Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

New feature extraction approach for epileptic EEG signal detection using time-frequency distributions

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

This paper describes a new method to identify seizures in electroencephalogram (EEG) signals using feature extraction in time–frequency distributions (TFDs). Particularly, the method extracts features from the Smoothed Pseudo Wigner-Ville distribution using tracks estimated from the McAulay-Quatieri sinusoidal model. The proposed features are the length, frequency, and energy of the principal track. We evaluate the proposed scheme using several datasets and we compute sensitivity, specificity, F-score, receiver operating characteristics (ROC) curve, and percentile bootstrap confidence to conclude that the proposed scheme generalizes well and is a suitable approach for automatic seizure detection at a moderate cost, also opening the possibility of formulating new criteria to detect, classify or analyze abnormal EEGs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abásolo D, Escudero J, Hornero R, Gómez C, Espino P (2008) Approximate entropy and auto mutual information analysis of the electroencephalogram in Alzheimer’s disease patients. Med Biol Eng Comput 46:1019–1028

    Article  Google Scholar 

  2. Acir N, Oztura I, Kuntalp M, Baklan B, Guzelis C (2005) Automatic detection of epileptiform events in EEG by three-stage procedure based on artificial neural networks. IEEE Trans Biomed Eng 52:30–40

    Article  Google Scholar 

  3. Afonso VX, Tompkins WJ (1995) Detecting ventricular fibrillation. IEEE Eng Med Biol 14:152–159

    Article  Google Scholar 

  4. Akay M (1996) Detection and estimation methods for biomedical signals. Academic Press, New Jersey

    Google Scholar 

  5. Auger F, Aldrin P, Goncalves P, Lemoine O (1996) Time–frequency toolbox for Matlab, user’s guide and reference guide. CNRS (France) and Rice University (USA), Paris

    Google Scholar 

  6. Barlow JS (1985) Methods of analysis of nonstationary EEGs, with emphasis on segmentation techniques: a comparative review. J Clin Neurophysiol 2:267–304

    Article  Google Scholar 

  7. Blume WT, Young GB, Lemieux JF (1984) EEG morphology of partial epileptic seizures. Electroencephalogr Clin Neurophysiol 4:295–302

    Google Scholar 

  8. Boashash B (2003) Time frequency signal analysis and processing. A comprehensive reference. Elsevier, Oxford

    Google Scholar 

  9. Boashash B, Mesbah M (2001) A time–frequency approach for newborn seizure detection. IEEE Eng Med Biol Mag 20(5):54–64

    Article  Google Scholar 

  10. Boashash B, Mesbah M (2002) Time–frequency methodology for newborn electroencephalographic seizure detection. In: Papandreou-Suppappola A (ed) Applications in time–frequency signal processing. CRC Press, Boca Raton, Florida

  11. Boashash B, Carson H, Mesbah M (2000) Detection of seizures in newborns using time–frequency of EEG signals. Proceedings of Tenth IEEE workshop on statistical signal and array processing, pp 564–568

  12. Cardoso JF (1998) Blind signal separation: statistical principles. Proc IEEE 86:2009–2025

    Article  Google Scholar 

  13. Carmona RA, Hwang WL, Torrésani B (1999) Multiridge detection and time–frequency reconstruction. IEEE Trans Signal Process 47:480–492

    Article  Google Scholar 

  14. Cohen L (1989) Time–frequency distributions—a review. Proc IEE 77:941–981

    Article  Google Scholar 

  15. Cohen L (1995) Time–frequency analysis. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  16. Colder BW, Frysinger RC, Wilson CL, Harper RM, et al (1996) Decreased neuronal burst discharge near site of seizure onset in epileptic human temporal lobes. Epilepsia 37:113–121

    Article  Google Scholar 

  17. Durka PJ (1996) Time–frequency analysis of EEG. Thesis Institute of Experimental Physics, Warsaw University

  18. Freeman WJ (1963) The electrical activity of a primary sensory cortex: analysis of EEG waves. Int Rev Neurobiol 5:53–119

    Article  Google Scholar 

  19. Gonzalez B, Sanei S, Chambers JA (2003) Support vector machines for seizure detection. Proceedings of the IEEE ISSPIT, pp 126–129

  20. Gotman J (1982) Automatic recognition of epileptic seizures in the EEG. Electroencephalogr Clin Neurophysiol 54:530–540

    Article  Google Scholar 

  21. Gotman J (1983) Measurement of small time differences between EEG channels: methods and application to epileptic seizure propagation. Electroencephalogr Clin Neurophysiol 56:501–514

    Article  Google Scholar 

  22. Grewal S, Gotman J (2005) An automatic warning system for epileptic seizures recorded on intracerebral EEGs. Clin Neurophysiol 116:2460–2472

    Article  Google Scholar 

  23. Guerrero C, Malanda A, Iriarte J (2005) Time–frequency EEG analysis in epilepsy: what is more suitable? Proceedings of the IEEE ISSPIT, pp 202–207

  24. Guerrero-Mosquera C, Navia Vazquez A (2009) Automatic removal of ocular artifacts from EEG data using adaptive filtering and independent component analysis. Proceedings of the 17th European signal processing conference (EUSIPCO), pp 2317–2321

  25. Harrell FE (2001) Regression modeling strategies. Springer, New York

    MATH  Google Scholar 

  26. Hassanpour H, Mesbah M, Boashash B (2004) Time–frequency feature extraction of newborn EEG seizure using SVD-based techniques. Proceedings of EURASIP. J Appl Signal Process 16:2544–2554

    Article  Google Scholar 

  27. He P, Wilson G, Russel C (2004) Removal of ocular artifacts from electro-encephalogram by adaptive filtering. Med Biol Eng Comput 42:407–412

    Article  Google Scholar 

  28. Hinrikus H, Suhhova A, Bachmann M, et al (2009) Electroencephalographic spectral asymmetry index for detection of depression. Med Biol Eng Comput 47:1291–1299

    Article  Google Scholar 

  29. Hlawatsch F, Boudreaux-Bartels GF (1992) Linear and quadratic time–frequency signal representation. IEEE SP Mag 9:21–67

    Article  Google Scholar 

  30. Hoeve M, Zwaag BJ, Slump K, Jones R (2003) Detecting epileptic seizure activity in the EEG by independent component analysis. Proceedings of the ProRISC workshop on circuits systems and signal processing, pp 373–378

  31. Iriarte J, Urrestarazu E, Valencia M, Alegre M, Malanda A, Viteri C, Artieda J (2003) Independent component analysis as a tool to eliminate artifacts in EEG: a quantitative study. J Clin Neurophysiol 20:249–257

    Article  Google Scholar 

  32. Joyce CA, Gorodnitsky IF, Kutas M (2004) Automatic removal of eye movement and blink artifacts from EEG data using blind component separation. Psychophysiology 41:1–13

    Article  Google Scholar 

  33. Kay SM, Marple SL (1981) Spectrum analysis: a modern perspective. Proc IEEE 69:1380–1419

    Article  Google Scholar 

  34. Lehnertz K, Elger CE (1995) Spatio-temporal dynamics of the primary epileptogenic area in temporal lobe epilepsy characterized by neuronal complexity loss. Electroencephalogr Clin Neurophysiol 95:108–117

    Article  Google Scholar 

  35. Le Van P, Urrestarazu E, Gotman J (2006) A system for automatic removal in ictal scalp EEG based on independent component analysis and Bayesian classification. Clin Neurophysiol 117:912–927

    Article  Google Scholar 

  36. Li H, Sun Y (2005) The study and test of ICA algorithms. Proc IEEE Wirel Commun Netw Mob Comput 1:602–605

    Article  MathSciNet  Google Scholar 

  37. Lin Z-Y, Chen JDZ (1996) Advances in time–frequency analysis of biomedical signals. Crit Rev Biomed Eng 24:1–70

    MATH  Google Scholar 

  38. Makeig S, Bell AJ, Jung TP, Sejnowski T (1996) Independent component analysis of electroencephalogram data. Adv Neural Inf Process Syst 145–151

  39. McAulay RJ, Quatieri TF (1986) Speech analysis/synthesis based on a sinusoidal representation. IEEE Trans Acoust Speech Signal Process 34:744–754

    Article  Google Scholar 

  40. Mohseni HR, Maghsoudi A, Shamsollahi MB (2006) Seizure detection in EEG signals: a comparision of different approaches. Proceedings of the 28th IEEE annual EMBS international conference, pp 6724–6727

  41. Muthuswamy J, Thakor NV (1998) Spectral analysis methods for neurological signals. J Clin Neurophysiol 83:1–14

    Google Scholar 

  42. Osorio I, Frei MG, Wilkinson SB (1998) Real-time automated detection and quantitative analysis of seizures and short-term prediction of clinical onset. Epilepsy 39:615–627

    Article  Google Scholar 

  43. Rankine R, Mesbah M, Boashash B (2007) IF estimation for multicomponent signals using image processing techniques in the time–frequency domain. Signal Process 87:1234–1250

    Article  MATH  Google Scholar 

  44. Sclabassi RJ, Sun M, Krieger DN, Scher MS (1990) Time–frequency analysis of the EEG signal. Proceedings of the international conference on signal processing, pp 935–938

  45. Senhadji L, Wendling F (2002) Epileptic transient detection: wavelets and time–frequency approaches. Neurophysiol Clin 32:175–192

    Article  Google Scholar 

  46. Swarnkar V, Abeyratne UR, Hukins C, Duce B (2009) A state transition-based method for quantifying EEG sleep fragmentation. Med Biol Eng Comput 47:1053–1061

    Article  Google Scholar 

  47. Tognola G, Ravazzani P, Minicucci F, Locatelli T, et al (1996) Analysis of temporal non-stationarities in EEG signals by means of parametric modelling. Technol Health Care 4:169–185

    Google Scholar 

  48. Tseng SY, Chen RC, Chong FC, Kuo TS (1995) Evaluation of parametric methods in EEG signal analysis. Med Eng Phys 17:71–78

    Article  Google Scholar 

  49. Tzallas AT, Tsipouras MG, Fotiadis DI (2007) The use of time–frequency distributions for epileptic seizure detection in EEG recordings. Proceedings of the IEEE EMBS, pp 3–6

  50. Williams WJ, Zavery HP, Sackellares JC (1995) Time–frequency analysis in electrophysiology signals in epilepsy. IEEE Eng Med Biol 14:133–143

    Article  Google Scholar 

Download references

Acknowledgments

This work has been funded by the Spain CICYT grant TEC2008-02473.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Guerrero-Mosquera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guerrero-Mosquera, C., Malanda Trigueros, A., Iriarte Franco, J. et al. New feature extraction approach for epileptic EEG signal detection using time-frequency distributions. Med Biol Eng Comput 48, 321–330 (2010). https://doi.org/10.1007/s11517-010-0590-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-010-0590-5

Keywords