Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A novel discrete wavelet transform framework for full reference image quality assessment

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In this paper, we present a general framework for computing full reference image quality scores in the discrete wavelet domain using the Haar wavelet. In our framework, quality metrics are categorized as either map-based, which generate a quality (distortion) map to be pooled for the final score, e.g., structural similarity (SSIM), or nonmap-based, which only give a final score, e.g., Peak signal-to-noise ratio (PSNR). For map-based metrics, the proposed framework defines a contrast map in the wavelet domain for pooling the quality maps. We also derive a formula to enable the framework to automatically calculate the appropriate level of wavelet decomposition for error-based metrics at a desired viewing distance. To consider the effect of very fine image details in quality assessment, the proposed method defines a multi-level edge map for each image, which comprises only the most informative image subbands. To clarify the application of the framework in computing quality scores, we give some examples to show how the framework can be applied to improve well-known metrics such as SSIM, visual information fidelity (VIF), PSNR, and absolute difference. The proposed framework presents an excellent tradeoff between accuracy and complexity. We compare the complexity of various algorithms obtained by the framework to the IPP-based H.264 baseline profile encoding using C/C++ implementations. For example, by using the framework, we can compute the VIF at about 5% of the complexity of its original version, but with higher accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang Z., Bovik A.C.: Mean squared error: Love it or leave it? A new look at signal fidelity measures. IEEE Signal Process. Mag. 26, 98–117 (2009)

    Article  Google Scholar 

  2. Wang Z., Bovik A.C.: Modern Image Quality Assessment. Morgan & Claypool, USA (2006)

    Google Scholar 

  3. Bovik A.C.: The Essential Guide to Image Processing, pp. 553–595. Academic Press, USA (2009)

    Google Scholar 

  4. Teo, P.C., Heeger, D.J.: Perceptual image distortion. In: Proceedings of IEEE International Conference on Image Processing, pp. 982–986. Austin, TX (1994)

  5. Chandler D.M., Hemami S.S.: VSNR: a wavelet-based visual signal-to-noise ratio for natural images. In: IEEE Trans. Image Process. 16, 2284–2298 (2007)

    Article  MathSciNet  Google Scholar 

  6. Damera-Venkata N., Kite T.D., Geisler W.S., Evans B.L., Bovik A.C.: Image quality assessment based on a degradation model. In: IEEE Trans. Image Process. 9, 636–650 (2000)

    Article  Google Scholar 

  7. Miyahara M., Kotani K., Algazi V.R.: Objective picture quality scale (PQS) for image coding. In: IEEE Trans. Commun. 46, 1215–1225 (1998)

    Article  Google Scholar 

  8. Wang Z., Bovik A.C., Sheikh H., Simoncelli E.: Image quality assessment: from error visibility to structural similarity. In: IEEE Trans. Image Process. 13, 600–612 (2004)

    Article  Google Scholar 

  9. Sheikh H.R., Sabir M.F., Bovik A.C.: A statistical evaluation of recent full reference image quality assessment algorithms. In: IEEE Trans. Image Process. 15, 3440–3451 (2006)

    Article  Google Scholar 

  10. Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multi-scale structural similarity for image quality assessment. In: Proceedings of IEEE Asilomar Conference on Signals, Systems, Computers, pp. 1398–1402. New York, NY (2003)

  11. Rouse, D.M., Hemami, S.S.: Understanding and simplifying the structural similarity metric. In: Proceedings of IEEE International Conference on Image Processing, pp. 1188–1191. San Diego, CA (2008)

  12. Yang, C.-L., Gao, W.-R., Po, L.-M.: Discrete wavelet transform-based structural similarity for image quality assessment. In: Proceedings of IEEE International Conference on Image Processing, pp. 377–380. San Diego, CA (2008)

  13. Wang, Z., Simoncelli, E.P.: Translation insensitive image similarity in complex wavelet domain. In: Proceedings of IEEE International Conference on Acoustics, Speech, Signal Processing, pp. 573–576 (2005)

  14. Sampat M.P., Wang Z., Gupta S., Bovik A.C., Markey M.K.: Complex wavelet structural similarity: a new image similarity index. In: IEEE Trans. Image Process. 18, 2385–2401 (2009)

    Article  MathSciNet  Google Scholar 

  15. Sheikh H.R., Bovik A.C., Veciana G.D.: An information fidelity criterion for image quality assessment using natural scene statistics. IEEE Trans. Image Process. 14, 2117–2128 (2005)

    Article  Google Scholar 

  16. Sheikh H.R., Bovik A.C.: Image information and visual quality. In: IEEE Trans. Image Process. 15, 430–444 (2006)

    Article  Google Scholar 

  17. Yasakethu S.L.P., Fernando W.A.C., Adedoyin S., Kondoz A.: A rate control technique for offline H.264/AVC video coding using subjective quality of video. In: IEEE Trans. Consum. Electron. 54, 1465–1472 (2008)

    Article  Google Scholar 

  18. Bolin, M.R., Meyer, G.W.: A visual difference metric for realistic image synthesis. In: Proceedings of SPIE Human Vision, Electronic Imaging, pp. 106–120. San Jose, CA (1999)

  19. Lai Y.-K., Kuo C.-C.J.: A Haar wavelet approach to compressed image quality measurement. J. Visual Commun. Image Represent. 11, 17–40 (2000)

    Article  Google Scholar 

  20. Wang Y., Ostermann J., Zhang Y.Q.: Video Processing and Communications. Prentice-Hall, New Jersey (2002)

    Google Scholar 

  21. Wang, Z., Shang, X.: Spatial pooling strategies for perceptual image quality assessment. In: Proceedings of IEEE Internatioanal Conference on Image Processing, pp. 2945–2948. Atlanta, GA (2006)

  22. Rezazadeh, S., Coulombe, S.: A novel approach for computing and pooling structural similarity index in the discrete wavelet domain. In: Proceedings of IEEE Internatioanal Conference on Image Processing, pp. 2209–2212 (2009)

  23. Rezazadeh, S., Coulombe, S.: Low-complexity computation of visual information fidelity in the discrete wavelet domain. In: Proceedings of IEEE Internatioanal Conference on Acoustics, Speech, Signal Processing, pp. 2438–2441. Dallas, TX (2010)

  24. Callet, P.L., Autrusseau, F.: Subjective quality assessment IRCCyN/IVC database. Online available http://www.irccyn.ec-nantes.fr/ivcdb

  25. Intel 64 and IA32 architectures optimization reference manual. Intel corporation (2009)

  26. Intel integrated performance primitives. Online available http://software.intel.com/en-us/intel-ipp/

  27. Sheikh, H.R., Wang, Z., Cormack, L., Bovik, A.C.: Live image quality assessment database Release 2. Online available http://live.ece.utexas.edu/research/quality

  28. Ponomarenko, N., Carli, M., Lukin, V., Egiazarian, K., Astola, J., Battisti, F.: Color image database for evaluation of image quality metrics. In: Proceedings of Internatioanal Workshop on Multimedia Signal Processing, pp. 403–408. Australia (2008)

  29. Z. Wang’s SSIM research homepage. Online available http://www.ece.uwaterloo.ca/~z70wang/research/ssim/

  30. Mannos J.L., Sakrison D.J.: The effects of a visual fidelity criterion on the encoding of images. In: IEEE Trans. Inf. Theory 20, 525–536 (1976)

    Article  Google Scholar 

  31. Mitsa, T., Varkur, K.L.: Evaluation of contrast sensitivity functions for the formulation of quality measures incorporated in halftoning algorithms. In: Proceedings of IEEE Internatioanal Conference on Acoustics, Speech, Signal Processing, pp. 301–304 (1993)

  32. Final report from the video quality experts group on the validation of objective models of video quality assessment. VQEG report phase II. Online available http://www.vqeg.org (2003)

  33. Ou T.-S., Huang Y.-H., Chen H.H.: SSIM-Based perceptual rate control for video coding. In: IEEE Trans. Circuits Syst. Video Technol. 31, 682–691 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soroosh Rezazadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rezazadeh, S., Coulombe, S. A novel discrete wavelet transform framework for full reference image quality assessment. SIViP 7, 559–573 (2013). https://doi.org/10.1007/s11760-011-0260-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-011-0260-6

Keywords