Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A generalized power iteration method for solving quadratic problem on the Stiefel manifold

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

In this paper, we first propose a novel generalized power iteration (GPI) method to solve the quadratic problem on the Stiefel manifold (QPSM) as \(min_{W^{T}W=I}\) Tr(W T AW − 2W T B) along with the theoretical analysis. Accordingly, its special case known as the orthogonal least square regression (OLSR) is under further investigation. Based on the aforementioned studies, we then majorly focus on solving the unbalanced orthogonal procrustes problem (UOPP). As a result, not only a general convergent algorithm is derived theoretically but the efficiency of the proposed approach is verified empirically as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Green B. The orthogonal approximation of an oblique simple structure in factor analysis. Psychometrika, 1952, 17: 429–440

    Article  MathSciNet  MATH  Google Scholar 

  2. Hurley J, Cattell R. The procrustes program: producing direct rotation to test a hypothesized factor structure. Behav Sci, 1962, 6: 258–262

    Google Scholar 

  3. Golub G H, van Loan C F. Matrix Computations. Baltimore: The Johns Hopkins University Press, 1989

    MATH  Google Scholar 

  4. Thomas V. Algorithms for the weighted orthogonal procrustes problem and other least squares problems. Dissertation for Ph.D. Degree. Umeå: Umeå University, 2006

    Google Scholar 

  5. Souza P, Leite C, Borges H, et al. Online algorithm based on support vectors for orthogonal regression. Pattern Recogn Lett, 2013, 34: 1394–1404

    Article  Google Scholar 

  6. Chu M, Trendafilov N. The orthogonally constrained regression revisted. J Comput Graph Stat, 2001, 10: 746–771

    Article  Google Scholar 

  7. Green B, Goers J. A problem with congruence. In: Proceedings of the Annual Meeting of the Psychometric Society, Monterey, 1979

    Google Scholar 

  8. Park H. A parallel algorithm for the unbalanced orthogonal procrustes problem. Parall Comput, 1991, 17: 913–923

    Article  MATH  Google Scholar 

  9. Bojanczyk A, Lutoborski A. The procrustes problem for orthogonal stiefel matrices. SIAM J Sci Comput, 1999, 21: 1291–1304

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhang Z Y, Du K Q. Successive projection method for solving the unbalanced procrustes problem. Sci China Ser A-Math, 2006, 49: 971–986

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhang Z Y, Huang Y S. A projection method for least square problems with quadratic equality constraint. SIAM J Matr Anal Appl, 2003, 25: 188–212

    Article  MathSciNet  MATH  Google Scholar 

  12. Xia Y, Han Y W. Partial lagrangian relaxation for the unbalanced orthogonal procrustes problem. Math Meth Oper Res, 2014, 79: 225–237

    Article  MathSciNet  MATH  Google Scholar 

  13. Journée M, Nesterov Y, Richtárik P, et al. Generalized power method for sparse principal component analysis. J Mach Learn Res, 2008, 11: 517–553

    MathSciNet  MATH  Google Scholar 

  14. Fiori S. Formulation and integration of learning differential equations on the Stiefel manifold. IEEE Trans Neural Netw, 2005, 16: 1697–1701

    Article  Google Scholar 

  15. Nie F P, Yuan J J, Huang H. Optimal mean robust principal component analysis. In: Proceedings of the 31st International Conference on Machine Learning, Beijing, 2014. 2755–2763

    Google Scholar 

  16. Kaneko T, Fiori S, Tanaka T. Empirical arithmetic averaging over the compact stiefel manifold. IEEE Trans Signal Process, 2013, 61: 883–894

    Article  MathSciNet  Google Scholar 

  17. Gander W, Golub G H, von Matt U. A constrained eigenvalue problem. In: Numerical Linear Algebra, Digital Signal Processing and Parallel Algorithms. Berlin: Springer, 1991. 677–686

    MATH  Google Scholar 

  18. Joachims T. Transductive learning via spectral graph partitioning. In: Proceedings of the 20th International Conference on Machine Learning, Washington, 2003. 51–60

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feiping Nie or Rui Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, F., Zhang, R. & Li, X. A generalized power iteration method for solving quadratic problem on the Stiefel manifold. Sci. China Inf. Sci. 60, 112101 (2017). https://doi.org/10.1007/s11432-016-9021-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-016-9021-9

Keywords