Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Finite locally primitive abelian Cayley graphs

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

Let Γ be a finite connected locally primitive Cayley graph of an abelian group. It is shown that one of the following holds: (1) Γ = K n , K n,n , K n,n nK2, K n × … × K n ; (2) Γ is the standard double cover of K n × … × K n ; (3) Γ is a normal or a bi-normal Cayley graph of an elementary abelian or a meta-abelian 2-group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alspach B, Conder M, Marušič D, et al. A classification of 2-arc-transitive circulants. J Algebraic Combin, 1996, 5: 83–86

    Article  MATH  MathSciNet  Google Scholar 

  2. Conway J H, Curtis R T, Norton S P, et al. Atlas of Finite Groups. London-New York: Oxford Univ Press, 1985

    MATH  Google Scholar 

  3. Dixon J D, Mortimer B. Permutation Groups. Berlin: Springer, 1991

    Google Scholar 

  4. Giudici M, Li C H, Praeger C E. Analysing finite locally s-arc transitive graphs. Trans Amer Math Soc, 2004, 356: 291–317

    Article  MATH  MathSciNet  Google Scholar 

  5. Godsil C D. On the full automorphism group of a graph. Combinatorial, 1981, 1: 243–256

    Article  MATH  MathSciNet  Google Scholar 

  6. Gorenstein D. Finite Simple Groups. New York: Plenum Press, 1982

    MATH  Google Scholar 

  7. Ivanov A A, Praeger C E. On finite affine 2-arc transitive graphs. Europ J Combin, 1993, 14: 421–444

    Article  MATH  MathSciNet  Google Scholar 

  8. Li C H, Praeger C E, Venkatesh A, et al. Finite locally-primitive graphs. Discrete Math, 2002, 246: 197–218

    Article  MATH  MathSciNet  Google Scholar 

  9. Li C H. The finite primitive permutation groups containing an abelian regular subgroup. Proc London Math Soc, 2003, 87: 725–748

    Article  MATH  MathSciNet  Google Scholar 

  10. Li C H. Finite edge-transitive Cayley graphs and rotary Cayley maps. Trans Amer Math Soc, 2006, 358: 4605–4635

    Article  MATH  MathSciNet  Google Scholar 

  11. Li C H, Pan J. Finite 2-arc transitive abelian Cayley graphs. Europ J Combin, 2008, 29: 148–158

    Article  MATH  MathSciNet  Google Scholar 

  12. Li C H, Pan J, Ma L. Locally primitive graphs of prime-power order. J Aust Math Soc, 2009, 86: 111–122

    Article  MATH  MathSciNet  Google Scholar 

  13. Marušič D, Potočnik P, Waller A O. Classifying 2-arc-transitive Cayley graphs of abelian groups with at most three involutions. Unpublished manuscript, 1998

  14. Potočnik P. On 2-arc-transitive Cayley graphs of abelian groups. Discrete Math, 2002, 244: 417–421

    Article  MATH  MathSciNet  Google Scholar 

  15. Praeger C E. Primitive permutation groups with a doubly transitive subconstituent. J Aust Math Soc Ser A, 1988, 45: 66–77

    Article  MATH  MathSciNet  Google Scholar 

  16. Praeger C E. An O’Nan-Scott theorem for finite quasiprimitive permutation groups and an application to 2-arc transitive graphs. J London Math Soc, 1992, 47: 227–239

    Article  MATH  MathSciNet  Google Scholar 

  17. Karpilovsky G. The Schur Multiplier. Oxford Science Publication. Oxford: Clarendon Press, 1987

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JiangMin Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C., Lou, B. & Pan, J. Finite locally primitive abelian Cayley graphs. Sci. China Math. 54, 845–854 (2011). https://doi.org/10.1007/s11425-010-4134-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-010-4134-0

Keywords

MSC(2000)