Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Predictive-based adaptive switching median filter for impulse noise removal using neural network-based noise detector

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

A predictive-based adaptive switching median filter for impulse noise removal using neural network-based noise detector (PASMF) is presented. The PASMF has a noise detector stage and a noise filtering stage. The noise detector implemented using feed forward neural network detects impulse noises in the corrupted image. The filter is a modified median filter, which removes detected impulse noise from the image. In contrast to the standard median filter, the PASMF computes the median value after predicting the appropriate values for neighboring corrupted pixels of the current central pixel in the filtering window. The results show that the PASMF gives better performance visually as well as in terms of different performance measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gonzalez R.C., Woods R.E.: Digital Image Processing. Prentice-Hall, Englewood Cliffs (2008)

    Google Scholar 

  2. Jain A.K.: Fundamentals of Digital Image Processing, Original Edition. Pearson Education, Upper Saddle River (1989)

    Google Scholar 

  3. Chanda B., Majumder D.D.: Digital Image Processing and Analysis. Prentice-Hall, Englewood Cliffs (2008)

    Google Scholar 

  4. Ko S.J., Lee Y.H.: Center weighted median filters and their application to image enhancement. In: IEEE Trans. Circuits Syst. 38(9), 984–993 (1991)

    Article  Google Scholar 

  5. Bovik A.: Handbook of Image and Video Processing. Academic, New York (2000)

    MATH  Google Scholar 

  6. Eng H.-L., Ma K.-K.: Noise adaptive soft-switching median filter. IEEE Trans. Image Process. 10(2), 242–251 (2001)

    Article  MATH  Google Scholar 

  7. Zhang S., Karim M.A.: A new impulse detector for switching median filters. In: IEEE Signal Process. Lett. 9(4), 360–363 (2002)

    Article  Google Scholar 

  8. Chen T., Ma K.K., Chen L.H.: Tri-state median filter for image denoising. In: IEEE Trans. Image Process. 8(12), 1834–1838 (1999)

    Article  Google Scholar 

  9. Luo W.: An efficient detail-preserving approach for removing impulse noise in images. In: IEEE Signal Process. Lett. 13(7), 413–417 (2006)

    Article  Google Scholar 

  10. Dong Y., Xu S.: A new directional weighted median filter for removal of random-value impulse noise. In: IEEE Signal Process. Lett. 14(3), 193–196 (2007)

    Article  Google Scholar 

  11. Kang C.C., Wang W.J.: Modified switching median filter with one more noise detector for impulse noise removal. Int. J. Electron. Commun. 63, 998–1004 (2009)

    Article  Google Scholar 

  12. Salomon D.: Data Compression: The Complete Reference, pp. 240–241. Springer, Berlin (2000)

    Book  Google Scholar 

  13. Wang Z., Bovik A.C.: A universal image quality index. In: IEEE Signal Process. Lett. 9(3), 81–84 (2002)

    Article  Google Scholar 

  14. Nair, M.S., Raju, G.: A new fuzzy-based decision algorithm for high-density impulse noise removal. Signal Image Video Process. doi:10.1007/s11760-010-0186-4

  15. Wang Z., Bovik A.C., Sheikh H.R., Simoncelli E.P.: Image quality assessment: from error visibility to structural similarity. In: IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  16. Ng P.-E., Ma K.-K.: A switching median filter with boundary discriminative noise detection for extremely corrupted images. In: IEEE Trans. Image Process. 15(6), 1506–1516 (2006)

    Article  Google Scholar 

  17. Dong Y., Chan R.H., Xu S.: A detection statistic for random-valued impulse noise. In: IEEE Trans. Image Process. 16(4), 1112–1120 (2007)

    Article  MathSciNet  Google Scholar 

  18. Yüksel M.E., Besd E.: A simple neuro-fuzzy impulse detector for efficient blur reduction of impulse noise removal operators for digital images. In: IEEE Trans. Fuzzy Syst. 12(6), 854–865 (2004)

    Article  Google Scholar 

  19. Yüksel M.E.: A hybrid neuro-fuzzy filter for edge preserving restoration of images corrupted by impulse noise. In: IEEE Trans. Image Process. 15(4), 928–936 (2006)

    Article  Google Scholar 

  20. Kaliraj G., Baskar S.: An Efficient approach for the removal of impulse noise from the corrupted image using neural network based impulse detector. Image Vis. Comput. 28, 458–466 (2010)

    Article  Google Scholar 

  21. Akkoul S., Ledee R., Leconge R., Harba R.: A new adaptive switching median filter. In: IEEE Signal Process. Lett. 17(6), 587–590 (2010)

    Article  Google Scholar 

  22. Garnett R., Huegerich T., Chui C., He W.: A universal noise removal algorithm with an impulse detector. In: IEEE Trans. Image Process 14(11), 1747–1754 (2005)

    Article  Google Scholar 

  23. Schulte S., Nachtegael M., De Witte V., Van der Weken D., Kerre E.E.: A fuzzy impulse noise detection and reduction method. In: IEEE Trans. Image Process. 15(5), 1153–1162 (2006)

    Article  Google Scholar 

  24. Bigand A., Colot O.: Fuzzy filter based on interval-valued fuzzy sets for image filtering. Fuzzy Sets Syst. 161, 96–117 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhu S. Nair.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nair, M.S., Shankar, V. Predictive-based adaptive switching median filter for impulse noise removal using neural network-based noise detector. SIViP 7, 1041–1070 (2013). https://doi.org/10.1007/s11760-012-0310-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-012-0310-8

Keywords