Abstract
Moving object detection and extraction are widely used in video surveillance and image processing. In this paper, we present a fast method for moving object detection. We use weights of the Gaussian distribution as decision factors, update parameters of the Gaussian mixture model if its values are smaller than that of those not belonging to the background; otherwise, no updates are done. It improves the existing methods by updating the Gaussian mixture model selectively. Experimental results on various scenes of video surveillance show that computation time of the proposed method is reduced.
Similar content being viewed by others
References
Bouwmans, T., El-Baf, F., Vachon, B.: Background modeling using mixture of Gaussians for foreground detection: a survey. Recent Pat. Comput. Sci. 1(3), 219–237 (2008)
Tian, Y., Senior, A., Lu, M.: Robust and efficient foregroundanalysis in complex surveillance videos. Mach. Vis. Appl. 23(5), 967–983 (2012)
Xiao, Q., Luo, Y., Wang, H.: Motion retrieval based on switching Kalman filters model. Multimedia Tools Appl. 72(1), 951–966 (2014)
Chandrashekar, G., Sahin, F.: A survey on feature selection methods. Comput. Electr. Eng. 40(1), 1628 (2014)
Huang, M., Yen, S.: A real-time and color-based computer vision for traffic monitoring system. In: IEEE International Conference on Multimedia and Expo (ICME 2004), vol. 3, pp. 2119–2122. (2004)
Peng, S.: Flow detection based on traffic video image processing. J. Multimedia 8(5), 519–526 (2013)
Barron, J., Fleet, D., Beauchemin, S.: Performance of optical flow techniques. Int. J. Comput. Vis. 12(1), 42–77 (1994)
Meyer, D., Denzler, J., Niemann, H.: Model based extraction of articulated objects in image sequences for gait analysis. In: Proceedings of IEEE International Conference on Image Processing, pp. 78–81 (1997)
Stein, F.: Efficient computation of optical flow using the census transform. Lect. Notes Comput. Sci. 3175(1), 79–86 (2004)
Tsai, D.M., Chiu, W.Y., Lee, M.H.: Optical flow-motion history image (OF-MHI) for action recognition. Signal Image Video Process. 9(8), 1897–1906 (2015)
Lipton, A., Fuiyoshi, H., Patil, R.: Moving target classification and tracking from real-time video. In: Proceedings of IEEE Work shop on Applications of Computer Vision, pp. 8–14 (1998)
Zhang, R., Yang, L., Liu, K., Liu, X.: Moving objective detection and its contours extraction using level set method. In: International Conference on Control Engineering and Communication Technology, pp. 778–781 (2012)
Frost, D., Tapamo, J.R.: Detection and tracking of moving objects in a maritime environment using level set with shape priors. EURASIP J. Image Video Process. 2013(1), 1–16 (2013)
Spagnolo, P., Dorazio, T., Leo, M., Distante, A.: Moving object segmentation by background subtraction and temporal analysis. Image Vis. Comput. 24(5), 411–423 (2006)
Haritaoglu, I., Harwood, D., Davis, L.W.: Real-time surveillance of people and their activities. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 809–830 (2000)
Mandellos, N.A., Keramitsoglou, I., Kiranoudis, C.T.: A background subtraction algorithm for detecting and tracking vehicles. Expert Syst. Appl. 38(3), 1619–1631 (2011)
Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 2, 246–252 (1999)
Mao, S., Ye, M., Li, X., Pang, F., Zhou, J.: Rapid vehicle logo region detection based on information theory. Comput. Electr. Eng. 39(3), 863872 (2013)
Bouwmans, T.: Traditional and recent approachs in background modeling for foreground detection: an overview. Comput. Sci. Rev. I1–I2, 3166 (2014)
Kaewtrakulpong, P., Bowden, R.: An improved adaptive background mixture model for real-time tracking with shadow detection. In: Proceedings of the 2nd European Workshop on Advanced Video-based Surveillance Systems, pp. 149–158 (2001)
Chen, Z., Pears, N., Freeman, M., et al.: Background subtraction in video using recursive mixture models, spatio-temporal filtering and shadow removal. In: International Symposium on Visual Computing (ISVC), pp. 1141–1150 (2009)
Kolawole, A., Tavakkoli, A.: Robust foreground detection in videos using adaptive color histogram thresholding and shadow removal. Int. Symp. Vis. Comput. (ISVC) 2, 496–505 (2011)
Sha, F., Saul, L.K.: Large margin Gaussian mixture modeling for phonetic classification and recognition. Proc. ICASSP 2006, 265–268 (2006)
Benedek, C., Sziranyi, T.: Bayesian foreground and shadow detection in uncertain frame rate surveillance videos. IEEE Trans. Image Process. 17(4), 608–621 (2008)
Chan, A.B., Mahadevan, V., Vasconcelos, N.: Generalized StaufferGrimson background subtraction for dynamic scenes. Mach. Vis. Appl. 22, 751–766 (2011)
Sheikh, Y., Shah, M.: Bayesian modeling of dynamic scenes for object detection. IEEE Trans. Pattern Anal. Mach. Intell. 27(11), 1778–1792 (2005)
Junejo, I.N.: Using dynamic Bayesian network for scene modeling and anomaly detection. Signal Image Video Process. 4(1), 1–10 (2010)
Porikli, F., Tuzel, O.: Bayesian background modeling for foreground detection. In: Proceedings of ACM Visual Surveillance and Sensor, Network, pp. 55–58 (2005)
Berclaz, J., Fleuret, F., Engin, T., Fua, P.: Multiple object tracking using K-shortest paths optimization. IEEE Trans. Pattern Anal. Mach. Intell. 33(9), 1806–1819 (2011)
Chen, B.S., Lei, Y.Q.: Indoor and outdoor people detection and shadow suppression by exploiting HSV colour information. In: IEEE Computer Society, The Fourth International Conference on Computer and Information Technology, pp. 137–142 (2004)
Li, G., Zeng, R., Lin, L.: Moving target detection in video monitoring system. Proc. IEEE World Congr. Intell. Control Autom. 2, 9778–9781 (2006)
Magee, D.R.: Tracking multiple vehicles using foreground, background and motion models. Image Vis. Comput. 22(2), 143155 (2004)
Zivkoviv, Z., Heijden, F.V.: Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recognit. Lett. 27(7), 773–780 (2006)
Bouttefroy, P.L., Bouzerdoum, A., Beghdadi, A., Phung, S.: On the analysis of background subtraction techniques using Gaussian mixture models. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 4042–4045 (2010)
Lee, D.S.: Effective Gaussian mixture learning for video background subtraction. IEEE Trans. Pattern Anal. Mach. Intell. 27(5), 827–832 (2005)
Lin, H.H., Chuang, J.H., Liu, T.L.: Regularized background adaptation a novel learning rate control scheme for Gaussian mixture modeling. IEEE Trans. Image Process. 20(3), 822–836 (2011)
Change Detection Dataset: http://www.changedetection.net
Wang, Y., Jodoin, P.M., Porikli, F., Konrad, J., Benezeth, Y., Ishwar, P.: CDnet 2014: an expanded change detection benchmark dataset. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 393–400 (2014)
Acknowledgements
The work of this paper is supported by National Natural Science Foundation of China (No. 51375132), Jincheng Science and Technology Foundation, China (No. 201501004-5), Shanxi Provincial Natural Science Foundation, China (No. 2013011017) and Ph.D. Foundation of Taiyuan University of Science and Technology, China (No. 20122025). We also thank Chen’s work for this paper.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhang, R., Liu, X., Hu, J. et al. A fast method for moving object detection in video surveillance image. SIViP 11, 841–848 (2017). https://doi.org/10.1007/s11760-016-1030-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11760-016-1030-2