Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Intelligent Data Fusion for Smart IoT Environment: A Survey

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Efficient data collection and communication are key tasks in smart IoT environment consisting of a large number of devices. Here imprecise data are generated due to the interferences between the devices and harsh operation condition, and therefore data fusion is needed to gather and extract useful data from multiple sources. A number of approaches for data fusion have been proposed which are based on probability, artificial intelligence, or evidence theory to efficiently aggregate the data. The techniques allow the system to be cognitive and intelligent in terms of decision-making under the uncertainty of data and limited resource. In this paper a comprehensive survey on the data fusion techniques for smart IoT system is presented. The challenges and opportunities with data fusion are also delineated. It will be useful for the researchers in developing the applications and services based on smart IoT environment, which require intelligent decision making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Rahmati, A., Shepard, C., Tossell, C., Zhong, L., & Kortum, P. (2015). Practical context awareness: Measuring and utilizing the context dependency of mobile usage. IEEE Transactions on Mobile Computing., 14(9), 1932–1946.

    Google Scholar 

  2. Alam, F., Mehmood, R., Katib, I., Albogami, N. N., & Albeshri, A. (2017). Data fusion and IoT for smart ubiquitous environments: A survey. IEEE Access, 5, 9533–9554.

    Google Scholar 

  3. Pinto, A. R., Montez, C., Araújo, G., Vasques, F., & Portugal, P. (2014). An approach to implement data fusion techniques in wireless sensor networks using genetic machine learning algorithms. Information Fusion, 15, 90–101.

    Google Scholar 

  4. El Faouzi, N.-E., & Klein, L. A. (2016). Data fusion for ITS: techniques and research needs. Transportation Research Procedia, 15, 495–512.

    Google Scholar 

  5. Collotta, M., Messineo, A., Nicolosi, G., & Pau, G. (2014). A dynamic fuzzy controller to meet thermal comfort by using neural network forecasted parameters as the input. Energies, 7(8), 4727–4756.

    Google Scholar 

  6. Collotta, M., Pau, G., & Bobovich, A. V. (2017). A fuzzy data fusion solution to enhance the QoS and the energy consumption in wireless sensor networks. Wireless Communications and Mobile Computing, 2017, 1–10.

    Google Scholar 

  7. Koshmak, G., Loutfi, A., & Linden, M. (2016). Challenges and issues in multisensor fusion approach for fall detection. Journal of Sensors. https://doi.org/10.1155/2016/6931789.

    Article  Google Scholar 

  8. Paradis, L., & Han, Q. (2007). A survey of fault management in wireless sensor networks. Journal of Network and systems management., 15(2), 171–190.

    Google Scholar 

  9. Wan, J., Chen, M., Xia, F., Di, L., & Zhou, K. (2013). From machine-to-machine communications towards cyber-physical systems. Computer Science and Information Systems., 10(3), 1105–1128.

    Google Scholar 

  10. Bengio, Y. (2009). Learning deep architectures for AI. Foundations and Trends® in Machine Learning, 2(1), 1–127.

    MATH  Google Scholar 

  11. Gilbert, E. P. K., Kaliaperumal, B., Rajsingh, E. B., & Lydia, M. (2018). Trust based data prediction, aggregation and reconstruction using compressed sensing for clustered wireless sensor networks. Computers & Electrical Engineering, 72, 894–909.

    Google Scholar 

  12. Abukhalaf, H., Wang, J., & Zhang, S. (2015). Outlier detection techniques for localization in wireless sensor networks: A survey. International Journal of Future Generation Communication and Networking., 8(6), 99–114.

    Google Scholar 

  13. Ullah, I., & Youn, H. Y. (2019). A novel data aggregation scheme based on self-organized map for WSN. The Journal of Supercomputing, 75, 3975–3996.

    Google Scholar 

  14. Ullah, I., & Youn, H. Y. (2020). Efficient data aggregation with node clustering and extreme learning machine for WSN. The Journal of Supercomputing. https://doi.org/10.1007/s11227-020-03236-8.

    Article  Google Scholar 

  15. Hall, D. L., & McMullen, S. A. (2004). Mathematical techniques in multisensor data fusion. Norwood: Artech House.

    MATH  Google Scholar 

  16. Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (1995). Bayesian data analysis. Boca Raton: Chapman and Hall/CRC.

    MATH  Google Scholar 

  17. Abdulhafiz, W.A., & Khamis, A. (2013). Bayesian approach to multisensor data fusion with Pre-and Post-Filtering. In IEEE (pp. 373–378).

  18. Murphy, K.P., & Russell, S. (2002). Dynamic bayesian networks: Representation, inference and learning.

  19. Zhang, Y., & Ji, Q. (2006). Active and dynamic information fusion for multisensor systems with dynamic Bayesian networks. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 36(2), 467–472.

    Google Scholar 

  20. De Paola, A., Gaglio, S., Re, G. L., & Ortolani, M. (2011). Multi-sensor fusion through adaptive bayesian networks (pp. 360–371). New York: Springer.

    Google Scholar 

  21. van Kasteren, T., & Krose, B. (2007). Bayesian activity recognition in residence for elders. Proceedings of the International Intelligent Environments Conference. https://doi.org/10.1049/cp:20070370.

    Article  Google Scholar 

  22. De Paola, A., & Gagliano, L. (2014). Design of an adaptive Bayesian system for sensor data fusion. In S. Gaglio & G. Lo Re (Eds.), Advances onto the Internet of Things (pp. 61–76). New York: Springer.

    Google Scholar 

  23. Weng, Z., & Djurić, P. M. (2012). A Bayesian approach to covariance estimation and data fusion. In 2012 proceedings of the 20th European signal processing conference (EUSIPCO) (pp. 2352–2356).

  24. Azmani, M., Reboul, S., Choquel, J.-B., & Benjelloun, M. A. (2009). Recursive fusion filter for angular data. In IEEE (pp. 882–887).

  25. Chou, K. C., Willsky, A. S., & Benveniste, A. (1994). Multiscale recursive estimation, data fusion, and regularization. IEEE Transactions on Automatic Control, 39(3), 464–478.

    MathSciNet  MATH  Google Scholar 

  26. Hou, X., Zhang, D., & Zhong, M. (2014). Data aggregation of wireless sensor network based on event-driven and neural network. Chinese Journal of Sensors and Actuators., 27(1), 142–148.

    Google Scholar 

  27. Wang, Q., Liao, H., Wang, K., & Sang, Y. (2011). A variable weight based fuzzy data fusion algorithm for WSN (pp. 490–502). New York: Springer.

    Google Scholar 

  28. Shell, J., Coupland, S., & Goodyer, E. (2010). Fuzzy data fusion for fault detection in wireless sensor networks. In IEEE (pp. 1–6).

  29. Sun, L.-Y., Cai, W., & Huang, X.-X. (2010). Data aggregation scheme using neural networks in wireless sensor networks. In IEEE (pp. V1–725).

  30. Du, K.-L., & Swamy, M. N. (2013). Neural networks and statistical learning. New York: Springer.

    MATH  Google Scholar 

  31. Wang, J., Wang, K., Caoa, Y., Younn, G., & Kimb, J.-U. (2017). A RBF neural network based data aggregation algorithm for wireless sensor networks. Fuzzy Systems and Data Mining III: Proceedings of FSDM, 2017(299), 428.

    Google Scholar 

  32. Manjunatha, P., Verma, A., & Srividya, A. (2008). Multi-sensor data fusion in cluster based wireless sensor networks using fuzzy logic method. In IEEE; 2008. p. 1–6.

  33. Deng, Y., Ren, Z., Kong, Y., Bao, F., & Dai, Q. (2017). A hierarchical fused fuzzy deep neural network for data classification. IEEE Transactions on Fuzzy Systems, 25(4), 1006–1012.

    Google Scholar 

  34. Stover, J. A., Hall, D. L., & Gibson, R. E. (1996). A fuzzy-logic architecture for autonomous multisensor data fusion. IEEE Transactions on Industrial Electronics., 43(3), 403–410.

    Google Scholar 

  35. Challa, S., & Koks, D. (2004). Bayesian and Dempster–Shafer fusion. Sadhana, 29(2), 145–174.

    MathSciNet  MATH  Google Scholar 

  36. Yi, P., & Zhang, S. (2017). Application of Dempster–Shafer data fusion technique in support of decision making with big data. Transportation Research Record: Journal of the Transportation Research Board., 2645, 32–37.

    Google Scholar 

  37. Kanjanatarakul, O, & Denœux, T. (2017). Distributed data fusion in the Dempster–Shafer framework. In IEEE (pp. 1–6).

  38. Sentz, K., & Ferson, S. (2002). Combination of evidence in Dempster–Shafer theory. In Citeseer (vol. 4015).

  39. Zhang, D., Cao, J., Zhou, J., & Guo, M. (2009). Extended Dempster–Shafer theory in context reasoning for ubiquitous computing environments. In IEEE (pp. 205–212).

  40. Júlia, J. (2018). Thesis code for DS theory. Contribute to you-leee/Dempster–Shafer development by creating an account on GitHub. Retrieved 11 December, 2018, from https://github.com/you-leee/Dempster-Shafer.

  41. Jaramillo, V. H., Ottewill, J. R., Dudek, R., Lepiarczyk, D., & Pawlik, P. (2017). Condition monitoring of distributed systems using two-stage Bayesian inference data fusion. Mechanical Systems and Signal Processing, 87, 91–110.

    Google Scholar 

  42. Mil, S., & Piantanakulchai, M. (2018). Modified Bayesian data fusion model for travel time estimation considering spurious data and traffic conditions. Applied Soft Computing, 72, 65–78.

    Google Scholar 

  43. Taylor, C. N., & Bishop, A. N. (2019). Homogeneous functionals and Bayesian data fusion with unknown correlation. Information Fusion, 45, 179–189.

    Google Scholar 

  44. Sharma, G., Singh, K., Gupta, G., Shroff, G., Agarwal, P., & Pandey A., et al. (2017). System and method for visual Bayesian data fusion.

  45. Echeverri, A. F., Medeiros, H., Walsh, R., Reznichenko, Y., & Povinelli R. (2017). Hierarchical Bayesian data fusion for robotic platform navigation. arXiv:170406718.

  46. Xue, J., Leung, Y., & Fung, T. (2017). A Bayesian data fusion approach to spatio-temporal fusion of remotely sensed images. Remote Sensing, 9(12), 1310.

    Google Scholar 

  47. Blasch, E., Chen, Y., Chen, G., Shen, D., & Kohler, R. (2014). Information fusion in a cloud-enabled environment. In K. J. Han, B. Y. Choi, & S. Song (Eds.), High performance cloud auditing and applications (pp. 91–115). New York: Springer.

    Google Scholar 

  48. Datcu, M., & Seidel, K. (1999). Bayesian methods: Applications in information aggregation and image data mining. International Archives of Photogrammetry and Remote Sensing., 32(7), 4–3.

    Google Scholar 

  49. Shinde, T. A., & Prasad, J. R. (2017). IoT based animal health monitoring with naive Bayes classification. IJETT. https://doi.org/10.23883/ijrter.2017.3035.qudpb.

    Article  Google Scholar 

  50. Chen, Y. M., Hsueh, C.-S., & Wang, C.-K. (2016). Data mining of Bayesian networks to select fusion nodes from wireless sensor networks. International Journal of Computer Science Issues (IJCSI)., 13(4), 11.

    Google Scholar 

  51. Chen, X., Li, X. (2016). Virtual temperature measurement for smart buildings via Bayesian model fusion. In IEEE (pp. 950–953).

  52. Gao, J.-P., Xu, C.-B., Zhang, L., Zheng, J.-L., Shu, H., & Yuan, X. (2017). A method of information fusion based on fuzzy neural network and its application (p. 01015). EDP Sciences: Les Ulis.

    Google Scholar 

  53. Sung, W.-T. (2009). Employed BPN to multi-sensors data fusion for environment monitoring services. Autonomic and Trusted Computing.. https://doi.org/10.1007/978-3-642-02704-8_12.

    Article  Google Scholar 

  54. Kang, S., Lee, J., Jang, H., Lee, Y., Park, S., & Song, J. (2010). A scalable and energy-efficient context monitoring framework for mobile personal sensor networks. IEEE Transactions on Mobile Computing., 9(5), 686–702.

    Google Scholar 

  55. Lee, S., & Chung, T. (2004). Data aggregation for wireless sensor networks using self-organizing map (pp. 508–517). New York: Springer.

    Google Scholar 

  56. Aghajari, E., & Chandrashekhar, G. D. (2017). Self-organizing map based extended fuzzy C-means (SEEFC) algorithm for image segmentation. Applied Soft Computing., 54, 347–363.

    Google Scholar 

  57. Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine Learning, 8(3–4), 279–292.

    MATH  Google Scholar 

  58. Marwaha, S, Tham, C. K., & Srinivasan, D. (2002). Mobile agents based routing protocol for mobile ad hoc networks. In IEEE (pp. 163–167).

  59. Lu, Y., Zhang, T., He, E., & Comşa, I.-S. (2018). Self-learning-based data aggregation scheduling policy in wireless sensor networks. Journal of Sensors. https://doi.org/10.1155/2018/9647593.

    Article  Google Scholar 

  60. Huang, G.-B., Zhu, Q.-Y., & Siew, C.-K. (2006). Extreme learning machine: Theory and applications. Neurocomputing., 70(1–3), 489–501.

    Google Scholar 

  61. Senouci, M. R., Mellouk, A., Aitsaadi, N., & Oukhellou, L. (2016). Fusion-based surveillance WSN deployment using Dempster–Shafer theory. Journal of Network and Computer Applications, 64, 154–166.

    Google Scholar 

  62. Nesa, N., & Banerjee, I. (2017). IoT-based sensor data fusion for occupancy sensing using Dempster–Shafer evidence theory for smart buildings. IEEE Internet of Things Journal, 4(5), 1563–1570.

    Google Scholar 

  63. Alqhtani, S. M., Luo, S., & Regan, B. (2015). Multimedia data fusion for event detection in twitter by using dempster-shafer evidence theory. International Journal of Computer, Electrical, Automation, Control and Information Engineering, World Academy of Science, Engineering and Technology., 9(12), 2234–2238.

    Google Scholar 

  64. Angelov, P., & Yager, R. (2013). Density-based averaging–A new operator for data fusion. Information Sciences, 222, 163–174.

    MathSciNet  MATH  Google Scholar 

  65. Ganegedara, H., & Alahakoon, D. (2012). Redundancy reduction in self-organising map merging for scalable data clustering. In IEEE (pp. 1–8).

  66. Wu, W., Xu, B., & Cao, M. (2016). A data fusion method of WSNs based on glowworm swarm algorithm optimized BP neural networks. Revista Ibérica de Sistemas e Tecnologias de Informação., 17A, 73.

    Google Scholar 

  67. Mahdavinejad, M. S., Rezvan, M., Barekatain, M., Adibi, P., Barnaghi, P., & Sheth, A. P. (2018). Machine learning for Internet of Things data analysis: A survey. Digital Communications and Networks, 4(3), 161–175.

    Google Scholar 

  68. Lee, I., & Lee, K. (2015). The Internet of Things (IoT): Applications, investments, and challenges for enterprises. Business Horizons, 58(4), 431–440.

    Google Scholar 

  69. Moving Average. (2018). In: Wikipedia. Retrieved 10 December, 2018, from https://en.wikipedia.org/w/index.php?title=Moving_average&oldid=869594777.

  70. Shivashankarappa, N., Adiga, S., Avinash, R., & Janardhan, H. (2016). Kalman filter based multiple sensor data fusion in systems with time delayed state. In IEEE (pp. 375–382).

Download references

Acknowledgements

This work was partly supported by Institute for Information & communications Technology Promotion(IITP) grant funded by the Korea government(MSIT) (No. 2016-0-00133, Research on Edge computing via collective intelligence of hyperconnection IoT nodes) Korea, under the National Program for Excellence in SW supervised by the IITP(Institute for Information & communications Technology Promotion) (2015-0-00914), Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2019R1I1A1A01058780, Efficient Management of SDN-based Wireless Sensor Network Using Machine Learning Technique) the second Brain Korea 21 PLUS project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee Yong Youn.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullah, I., Youn, H.Y. Intelligent Data Fusion for Smart IoT Environment: A Survey. Wireless Pers Commun 114, 409–430 (2020). https://doi.org/10.1007/s11277-020-07369-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07369-0

Keywords