Abstract
Recent studies support the concept that the retinal vasculature may provide a summary measure of lifetime exposure to the effects of hyperglycemia. Advances in retinal photographic techniques and in image analysis have allowed objective and precise in vivo measurement of retinal vascular changes. In particular, quantitative assessment of retinopathy signs and measurement of retinal vascular caliber have greatly increased our knowledge of early microcirculatory alterations in prediabetes, diabetes, and diabetic micro- and macrovascular complications. Data from recent population-based studies suggest that retinal arteriolar and venular caliber changes reflect different pathophysiologic processes. Retinal arteriolar narrowing, for example, is associated with risk of diabetes and coronary artery disease, whereas retinal venular widening is associated with development and progression of diabetic retinopathy and risk of stroke. Studying these changes offers the potential to improve our understanding of the early pathophysiologic pathways of diabetes development and its complications. Future research will assess the ability of retinal vascular imaging to provide clinically useful prognostic information for patients with diabetes.
Similar content being viewed by others
References and Recommended Reading
Mohamed Q, Gillies MC, Wong TY: Management of diabetic retinopathy: a systematic review. JAMA 2007, 298:902–916.
Grading diabetic retinopathy from stereoscopic color fundus photographs-an extension of the modified Airlie House classification. ETDRS report number 10. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology 1991, 98:786–806.
Wilkinson CP, Ferris FL 3rd, Klein RE, et al.: Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology 2003, 110:1677–1682.
Tapp RJ, Shaw JE, Harper CA, et al.: The prevalence of and factors associated with diabetic retinopathy in the Australian population. Diabetes Care 2003, 26:1731–1737.
Klein R, Klein BE, Moss SE, et al.: Glycosylated hemoglobin predicts the incidence and progression of diabetic retinopathy. JAMA 1988, 260:2864–2871.
The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Engl J Med 1993, 329:977–986.
The UK Prospective Diabetes Study Group: Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998, 352:837–853.
The UK Prospective Diabetes Study Group: Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. BMJ 1998, 317:703–713.
Keech A, Simes RJ, Barter P, et al.: Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet 2005, 366:1849–1861.
Patel A, MacMahon S, Chalmers J, et al.: Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 2008, 358:2560–2572.
Mitchell P, Wong TY: DIRECT new treatments for diabetic retinopathy. Lancet 2008, 372:1361–1363.
Wong TY, Liew G, Tapp RJ, et al.: Relation between fasting glucose and retinopathy for diagnosis of diabetes: three population-based cross-sectional studies. Lancet 2008, 371:736–743.
Cheung N, Wong TY: Diabetic retinopathy and systemic vascular complications. Prog Retin Eye Res 2008, 27:161–176.
Klein R, Klein BE, Moss SE, et al.: Association of ocular disease and mortality in a diabetic population. Arch Ophthalmol 1999, 117:1487–1495.
Nguyen TT, Wong TY: Retinal vascular manifestations of metabolic disorders. Trends Endocrinol Metab 2006, 17:262–268.
Wong TY, Klein R, Sharrett AR, et al.: Cerebral white matter lesions, retinopathy, and incident clinical stroke. JAMA 2002, 288:67–74.
Klein R, Marino EK, Kuller LH, et al.: The relation of atherosclerotic cardiovascular disease to retinopathy in people with diabetes in the Cardiovascular Health Study. Br J Ophthalmol 2002, 86:84–90.
Edwards MS, Wilson DB, Craven TE, et al.: Associations between retinal microvascular abnormalities and declining renal function in the elderly population: the Cardiovascular Health Study. Am J Kidney Dis 2005, 46:214–224.
Nguyen TT, Wang JJ, Wong TY: Retinal vascular changes in pre-diabetes and prehypertension: new findings and their research and clinical implications. Diabetes Care 2007, 30:2708–2715.
Wong TY, Duncan BB, Golden SH, et al.: Associations between the metabolic syndrome and retinal microvascular signs: the Atherosclerosis Risk In Communities study. Invest Ophthalmol Vis Sci 2004, 45:2949–2954.
Kawasaki R, Tielsch JM, Wang JJ, et al.: The metabolic syndrome and retinal microvascular signs in a Japanese population: the Funagata study. Br J Ophthalmol 2008, 92:161–166.
Klein R, Klein BE, Mos SE, et al.: The relationship of retinopathy in persons without diabetes to the 15-year incidence of diabetes and hypertension: Beaver Dam Eye Study. Trans Am Ophthalmol Soc 2006, 104:98–107.
Wong TY, Mohamed Q, Klein R, et al.: Do retinopathy signs in non-diabetic individuals predict the subsequent risk of diabetes? Br J Ophthalmol 2006, 90:301–303.
Hubbard LD, Brothers RJ, King WN, et al.: Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the Atherosclerosis Risk in Communities Study. Ophthalmology 1999, 106:2269–2280.
Liew G, Sharrett AR, Kronmal R, et al.: Measurement of retinal vascular caliber: issues and alternatives to using the arteriole to venule ratio. Invest Ophthalmol Vis Sci 2007, 48:52–57.
Dorner GT, Garhofer G, Kiss B, et al.: Nitric oxide regulates retinal vascular tone in humans. Am J Physiol Heart Circ Physiol 2003, 285:H631–H636.
Delles C, Michelson G, Harazny J, et al.: Impaired endothelial function of the retinal vasculature in hypertensive patients. Stroke 2004, 35:1289–1293.
Mandecka A, Dawczynski J, Blum M, et al.: Influence of flickering light on the retinal vessels in diabetic patients. Diabetes Care 2007, 30:3048–3052.
Skovborg F, Nielsen AV, Lauritzen E, et al.: Diameters of the retinal vessels in diabetic and normal subjects. Diabetes 1969, 18:292–298.
Nguyen TT, Wang JJ, Sharrett AR, et al.: Relationship of retinal vascular caliber with diabetes and retinopathy: the Multi-Ethnic Study of Atherosclerosis (MESA). Diabetes Care 2008, 31:544–549.
Wong TY, Klein R, Sharrett AR, et al.: Retinal arteriolar narrowing and risk of diabetes mellitus in middle-aged persons. JAMA 2002, 287:2528–2533.
Wong TY, Shankar A, Klein R, et al.: Retinal arteriolar narrowing, hypertension, and subsequent risk of diabetes mellitus. Arch Intern Med 2005, 165:1060–1065.
Nguyen TT, Wang JJ, Islam FM, et al.: Retinal arteriolar narrowing predicts incidence of diabetes: the Australian Diabetes, Obesity and Lifestyle (AusDiab) Study. Diabetes 2008, 57:536–539.
Ikram MK, Janssen JA, Roos AM, et al.: Retinal vessel diameters and risk of impaired fasting glucose or diabetes: the Rotterdam study. Diabetes 2006, 55:506–510.
Wong TY, Islam FM, Klein R, et al.: Retinal vascular caliber, cardiovascular risk factors, and inflammation: the Multi-Ethnic Study of Atherosclerosis (MESA). Invest Ophthalmol Vis Sci 2006, 47:2341–2350.
Serne EH, de Jongh RT, Eringa EC, et al.: Microvascular dysfunction: a potential pathophysiological role in the metabolic syndrome. Hypertension 2007, 50:204–211.
Meigs JB, Hu FB, Rifai N, et al.: Biomarkers of endothelial dysfunction and risk of type 2 diabetes mellitus. JAMA 2004, 291:1978–1986.
Cheung N, Rogers SL, Donaghue KC, et al.: Retinal arteriolar dilation predicts retinopathy in adolescents with type 1 diabetes. Diabetes Care 2008, 31:1842–1846.
Rogers SL, Tikellis G, Cheung N, et al.: Retinal arteriolar caliber predicts incident retinopathy: The Australian Diabetes, Obesity and Lifestyle (AusDiab) Study. Diabetes Care 2008, 31:761–763.
Klein R, Moss SE, Klein BE: Author reply. Ophthalmology 2007, 114:2099.
Klein R, Klein BE, Moss SE, et al.: The relation of retinal vessel caliber to the incidence and progression of diabetic retinopathy: XIX: the Wisconsin Epidemiologic Study of Diabetic Retinopathy. Arch Ophthalmol 2004, 122:76–83.
Klein R, Klein BE, Moss SE, et al.: Retinal vessel caliber and microvascular and macrovascular disease in type 2 diabetes: XXI: the Wisconsin Epidemiologic Study of Diabetic Retinopathy. Ophthalmology 2007, 114:1884–1892.
Wong TY, Shankar A, Klein R, et al.: Retinal vessel diameters and the incidence of gross proteinuria and renal insufficiency in people with type 1 diabetes. Diabetes 2004, 53:179–184.
Rogers SL, Tikellis G, Cheung N, et al.: Retinal arteriolar caliber predicts incident retinopathy: the Australian Diabetes, Obesity and Lifestyle (AusDiab) study. Diabetes Care 2008, 31:761–763.
McGeechan K, Liew G, Macaskill P, et al.: Risk prediction of coronary heart disease based on retinal vascular caliber (from the Atherosclerosis Risk In Communities [ARIC] Study). Am J Cardiol 2008, 102:58–63.
Wang JJ, Liew G, Wong TY, et al.: Retinal vascular calibre and the risk of coronary heart disease-related death. Heart 2006, 92:1583–1587.
Wong TY, Kamineni A, Klein R, et al.: Quantitative retinal venular caliber and risk of cardiovascular disease in older persons: the Cardiovascular Health Study. Arch Intern Med 2006, 166:2388–2394.
Tamai K, Matsubara A, Tomida K, et al.: Lipid hydroperoxide stimulates leukocyte-endothelium interaction in the retinal microcirculation. Exp Eye Res 2002, 75:69–75.
Kolodjaschna J, Berisha F, Lung S, et al.: LPS-induced microvascular leukocytosis can be assessed by blue-field entoptic phenomenon. Am J Physiol Heart Circ Physiol 2004, 287:H691–H694.
Chester AH, Borland JA, Buttery LD, et al.: Induction of nitric oxide synthase in human vascular smooth muscle: interactions between proinflammatory cytokines. Cardiovasc Res 1998, 38:814–821.
Klein R, Klein BE, Knudtson MD, et al.: Are inflammatory factors related to retinal vessel caliber? The Beaver Dam Eye Study. Arch Ophthalmol 2006, 124:87–94.
Klein R, Sharrett AR, Klein BE, et al.: Are retinal arteriolar abnormalities related to atherosclerosis?: The Atherosclerosis Risk in Communities Study. Arterioscler Thromb Vasc Biol 2000, 20:1644–1650.
Witt N, Wong TY, Hughes AD, et al.: Abnormalities of retinal microvascular structure and risk of mortality from ischemic heart disease and stroke. Hypertension 2006, 47:975–981.
Tillin T, Evans RM, Witt NW, et al.: Ethnic differences in retinal microvascular structure. Diabetologia 2008, 51:1719–1722
Cheung N, Donaghue KC, Liew G, et al.: Quantitative assessment of early diabetic retinopathy using fractal analysis. Diabetes Care 2009, 32:106–110.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Nguyen, T.T., Wong, T.Y. Retinal vascular changes and diabetic retinopathy. Curr Diab Rep 9, 277–283 (2009). https://doi.org/10.1007/s11892-009-0043-4
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11892-009-0043-4