Abstract
This work presents changes of thermokarst lakes from Beilu River Basin on the Qinghai–Tibet Plateau over the past four decades (1969–2010) using aerial and satellite image interpretation. The results indicated that thermokarst lake activity had generally increased rapidly between 1969 and 2010. The number of thermokarst lakes had increased by approximately 534, and their coverage expanded by about 410 ha. The two main changes observed were an increase in the number of small lakes and the expansion of larger lakes. These changes are likely the result of persistent climate warming and a gradually increasing imbalance between precipitation and evapotranspiration (P–ET). However, some non-climatic factors, such as the lake-bottom substrate and local engineering activities, have also influenced the lake changes. If air temperature and P–ET continue to rise, the number of thermokarst lakes and the area they cover may continue to increase in the future.
摘要
基于青藏高原北麓河盆地1969年航片资料以及2003和2010年SPOT-5遥感资料的解译, 对该地区过去40年面积大于0.1 ha (1 ha = 10,000 m2)的热喀斯特湖面积和数量变化进行了研究. 结果表明, 该区域热喀斯特湖在过去40年中(1969 ~ 2010)年呈现显著的扩张趋势, 湖塘的总数量增加了534个, 总面积增加了410 ha. 此外, 通过对1969年所有湖塘的追踪统计, 自1969年至2010年大部分(84%)湖塘的面积呈增大的趋势, 只有8%的湖塘面积减小和6%的湖塘彻底消失. 这种湖塘数量和面积的增大趋势可能与持续升高的气温和逐渐增大的P-E值(降水与潜蒸散的差值)有关, 但是一些非气候因素(比如工程活动、湖底的透水性等)对湖塘的演化过程也具有重要的影响.
Similar content being viewed by others
References
Burn C (2002) Tundra lakes and permafrost, Richards Island, western Arctic coast, Canada. Can J Earth Sci 39:1281–1298
Grosse G, Schirrmeister L, Kunitsky VV et al (2005) The use of CORONA images in remote sensing of periglacial geomorphology: an illustration from the NE Siberian coast. Permafr Pregl 16:163–172
Plug LJ, Walls C, Scott BM (2008) Tundra lake changes from 1978 to 2001 on the Tuktoyaktuk Peninsula, western Canadian Arctic. Geophys Res Lett 35:L03502
Van Everdingen R (2005) Multi-language glossary of permafrost and related ground-ice terms. National Snow and Ice Data Center/World Data Center for Glaciology, Boulder. (http://nsidc.org/fgdc/glossary)
Yoshikawa K, Hinzman LD (2003) Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near Council, Alaska. Permafr Perigl 14:151–160
Riordan B, Verbyla D, McGuire AD (2006) Shrinking ponds in subarctic Alaska based on 1950–2002 remotely sensed images. J Geophys Res 111:G04002
Hinkel KM, Jones BM, Eisner WR et al (2007) Methods to assess natural and anthropogenic thaw lake drainage on the western Arctic coastal plain of northern Alaska. J Geophys Res 112:F02S16
Marsh P, Russell M, Pohl S et al (2009) Changes in thaw lake drainage in the western Canadian Arctic from 1950 to 2000. Hydrol Process 23:145–158
Arp CD, Jones BM, Urban E et al (2011) Hydrogeomorphic processes of thermokarst lakes with grounded-ice and floating-ice regimes on the Arctic coastal plain, Alaska. Hydrol Process 25:2422–2438
Smith LC, Sheng Y, MacDonald GM et al (2005) Disappearing arctic lakes. Science 308:1429
Zhou YW, Guo DX, Qiu GQ et al (2000) Permafrost in China. Science Press, Beijing, pp 403–404 (in Chinese)
Wu QB, Niu FJ (2013) Permafrost changes and engineering stability in Qinghai–Xizang Plateau. Chin Sci Bull 58:1079–1094
Niu FJ, Lin ZJ, Liu H et al (2011) Characteristics of thermokarst lakes and their influence on permafrost in Qinghai–Tibet Plateau. Geomorphology 132:222–233
Wang SL, Jin HJ, Li SX et al (2000) Permafrost degradation on the Qinghai–Tibet Plateau and its environmental impacts. Permafr Perigl 11:43–53
Zimov SA, Voropaev YV, Semiletov IP et al (1997) North Siberian lakes: a methane source fueled by Pleistocene carbon. Science 277:800–802
Phelps AR, Peterson KM, Jeffries MO (1998) Methane efflux from high-latitude lakes during spring ice melt. J Geophys Res 103:29029–29036
Nakagawa F, Yoshida N, Nojiri Y et al (2002) Production of methane from alasses in eastern Siberia: implications from its 14C and stable isotopic compositions. Global Biogeochem Cycles 16:1–15
Lin ZJ, Niu FJ, Xu ZY et al (2010) Thermal regime of a thermokarst lake and its influence on permafrost, Beiluhe Basin, Qinghai–Tibet Plateau. Permafr Perigl 21:315–324
Lin ZJ, Niu FJ, Liu H et al (2011) Hydrothermal processes of alpine tundra lakes, Beiluhe Basin, Qinghai–Tibet Plateau. Cold Reg Sci Technol 65:446–455
Lu JH, Cheng H, Niu FJ et al (2012) Zoning evaluation on occurrence degree of thermokarst lake along Qinghai–Tibet Railway. J Catastr 27:60–64 (in Chinese)
Liu YZ, Wu QB, Zhang JM et al (2000) Study on ground temperature field in permafrost regions of Qinghai–Tibet Plateau. Highway 2:4–8 (in Chinese)
Wu QB, Liu YZ, Tong CJ (2002) Interactions between the permafrost and engineering environments in the cold regions. J Eng Geol 8:281–287 (in Chinese)
Allen RG, Pereira LS, Raes D et al (1998) Crop evapotranspiration-guidelines for computing crop water requirements-FAO irrigation and drainage paper 56. FAO Rome 300:6541
Osterkamp TEL, Viereck L, Shur Y et al (2000) Observations of thermokarst and its impact on boreal forests in Alaska, USA. Arct Antarct Alp Res 32:303–315
Jorgenson MT, Shur YL, Pullman ER (2006) Abrupt increase in permafrost degradation in Arctic Alaska. Geophys Res Lett 33:L02503
Labrecque S, Lacelle D, Duguay CR et al (2009) Contemporary (1951–2001) evolution of lakes in the Old Crow Basin, Northern Yukon, Canada: remote sensing, numerical modeling, and stable isotope analysis. Arctic 62:225–238
Song C, Huang B, Ke L (2013) Modeling and analysis of lake water storage changes on the Tibetan Plateau using multi-mission satellite data. Remote Sens Environ 135:25–35
Zhang GQ, Yao TD, Xie HJ et al (2014) Lakes’ state and abundance across the Tibetan Plateau. Chin Sci Bull 59:3010–3021
Cote MM, Burn CR (2002) The oriented lakes of Tuktoyaktuk Peninsula, western Arctic Coast, Canada: a GIS-based analysis. Permafr Perigl 13:61–70
Hinkel KM, Frohn RC, Nelson FE et al (2005) Morphometric and spatial analysis of thaw lakes and drained thaw lake basins in the western Arctic Coastal Plain, Alaska. Permafr Perigl 16:327–341
Kokelj SV, Jorgenson MT (2013) Advances in thermokarst research. Permafr Perigl 24:108–119
Kokelj SV, Lantz TC, Kanigan J et al (2009) Origin and polycyclic behaviour of thaw slumps, Mackenzie Delta region. Permafr Perigl 20:173–184
Billings WD, Peterson KM (1980) Vegetational change and ice-wedge polygons through the thaw-lake cycle in Arctic Alaska. Arct Antarct Alp Res 12:413–432
Black RF, Barksdale WL (1949) Oriented lakes of northern Alaska. J Geol 57:105–118
Niu FJ, Luo J, Lin ZJ et al (2014) Morphological characteristics of thermokarst lakes along the Qinghai–Tibet engineering corridor. Arct Antarct Alp Res 46:965–976
Sun LP, Dong XF, Zhou Y et al (2008) The effect of embankment slope orientation along the Qinghai Tibet Routes and related radiation mechanism. J Glaciol Geocryol 30:610–616 (in Chinese)
Pohl S, Marsh P, Onclin C et al (2009) The summer hydrology of a small upland tundra thaw lake: implications to lake drainage. Hydrol Process 23:2536–2546
Wang GX, Yao JZ, Guo ZG et al (2004) Changes in permafrost ecosystem under the influences of human engineering activities and its enlightenment to railway construction. Chin Sci Bull 49:1741–1750
Acknowledgments
This work was supported by the National Basic Research Program of China (2012CB026101), the Western Project Program of the Chinese Academy of Sciences (KZCX2-XB3-19), and the National Sci-Tech Support Plan (2014BAG05B01). The authors are indebted to Brendan O’Neill, Department of Geography and Environmental Studies, Carleton University, for English revision.
Author information
Authors and Affiliations
Corresponding author
About this article
Cite this article
Luo, J., Niu, F., Lin, Z. et al. Thermokarst lake changes between 1969 and 2010 in the Beilu River Basin, Qinghai–Tibet Plateau, China. Sci. Bull. 60, 556–564 (2015). https://doi.org/10.1007/s11434-015-0730-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11434-015-0730-2