Abstract
Using optimal control theory as the basic theoretical tool, we investigate the efficacy of different antibiotic treatment protocols in the most exacting of circumstances, described as follows. Viewing a continuous culture device as a proxy for a much more complex host organism, we first inoculate the device with a single bacterial species and deem this the ‘commensal’ bacterium of our host. We then force the commensal to compete for a single carbon source with a rapidly evolving and fitter ‘pathogenic bacterium’, the latter so-named because we wish to use a bacteriostatic antibiotic to drive the pathogen toward low population densities. Constructing a mathematical model to mimic the biology, we do so in such a way that the commensal would be eventually excluded by the pathogen if no antibiotic treatment were given to the host or if the antibiotic were over-deployed. Indeed, in our model, all fixed-dose antibiotic treatment regimens will lead to the eventual loss of the commensal from the host proxy. Despite the obvious gravity of the situation for the commensal bacterium, we show by example that it is possible to design drug deployment protocols that support the commensal and reduce the pathogen load. This may be achieved by appropriately fluctuating the concentration of drug in the environment; a result that is to be anticipated from the theory optimal control where bang-bang solutions may be interpreted as intermittent periods of either maximal and minimal drug deployment. While such ‘antibiotic pulsing’ is near-optimal for a wide range of treatment objectives, we also use this model to evaluate the efficacy of different antibiotic usage strategies to show that dynamically changing antimicrobial therapies may be effective in clearing a bacterial infection even when every ‘static monotherapy’ fails.
Similar content being viewed by others
References
Alon, U. (2006). An introduction to systems biology. London: Chapman and Hall.
Andersson, D. I., & Hughes, D. (2010). Antibiotic resistance and its cost: is it possible to reverse resistance? Nat. Rev., Microbiol., 8(4), 260–271.
Beers, M. H., & Fletcher, A. J. (2004). The Merck manual of medical information. Rahway: Merck. (2nd home ed., online version ed.).
Bergeron, M., & Ouellette, M. (1998). Preventing antibiotic resistance through rapid genotypic identification of bacteria and of their antibiotic resistance genes in the clinical microbiology laboratory. Clin. Microbiol., 36(8), 2169–2172.
Boucher, H. W., Talbot, G. H., Bradley, J. S., Edwards, J. E., Gilbert, D., Rice, L. B., Scheld, M., Spellberg, B., & Bartlett, J. (2009). Bad bugs, no drugs: no eskape! an update from the infectious diseases society of America. Clin. Infect. Dis., 48(1), 1–12.
Chan, C. X., Beiko, R. G., & Ragan, M. A. (2011). Lateral transfer of genes and gene fragments in staphylococcus extends beyond mobile elements. J. Bacteriol., 193(15), 3964–3977.
Chastre, J., Wolff, M., Fagon, J.-Y., Chevret, S., Thomas, F., Wermert, D., Clementi, E., Gonzalez, J., Jusserand, D., Asfar, P., Perrin, D., Fieux, F., & Aubas, S. (PneumA Trial Group) (2003). Comparison of 8 vs 15 days of antibiotic therapy for ventilator-associated pneumonia in adults: a randomized trial. JAMA, 290(19), 2588–2598.
Dancer, S. J. (2004). How antibiotics can make us sick: the less obvious adverse effects of antimicrobial chemotherapy. Lancet Infect. Dis., 4(10), 611–619.
Dethlefsen, L., & Relman, D. A. (2011). Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl. Acad. Sci. USA, 108(Suppl), 4554–4561. doi:10.1073/pnas.1000087107.
Eagle, H., Fleischman, R., & Levy, M. (1953). “Continuous” vs. “discontinuous” therapy with penicillin; the effect of the interval between injections on therapeutic efficacy. N. Engl. J. Med., 248(12), 481–488.
Ehrlich, P. (1913). Address in pathology on chemotherapeutics: Scientific principles, methods, and results. Lancet, 182, 445–451. doi:10.1016/S0140-6736(01)38705-6.
el Moussaoui, R., de Borgie, C. A. J. M., van den Broek, P., Hustinx, W. N., Bresser, P., van den Berk, G. E. L., Poley, J.-W., van den Berg, B., Krouwels, F. H., Bonten, M. J. M., Weenink, C., Bossuyt, P. M. M., Speelman, P., Opmeer, B. C., & Prins, J. M. (2006). Effectiveness of discontinuing antibiotic treatment after three days versus eight days in mild to moderate-severe community acquired pneumonia: randomised, double blind study. BMJ, 332(7554), 1355.
Fleming, A. (1964). Penicillin. In Nobel lectures, physiology or medicine 1942–1962. Amsterdam: Elsevier.
Gagneux, S., Long, C. D., Small, P. M., Van, T., Schoolnik, G. K., & Bohannan, B. J. M. (2006). The competitive cost of antibiotic resistance in mycobacterium tuberculosis. Science, 312(5782), 1944–1946.
Hegreness, M., Shoresh, N., Damian, D., Hartl, D., & Kishony, R. (2008). Accelerated evolution of resistance in multidrug environments. Proc. Natl. Acad. Sci. USA, 105(37), 13977–13981.
Kierzenka, J., & Shampine, L. F. (2001). A BVP solver based on residual control and the Matlab PSE. ACM Trans. Math. Softw., 27(3), 299–316.
Kirby, W. M., & Craig, W. A. (1981). Theory and applications of pulse dosing: a summary of the symposium. Rev. Infect. Dis., 3(1), 1–3.
Kunin, C. M. (1981). Dosage schedules of antimicrobial agents: a historical review. Rev. Infect. Dis., 3(1), 4–11.
Lenski, R. E. (1998). Bacterial evolution and the cost of antibiotic resistance. Int. Food Microbiol., 1(4), 265–270.
McFarland, L., Elmer, G., & Surawicz, C. (2002). Breaking the cycle: treatment strategies for 163 cases of recurrent clostridium difficile disease. Am. J. Gastroenterol., 97(7), 1769–1775.
Michael, M., Hodson, E. M., Craig, J. C., Martin, S., & Moyer, V. A. (2003). Short versus standard duration oral antibiotic therapy for acute urinary tract infection in children. Cochrane Database Syst. Rev., 1, CD003966.
Michel, J.-B., Yeh, P. J., Chait, R., Moellering, R. C. Jr, & Kishony, R. (2008). Drug interactions modulate the potential for evolution of resistance. Proc. Natl. Acad. Sci. USA, 105(39), 14918–14923.
Opmeer, B. C., El Moussaoui, R., Bossuyt, P. M. M., Speelman, P., Prins, J. M., & de Borgie, C. A. J. M. (2007). Costs associated with shorter duration of antibiotic therapy in hospitalized patients with mild-to-moderate severe community-acquired pneumonia. J. Antimicrob. Chemother., 60(5), 1131–1136.
Pépin, J., Saheb, N., Coulombe, M.-A., Alary, M.-E., Corriveau, M.-P., Authier, S., Leblanc, M., Rivard, G., Bettez, M., Primeau, V., Nguyen, M., Jacob, C.-E., & Lanthier, L. (2005). Emergence of fluoroquinolones as the predominant risk factor for clostridium difficile-associated diarrhea: a cohort study during an epidemic in quebec. Clin. Infect. Dis., 41(9), 1254–1260.
Poehlsgaard, J., & Douthwaite, S. (2005). The bacterial ribosome as a target for antibiotics. Nat. Rev., Microbiol., 3(11), 870–881.
Rello, J., & Diaz, E. (2001). Optimal use of antibiotics for intubation-associated pneumonia. Intensive Care Med., 27(2), 337–339.
Roede, B. M., Bresser, P., El Moussaoui, R., Krouwels, F. H., van den Berg, B. T. J., Hooghiemstra, P. M., de Borgie, C. A. J. M., Speelman, P., Bossuyt, P. M. M., & Prins, J. M. (2007). Three vs 10 days of amoxycillin-clavulanic acid for type 1 acute exacerbations of chronic obstructive pulmonary disease: a randomised, double-blind study. Clin. Microbiol. Infect., 13(3), 284–290.
Sandegren, L., & Andersson, D. I. (2009). Bacterial gene amplification: implications for the evolution of antibiotic resistance. Nat. Rev., Microbiol., 7(8), 578–588.
Segreti, J., House, H. R., & Siegel, R. E. (2005). Principles of antibiotic treatment of community-acquired pneumonia in the outpatient setting. Am. J. Med., 118(Suppl 7A), 21S–28S.
Smith, H., & Waltman, P. (1995). The theory of the chemostat. Cambridge: Cambridge University Press.
Stecher, B., & Hardt, W.-D. (2008). The role of microbiota in infectious disease. Trends Microbiol., 16(3), 107–114.
Sullivan, A., Edlund, C., & Nord, C. (2001). Effect of antimicrobial agents on the ecological balance of human microflora. Lancet Infect. Dis., 1(2), 101–114.
Surawicz, C. M. (2004). Treatment of recurrent clostridium difficile-associated disease. Nat. Clin. Pract. Gastroenterol. Hepatol., 1(1), 32–38.
Sussmann, H. T. (1972). The “bang-bang” problem for certain control systems in GL(n,r). SIAM J. Control, 10, 470. doi:10.1137/0310036.
Torella, J. P., Chait, R., & Kishony, R. (2010). Optimal drug synergy in antimicrobial treatments. PLoS Comput. Biol., 6(6), e1000796.
Trinh, V., Langelier, M.-F., Archambault, J., & Coulombe, B. (2006). Structural perspective on mutations affecting the function of multisubunit rna polymerases. Microbiol. Mol. Biol. Rev., 70(1), 12–36.
Wolkowicz, G. S. K., & Lu, Z. (1992). Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates. SIAM J. Appl. Math., 52(1), 222–233.
Xu, M., Zhou, Y. N., Goldstein, B. P., & Jin, D. J. (2005). Cross-resistance of Escherichia coli RNA polymerases conferring rifampin resistance to different antibiotics. J. Bacteriol., 187(8), 2783–2792.
Yeh, P. J., Hegreness, M. J., Aiden, A. P., & Kishony, R. (2009). Drug interactions and the evolution of antibiotic resistance. Nat. Rev., Microbiol., 7(6), 460–466.
Zimmermann, G. R., Lehár, J., & Keith, C. T. (2007). Multi-target therapeutics: when the whole is greater than the sum of the parts. Drug Discov. Today, 12(1–2), 34–42.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Peña-Miller, R., Lähnemann, D., Schulenburg, H. et al. Selecting Against Antibiotic-Resistant Pathogens: Optimal Treatments in the Presence of Commensal Bacteria. Bull Math Biol 74, 908–934 (2012). https://doi.org/10.1007/s11538-011-9698-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11538-011-9698-5