kumar, A.: A synoptic review of MoS2: synthesis to applications. Superlattice Microstruct. 128, 274–297 (2019)

    CAS  Google Scholar 

  31. Kumari, S., Gusain, R., Kumar, N., Khatri, O.P.: PEG-mediated hydrothermal synthesis of hierarchical microspheres of MoS2 nanosheets and their potential for lubrication application. J. Ind. Eng. Chem. 42, 87–94 (2016)

    CAS  Google Scholar 

  32. Yang, Z., Guo, Z., Yuan, C.: Effects of MoS2 microencapsulation on the tribological properties of a composite material in a water-lubricated condition. Wear 432–433, 102919 (2019)

    Google Scholar 

  33. Kumari, S., Mungse, H.P., Gusain, R., Kumar, N., Sugimura, H., Khatri, O.P.: Octadecanethiol-grafted molybdenum disulfide nanosheets as oil-dispersible additive for reduction of friction and wear. Flat Chem. 3, 16–25 (2017)

    CAS  Google Scholar 

  34. Choudhary, S., Mungse, H.P., Khatri, O.P.: Hydrothermal deoxygenation of graphene oxide: chemical and structural evolution. Chem. Asian J. 8, 2070–2078 (2013)

    CAS  Google Scholar 

  35. Mungse, H.P., Sharma, O.P., Sugimura, H., Khatri, O.P.: Hydrothermal deoxygenation of graphene oxide in sub- and supercritical water. RSC Adv. 4, 22589–22595 (2014)

    CAS  Google Scholar 

  36. Hajiyev, P., Cong, C., Qiu, C., Yu, T.: Contrast and Raman spectroscopy study of single- and few-layered charge density wave material: 2H-TaSe2. Sci. Rep. 3, 2593–2598 (2013)

    Google Scholar 

  37. Kumar, D.D., Kumar, N., Panda, K., Kirubaharan, A.M.K., Kuppusami, P.: Tribochemistry of contact interfaces of nanocrystalline molybdenum carbide films. Appl. Surf. Sci. 447, 677–686 (2018)

    CAS  Google Scholar 

  38. Zhou, S., Chen, H., Ma, L.: Noval carbon-based nc-MoC/a-C(Al) nanocomposite coating towards low internal stress and low-friction. Surf. Coat. Technol. 242, 177–182 (2014)

    CAS  Google Scholar 

  39. Rajan, T.P.D., Pillai, R.M., Pai, B.C., Satyanarayana, K.G., Rohatgi, P.K.: Fabrication and characterisation of Al–7Si–0.35Mg/fly ash metal matrix composites processed by different stir casting routes. Compos. Sci. Technol. 67, 3369–3377 (2007)

    CAS  Google Scholar 

  40. Liang, C., Han, X., Su, T.F., Lv, X.X., An, J.: Roles of friction-induced strain hardening and recrystallization in dry sliding wear of AZ31 magnesium alloy. Trans. Ind. Inst. Metall. 68, 89–98 (2015)

    CAS  Google Scholar 

  41. Xu, Y., Peng, Y., Dearn, K.D., Zheng, X., Yao, L., Hu, X.: Synergistic lubricating behaviors of graphene and MoS2 dispersed in esterfied bio-oil for steel/steel contact. Wear 342–343, 297–309 (2015)

    Google Scholar 

  42. Song, H., Wang, B., Zhou, Q., Xiao, J., Jia, X.: Preparation and tribological properties of MoS2/graphene oxide composites. Appl. Surf. Sci. 419, 24–34 (2017)

    CAS  Google Scholar 

  43. Rajkumar, K., Aravindan, S.: Tribological behavior of microwave processed copper-nanographite composites. Tribol. Int. 57, 282–329 (2013)

    CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the kind support of IIT Roorkee for sample preparation and CSIR-IIP for analytical support. S. Kumari is thankful to CSIR, Govt. of India for the financial support (SRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajnesh Tyagi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nautiyal, H., Kumari, S., Rao, U.S. et al. Tribological Performance of Cu–rGO–MoS2 Nanocomposites Under Dry Sliding. Tribol Lett 68, 29 (2020). https://doi.org/10.1007/s11249-020-1270-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-020-1270-8

Keywords