Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thermokarst lake changes between 1969 and 2010 in the Beilu River Basin, Qinghai–Tibet Plateau, China

1969 ~ 2010年青藏高原北麓河盆地热喀斯特湖塘演化过程研究

  • Article
  • Earth Sciences
  • Published:
Science Bulletin

Abstract

This work presents changes of thermokarst lakes from Beilu River Basin on the Qinghai–Tibet Plateau over the past four decades (1969–2010) using aerial and satellite image interpretation. The results indicated that thermokarst lake activity had generally increased rapidly between 1969 and 2010. The number of thermokarst lakes had increased by approximately 534, and their coverage expanded by about 410 ha. The two main changes observed were an increase in the number of small lakes and the expansion of larger lakes. These changes are likely the result of persistent climate warming and a gradually increasing imbalance between precipitation and evapotranspiration (P–ET). However, some non-climatic factors, such as the lake-bottom substrate and local engineering activities, have also influenced the lake changes. If air temperature and P–ET continue to rise, the number of thermokarst lakes and the area they cover may continue to increase in the future.

摘要

基于青藏高原北麓河盆地1969年航片资料以及2003和2010年SPOT-5遥感资料的解译, 对该地区过去40年面积大于0.1 ha (1 ha = 10,000 m2)的热喀斯特湖面积和数量变化进行了研究. 结果表明, 该区域热喀斯特湖在过去40年中(1969 ~ 2010)年呈现显著的扩张趋势, 湖塘的总数量增加了534个, 总面积增加了410 ha. 此外, 通过对1969年所有湖塘的追踪统计, 自1969年至2010年大部分(84%)湖塘的面积呈增大的趋势, 只有8%的湖塘面积减小和6%的湖塘彻底消失. 这种湖塘数量和面积的增大趋势可能与持续升高的气温和逐渐增大的P-E值(降水与潜蒸散的差值)有关, 但是一些非气候因素(比如工程活动、湖底的透水性等)对湖塘的演化过程也具有重要的影响.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Burn C (2002) Tundra lakes and permafrost, Richards Island, western Arctic coast, Canada. Can J Earth Sci 39:1281–1298

    Article  Google Scholar 

  2. Grosse G, Schirrmeister L, Kunitsky VV et al (2005) The use of CORONA images in remote sensing of periglacial geomorphology: an illustration from the NE Siberian coast. Permafr Pregl 16:163–172

    Article  Google Scholar 

  3. Plug LJ, Walls C, Scott BM (2008) Tundra lake changes from 1978 to 2001 on the Tuktoyaktuk Peninsula, western Canadian Arctic. Geophys Res Lett 35:L03502

    Google Scholar 

  4. Van Everdingen R (2005) Multi-language glossary of permafrost and related ground-ice terms. National Snow and Ice Data Center/World Data Center for Glaciology, Boulder. (http://nsidc.org/fgdc/glossary)

  5. Yoshikawa K, Hinzman LD (2003) Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near Council, Alaska. Permafr Perigl 14:151–160

    Article  Google Scholar 

  6. Riordan B, Verbyla D, McGuire AD (2006) Shrinking ponds in subarctic Alaska based on 1950–2002 remotely sensed images. J Geophys Res 111:G04002

    Article  Google Scholar 

  7. Hinkel KM, Jones BM, Eisner WR et al (2007) Methods to assess natural and anthropogenic thaw lake drainage on the western Arctic coastal plain of northern Alaska. J Geophys Res 112:F02S16

    Article  Google Scholar 

  8. Marsh P, Russell M, Pohl S et al (2009) Changes in thaw lake drainage in the western Canadian Arctic from 1950 to 2000. Hydrol Process 23:145–158

    Article  Google Scholar 

  9. Arp CD, Jones BM, Urban E et al (2011) Hydrogeomorphic processes of thermokarst lakes with grounded-ice and floating-ice regimes on the Arctic coastal plain, Alaska. Hydrol Process 25:2422–2438

    Article  Google Scholar 

  10. Smith LC, Sheng Y, MacDonald GM et al (2005) Disappearing arctic lakes. Science 308:1429

    Article  Google Scholar 

  11. Zhou YW, Guo DX, Qiu GQ et al (2000) Permafrost in China. Science Press, Beijing, pp 403–404 (in Chinese)

    Google Scholar 

  12. Wu QB, Niu FJ (2013) Permafrost changes and engineering stability in Qinghai–Xizang Plateau. Chin Sci Bull 58:1079–1094

    Article  Google Scholar 

  13. Niu FJ, Lin ZJ, Liu H et al (2011) Characteristics of thermokarst lakes and their influence on permafrost in Qinghai–Tibet Plateau. Geomorphology 132:222–233

    Article  Google Scholar 

  14. Wang SL, Jin HJ, Li SX et al (2000) Permafrost degradation on the Qinghai–Tibet Plateau and its environmental impacts. Permafr Perigl 11:43–53

    Article  Google Scholar 

  15. Zimov SA, Voropaev YV, Semiletov IP et al (1997) North Siberian lakes: a methane source fueled by Pleistocene carbon. Science 277:800–802

    Article  Google Scholar 

  16. Phelps AR, Peterson KM, Jeffries MO (1998) Methane efflux from high-latitude lakes during spring ice melt. J Geophys Res 103:29029–29036

    Article  Google Scholar 

  17. Nakagawa F, Yoshida N, Nojiri Y et al (2002) Production of methane from alasses in eastern Siberia: implications from its 14C and stable isotopic compositions. Global Biogeochem Cycles 16:1–15

    Article  Google Scholar 

  18. Lin ZJ, Niu FJ, Xu ZY et al (2010) Thermal regime of a thermokarst lake and its influence on permafrost, Beiluhe Basin, Qinghai–Tibet Plateau. Permafr Perigl 21:315–324

    Article  Google Scholar 

  19. Lin ZJ, Niu FJ, Liu H et al (2011) Hydrothermal processes of alpine tundra lakes, Beiluhe Basin, Qinghai–Tibet Plateau. Cold Reg Sci Technol 65:446–455

    Article  Google Scholar 

  20. Lu JH, Cheng H, Niu FJ et al (2012) Zoning evaluation on occurrence degree of thermokarst lake along Qinghai–Tibet Railway. J Catastr 27:60–64 (in Chinese)

    Google Scholar 

  21. Liu YZ, Wu QB, Zhang JM et al (2000) Study on ground temperature field in permafrost regions of Qinghai–Tibet Plateau. Highway 2:4–8 (in Chinese)

    Google Scholar 

  22. Wu QB, Liu YZ, Tong CJ (2002) Interactions between the permafrost and engineering environments in the cold regions. J Eng Geol 8:281–287 (in Chinese)

    Google Scholar 

  23. Allen RG, Pereira LS, Raes D et al (1998) Crop evapotranspiration-guidelines for computing crop water requirements-FAO irrigation and drainage paper 56. FAO Rome 300:6541

    Google Scholar 

  24. Osterkamp TEL, Viereck L, Shur Y et al (2000) Observations of thermokarst and its impact on boreal forests in Alaska, USA. Arct Antarct Alp Res 32:303–315

    Article  Google Scholar 

  25. Jorgenson MT, Shur YL, Pullman ER (2006) Abrupt increase in permafrost degradation in Arctic Alaska. Geophys Res Lett 33:L02503

    Google Scholar 

  26. Labrecque S, Lacelle D, Duguay CR et al (2009) Contemporary (1951–2001) evolution of lakes in the Old Crow Basin, Northern Yukon, Canada: remote sensing, numerical modeling, and stable isotope analysis. Arctic 62:225–238

    Article  Google Scholar 

  27. Song C, Huang B, Ke L (2013) Modeling and analysis of lake water storage changes on the Tibetan Plateau using multi-mission satellite data. Remote Sens Environ 135:25–35

    Article  Google Scholar 

  28. Zhang GQ, Yao TD, Xie HJ et al (2014) Lakes’ state and abundance across the Tibetan Plateau. Chin Sci Bull 59:3010–3021

    Article  Google Scholar 

  29. Cote MM, Burn CR (2002) The oriented lakes of Tuktoyaktuk Peninsula, western Arctic Coast, Canada: a GIS-based analysis. Permafr Perigl 13:61–70

    Article  Google Scholar 

  30. Hinkel KM, Frohn RC, Nelson FE et al (2005) Morphometric and spatial analysis of thaw lakes and drained thaw lake basins in the western Arctic Coastal Plain, Alaska. Permafr Perigl 16:327–341

    Article  Google Scholar 

  31. Kokelj SV, Jorgenson MT (2013) Advances in thermokarst research. Permafr Perigl 24:108–119

    Article  Google Scholar 

  32. Kokelj SV, Lantz TC, Kanigan J et al (2009) Origin and polycyclic behaviour of thaw slumps, Mackenzie Delta region. Permafr Perigl 20:173–184

    Article  Google Scholar 

  33. Billings WD, Peterson KM (1980) Vegetational change and ice-wedge polygons through the thaw-lake cycle in Arctic Alaska. Arct Antarct Alp Res 12:413–432

    Article  Google Scholar 

  34. Black RF, Barksdale WL (1949) Oriented lakes of northern Alaska. J Geol 57:105–118

    Article  Google Scholar 

  35. Niu FJ, Luo J, Lin ZJ et al (2014) Morphological characteristics of thermokarst lakes along the Qinghai–Tibet engineering corridor. Arct Antarct Alp Res 46:965–976

    Article  Google Scholar 

  36. Sun LP, Dong XF, Zhou Y et al (2008) The effect of embankment slope orientation along the Qinghai Tibet Routes and related radiation mechanism. J Glaciol Geocryol 30:610–616 (in Chinese)

    Google Scholar 

  37. Pohl S, Marsh P, Onclin C et al (2009) The summer hydrology of a small upland tundra thaw lake: implications to lake drainage. Hydrol Process 23:2536–2546

    Article  Google Scholar 

  38. Wang GX, Yao JZ, Guo ZG et al (2004) Changes in permafrost ecosystem under the influences of human engineering activities and its enlightenment to railway construction. Chin Sci Bull 49:1741–1750

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (2012CB026101), the Western Project Program of the Chinese Academy of Sciences (KZCX2-XB3-19), and the National Sci-Tech Support Plan (2014BAG05B01). The authors are indebted to Brendan O’Neill, Department of Geography and Environmental Studies, Carleton University, for English revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fujun Niu.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, J., Niu, F., Lin, Z. et al. Thermokarst lake changes between 1969 and 2010 in the Beilu River Basin, Qinghai–Tibet Plateau, China. Sci. Bull. 60, 556–564 (2015). https://doi.org/10.1007/s11434-015-0730-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-015-0730-2

Keywords