Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Knowledge Building Discourse Explorer: a social network analysis application for knowledge building discourse

  • Development Article
  • Published:
Educational Technology Research and Development Aims and scope Submit manuscript

Abstract

In recent studies of learning theories, a new methodology that integrates two prevailing metaphors of learning (acquisition and participation) has been discussed. However, current analytical techniques are insufficient for analyzing how social knowledge develops through learners' discourse and how individual learners contribute to this development. In this paper, we propose a novel approach to analyzing learning from an integrative perspective and present a social network analysis application that uses learner discourse as input data: Knowledge Building Discourse Explorer (KBDeX). To investigate the utility of this approach, discourse data analyzed in a previous study is re-examined through social network analysis supported by KBDeX. Results suggest that social network analysis can qualitatively and quantitatively support the conclusions from the previous study. In addition, social network analysis can reveal potential points that are pivotal for social knowledge advancement in groups, and can identify each individual's contribution to this advancement. On the basis of these results, we discuss how social network analysis could be integrated into existing in-depth discourse analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Anderson, J. R., Greeno, J. G., Reder, L. M., & Simon, H. (2000). Perspectives on learning, thinking, and activity. Educational Researcher, 29(4), 11–13.

    Google Scholar 

  • Anderson, J. R., Reder, L. M., & Simon, H. A. (1996). Situated learning and education. Educational Researcher, 25(4), 5–11.

    Google Scholar 

  • Barabási, A.-L. (2005). Network theory: The emergence of the creative enterprise. Science, 308, 639–641.

    Article  Google Scholar 

  • Bereiter, C. (2002). Education and mind in the knowledge age. Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Blumenfeld, P. C., Kempler, T. M., & Krajcik, J. S. (2006). Motivation and cognitive engagement in learning environments. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences. New York: Cambridge University Press.

    Google Scholar 

  • Brown, J. S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning. Educational Researcher, 18(1), 32–42.

    Google Scholar 

  • Cañas, A. J., Hill, R., Carff, R., Suri, N., Lott, J., & Eskridge, T. (2004). CmapTools: A knowledge modeling and sharing environment. In A. J. Cañas, J. D. Novak, & F. M. González (Eds.), Concept maps: Theory, methodology, technology. Proceedings of the first international conference on concept mapping (pp. 125–133). Pamplona: Universidad Pública de Navarra.

  • Cobb, P., & Bowers, J. S. (1999). Cognitive and situated learning perspectives in theory and practice. Educational Researcher, 28(2), 4–15.

    Google Scholar 

  • Davis, B., & Sumara, D. J. (2006). Complexity and education: Inquiries into learning, teaching, and research. Mahwah, New Jersey: Lawrence Erlbaum.

    Google Scholar 

  • de Laat, M., Lally, V., Lipponen, L., & Simons, R.-J. (2007). Investigating patterns of interaction in networked learning and computer-supported collaborative learning: A role for social network analysis. International Journal of Computer-Supported Collaborative Learning, 2(1), 87–103.

    Article  Google Scholar 

  • Engeström, Y. (1999). Activity theory and individual and social transformation. In Y. Engeström, R. Miettinen, & R.-L. Punamäki (Eds.), Perspectives on activity theory (pp. 19–38). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Engle, R. A., & Conant, F. R. (2002). Guiding principles for fostering productive disciplinary engagement: Explaining an emergent argument in a community of learners classroom. Cognition & Instruction, 20(4), 399–483.

    Article  Google Scholar 

  • Fruchterman, T. M. J., & Reingold, E. M. (1991). Graph drawing by force-directed placement. Software—Practice and Experience, 21(11), 1129–1164.

    Google Scholar 

  • Greeno, J. G. (1997). On claims that answer the wrong questions. Educational Researcher, 26(1), 5–17.

    Google Scholar 

  • Greeno, J. G. (2006). Learning in activity. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (pp. 79–96). New York: Cambridge University Press.

    Google Scholar 

  • Greeno, J. G., & The Middle-School Mathematics Through Applications Project Group. (1997). Theories and practices of thinking and learning to think. American Journal of Education, 106(1), 85–126.

    Google Scholar 

  • Guimera, R., Uzzi, B., Spiro, J., & Nunes Amaral, L. A. (2005). Team assembly mechanisms determine collaboration network structure and team performance. Science, 308, 697–702.

    Article  Google Scholar 

  • Ifenthaler, D., Masduki, I., & Seel, N. M. (2011). The mystery of cognitive structure and how we can detect it: Tracking the development of cognitive structures over time. Instructional Science, 39, 41–61.

    Article  Google Scholar 

  • Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge, England: Cambridge University Press.

    Book  Google Scholar 

  • Lazer, D., Pentland, A., Adamic, L., Aral, S., Barabási, A. -L., Brewer, D.,…Van Alstyne, M. (2009). Computational Social Science, 323, 721–723.

  • Martinez, A., Dimitriadis, Y., Rubia, B., Gomez, E., & de la Fuente, P. (2003). Combining qualitative evaluation and social network analysis for the study of classroom social interactions. Computers & Education, 41(4), 353–368.

    Article  Google Scholar 

  • Mercer, N. (2005). Sociocultural discourse analysis: Analysing classroom talk as a social mode of thinking. Journal of Applied Linguistics, 1(2), 137–168.

    Article  Google Scholar 

  • Nonaka, I., & Takeuchi, H. (1995). The knowledge-creating company: How Japanese companies create the dynamics of innovation. New York: Oxford University Press.

  • Oshima, J., Oshima, R., & Knowledge Forum Japan Research Group. (2007). Complex network theory approach to the assessment on collective knowledge advancement through scientific discourse in CSCL. In C. Chinn, G. Erkens, & S. Puntambekar (Eds.), Proceedings of CSCL 2007 (pp. 563–565). Mahwah, NJ: Lawrence Erlbaum.

  • Oshima, J., Oshima, R., Matsuzawa, Y., van Aalst, J. C., & Chan, C. C. K. (2011, April). Network structure analysis for knowledge building: A macroscopic view of collaborative learning discourse. Paper presented at the annual meeting of educational research association, New Orleans, LA.

  • Oshima, J., Oshima, R., Murayama, I., Inagaki, S., Takenaka, M. Yamamoto, T.,…Nakayama, H. (2006). Knowledge-building activity structures in Japanese elementary science pedagogy. The International Journal of Computer-Supported Collaborative Learning, 1(2), 229–246.

    Google Scholar 

  • Paavola, S., Lipponen, L., & Hakkarainen, K. (2004). Models of innovative knowledge communities and three metaphors of learning. Review of Educational Research, 74(4), 557–576.

    Article  Google Scholar 

  • Palla, G., Barabási, A.-L., & Vicsek, T. (2007). Quantifying social group evolution. Nature, 446, 664–667.

    Article  Google Scholar 

  • Pirnay-Dummer, P., Ifenthaler, D., & Spector, J. M. (2008). Highly integrated model assessment technology and tools. In Kinshuk, Sampson, D. G., Spector, J. M., Isaias P., & Ifenthaler D. (Eds.), Proceedings of the IADIS international conference on cognition and exploratory learning in the digital age (pp. 18–28). Freiburg: IADIS.

  • Reffay, C., Teplovs, C., & Blondel, F.-M. (2011). Productive re-use of CSCL data and analytic tools to provide a new perspective on group cohesion. In H. Spada, G. Stahl, N. Miyake, & N. Law (Eds.), Proceedings of CSCL 2011 (pp. 846–850). Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Reuven, A., Zippy, E., Gilad, R., & Aviva, G. (2003). Network analysis of knowledge construction in asynchronous learning networks. Journal of Asynchronous Learning Networks, 7(3), 1–23.

    Google Scholar 

  • Sawyer, R. K. (2006). Analyzing collaborative discourse. In K. R. Sawyer (Ed.), The Cambridge handbook of the learning science (pp. 187–204). New York: Cambridge University Press.

    Google Scholar 

  • Sawyer, K., Frey, R., & Brown, P. (in press). Dataset description: Peer-led team learning in general chemistry. In D. Suthers, K. Lund, C. Rose, N. Law, C. Teplovs, & G. Dyke (Eds.), Productive multivocality in the analysis of collaborative learning.

  • Scardamalia, M. (2002). Collective cognitive responsibility for the advancement of knowledge. In B. Jones (Ed.), Liberal education in a knowledge society (pp. 67–98). Chicago, IL: Open Court.

    Google Scholar 

  • Scardamalia, M. (2003). Knowledge building environments: Extending the limits of the possible in education and knowledge work. In A. DiStefano, K. E. Rudestam, & R. Silverman (Eds.), Encyclopedia of distributed learning (pp. 269–272). Thousand Oaks, CA: Sage Publications.

    Google Scholar 

  • Scardamalia, M., & Bereiter, C. (2003). Knowledge building. In J. W. Guthrie (Ed.), Encyclopedia of education (2nd ed., pp. 1370–1373). New York: Macmillan.

  • Scardamalia, M., & Bereiter, C. (2006). Knowledge building: Theory, pedagogy, and technology. In R. K. Sawyer (Ed.), Cambridge handbook of the learning sciences (pp. 97–118). New York: Cambridge University Press.

    Google Scholar 

  • Schvaneveldt, R. W. (1990). Pathfinder associative networks: Studies in knowledge organization. Norwood, NJ: Ablex Publishing Corporation.

    Google Scholar 

  • Sfard, A. (1998). On two metaphors for learning and the dangers of choosing just one. Educational Researcher, 27(2), 4–13.

    Google Scholar 

  • Strogatz, S. (2001). Exploring complex network. Nature, 410, 268–276.

    Article  Google Scholar 

  • van Aalst, J. (2009). Distinguishing knowledge sharing, knowledge construction, and knowledge creation discourse. The International Journal of Computer-Supported Collaborative Learning, 4(3), 259–287.

    Article  Google Scholar 

  • Watts, D. J. (2007). A twenty-first century science. Nature, 445, 489.

    Article  Google Scholar 

  • Wegerif, R., & Mercer, N. (1997). Using computer-based text analysis to integrate qualitative and quantitative methods in research on collaborative learning. Language and Education, 11, 271–286.

    Article  Google Scholar 

  • Zhang, J., Scardamalia, M., Reeve, R., & Messina, R. (2009). Designs for collective cognitive responsibility in knowledge-building communities. The Journal of the Learning Sciences, 18, 7–44.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by a Grant-in-Aid for Scientific Research (B) and (A) to Jun Oshima.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Oshima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oshima, J., Oshima, R. & Matsuzawa, Y. Knowledge Building Discourse Explorer: a social network analysis application for knowledge building discourse. Education Tech Research Dev 60, 903–921 (2012). https://doi.org/10.1007/s11423-012-9265-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11423-012-9265-2

Keywords