Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

An ant colony optimization approach to flexible protein–ligand docking

  • Published:
Swarm Intelligence Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The prediction of the complex structure of a small ligand with a protein, the so-called protein–ligand docking problem, is a central part of the rational drug design process. For this purpose, we introduce the docking algorithm PLANTS (Protein–Ligand ANT System), which is based on ant colony optimization, one of the most successful swarm intelligence techniques. We study the effectiveness of PLANTS for several parameter settings and present a direct comparison of PLANTS’s performance to a state-of-the-art program called GOLD, which is based on a genetic algorithm and frequently used in the pharmaceutical industry for this task. Last but not least, we also show that PLANTS can make effective use of protein flexibility giving example results on cross-docking and virtual screening experiments for protein kinase A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Abagyan, R., Totrov, M., & Kuznetsov, D. (1994). ICM—A new method for protein modeling and design: applications to docking and structure prediction from the distorted native conformation. Journal of Computational Chemistry, 15(5), 488–506.

    Article  Google Scholar 

  • Baxter, C. A., Murray, C. W., Clark, D. E., Westhead, D. R., & Eldridge, M. D. (1997). Flexible docking using tabu search and an empirical estimate of binding affinity. Proteins, 33, 367–382.

    Article  Google Scholar 

  • Berman, H., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T., Weissig, H., et al. (2000). The protein data bank. Nucleic Acids Research, 28, 235–242.

    Article  Google Scholar 

  • Clark, M., Cramer III, R. D., & van Opdenhosch, N. (1989). Validation of the general purpose tripos 5.2 force field. Journal of Computational Chemistry, 10, 982–1012.

    Article  Google Scholar 

  • Dorigo, M., & Stützle, T. (2004). Ant colony optimization. Cambridge: MIT Press.

    MATH  Google Scholar 

  • Fischer, E. (1894). Einfluss der Configuration auf die Wirkung der Enzyme. Chemische Berichte, 27, 2985–2993.

    Google Scholar 

  • Gehlhaar, D. K., Verkhivker, G. M., Rejto, P. A., Sherman, C. J., Fogel, D. B., Fogel, L. J., & Freer, S. T. (1995). Molecular recognition of the inhibitor AG-1243 by HIV-1 protease: conformationally flexible docking by evolutionary programming. Chemistry and Biology, 2, 317–324.

    Article  Google Scholar 

  • Halgren, T. A. (1996). Merck molecular force field, I: basis, form, scope, parameterization, and performance of MMFF94. Journal of Computational Chemistry, 17(5–6), 490–519.

    Article  Google Scholar 

  • Irwin, J. J., & Shoichet, B. K. (2005). ZINC—A free database of commercially available compounds for virtual screening. Journal of Chemical Information and Modeling, 45(1), 177–82.

    Article  Google Scholar 

  • Jones, G., Willett, P., Glen, R. C., Leach, A. R., & Taylor, R. D. (1997). Development and validation of a genetic algorithm for flexible docking. Journal of Molecular Biology, 267, 727–748.

    Article  Google Scholar 

  • Kellenberger, E., Rodrigo, J., Muller, P., & Rognan, D. (2004). Comparative evaluation of eight docking tools for docking and virtual screening accuracy. Proteins, 57(2), 225–242.

    Article  Google Scholar 

  • Kontoyianni, M., McClellan, L. M., & Sokol, G. S. (2004). Evaluation of docking performance: comparative data on docking algorithms. Journal of Medicinal Chemistry, 47(3), 558–565.

    Article  Google Scholar 

  • Koshland, D. E. (1973). Protein shape and biological control. Scientific American, 229(4), 52–64.

    Article  Google Scholar 

  • Korb, O., Stützle, T., & Exner, T. E. (2006). PLANTS: Application of Ant Colony Optimization to Structure-Based Drug Design. In M. Dorigo, L. M. Gambardella, M. Birattari, A. Martinoli, R. Poli, & T. Stützle (Eds.), Lecture Notes in Computer Science : Vol. 4150. Ant colony optimization and swarm intelligence, 5th international workshop, ANTS 2006 (pp. 247–258). Berlin: Springer.

    Chapter  Google Scholar 

  • McMartin, C., & Bohacek, R. S. (1997). QXP: powerful, rapid computer algorithms for structure-based drug design. Journal of Computer-Aided Molecular Design, 11(4), 333–344.

    Article  Google Scholar 

  • Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., et al. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, 19, 1639–1662.

    Article  Google Scholar 

  • Müller, G. (2003). Medicinal chemistry of target family-directed masterkeys. Drug Discovery Today, 8(15), 681–691.

    Article  Google Scholar 

  • Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. Computer Journal, 7, 308–313.

    MATH  Google Scholar 

  • Nissink, J. W. M., Murray, C., Hartshorn, M., Verdonk, M. L., Cole, J. C., & Taylor, R. (2002). A new test set for validating predictions of protein–ligand interaction. Proteins, 49(4), 457–471.

    Article  Google Scholar 

  • Press, W. H., Flannery, B. P., Teukolsky, S. A., & Vetterling, W. T. (1992). Numerical recipes in C: the art of scientific computing. Cambridge: Cambridge University Press.

    Google Scholar 

  • Stützle, T., & Hoos, H. H. (2000). \(\mathcal{MAX}\)\(\mathcal{MIN}\) ant system. Future Generation Computer Systems, 16(8), 889–914.

    Article  Google Scholar 

  • Taylor, R. D., Jewsbury, P. J., & Essex, J. W. (2002). A review of protein-small molecule docking methods. Journal of Computer-Aided Molecular Design, 16, 151–166.

    Article  Google Scholar 

  • Triballeau, N., Acher, F., Brabet, I., Pin, J.-P., & Bertrand, H.-O. (2005). Virtual screening workflow development guided by the “receiver operating characteristic” curve approach. Application to high-throughput docking on metabotropic glutamate receptor subtype 4. Journal of Medicinal Chemistry, 48(7), 2534–2547.

    Article  Google Scholar 

  • Verdonk, M. L., Cole, J. C., Hartshorn, M. J., Murray, C. W., & Taylor, R. D. (2003). Improved protein–ligand docking using GOLD. Proteins, 52, 609–623.

    Article  Google Scholar 

  • Verdonk, M. L., Berdini, V., Hartshorn, M. J., Mooij, W. T. M., Murray, C. W., Taylor, R. D., & Watson, P. (2004). Virtual screening using protein–ligand docking: avoiding artificial enrichment. Journal of Chemical Information and Modeling, 44(3), 793–806.

    Article  Google Scholar 

  • Verkhivker, G. M. (2004). Computational analysis of ligand binding dynamics at the intermolecular hot spots with the aid of simulated tempering and binding free energy calculations. Journal of Molecular Graphics and Modelling, 22, 335–348.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Stützle.

Additional information

This article is based on a paper that won the best paper award at ANTS 2006, the 5th International Workshop on Ant Colony Optimization and Swarm Intelligence held in Brussels, Belgium, 2006. This article includes new types of experiments and also the possibility of considering flexibility of protein side-chains.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korb, O., Stützle, T. & Exner, T.E. An ant colony optimization approach to flexible protein–ligand docking. Swarm Intell 1, 115–134 (2007). https://doi.org/10.1007/s11721-007-0006-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11721-007-0006-9

Keywords