Abstract
Diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) have been widely used to study structural and functional brain connectivity in recent years. A common assumption used in many previous functional brain connectivity studies is the temporal stationarity. However, accumulating literature evidence has suggested that functional brain connectivity is under temporal dynamic changes in different time scales. In this paper, a novel and intuitive approach is proposed to model and detect dynamic changes of functional brain states based on multimodal fMRI/DTI data. The basic idea is that functional connectivity patterns of all fiber-connected cortical voxels are concatenated into a descriptive functional feature vector to represent the brain’s state, and the temporal change points of brain states are decided by detecting the abrupt changes of the functional vector patterns via the sliding window approach. Our extensive experimental results have shown that meaningful brain state change points can be detected in task-based fMRI/DTI, resting state fMRI/DTI, and natural stimulus fMRI/DTI data sets. Particularly, the detected change points of functional brain states in task-based fMRI corresponded well to the external stimulus paradigm administered to the participating subjects, thus partially validating the proposed brain state change detection approach. The work in this paper provides novel perspective on the dynamic behaviors of functional brain connectivity and offers a starting point for future elucidation of the complex patterns of functional brain interactions and dynamics.

















Similar content being viewed by others
References
Amunts, K., Malikovic, A., Mohlberg, H., Schormann, T., & Zilles, K. (2000). Brodmann's areas 17 and 18 brought into stereotaxic space-where and how variable? NeuroImage, 11(1), 66–84.
Avants, B. B., Epstein, C. L., Grossman, M., & Gee, J. C. (2008). Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Medical Image Analysis, 12, 26–41.
Bassett, D. S., Wymbs, N. F., Porter, M. A., Mucha, P. J., Carlson, J. M., & Grafton, S. T. (2011). Dynamic reconfiguration of human brain networks during learning. PNAS, 108(18), 7641–7646.
Beckmann, C. F., DeLuca, M., Devlin, J. T., & Smith, S. M. (2005). Investigations into resting-state connectivity using independent component analysis. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 360, 1001–1013.
Biswal, B. B., Mennes, M., & Zuo, X. N. et al. (2010). Toward discovery science of human brain function. Proceedings of the National Academy of Sciences, 107(10), 4734–4739.
Bullmore, E., & Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10, 186–198.
Chang, C., & Glover, G. H. (2010). Time-frequency dynamics of resting-state brain connectivity measured with fMRI. NeuroImage, 50, 81–98.
Calhoun, V. D., Pekar, J. J., & Pearlson, G. D. (2004). Alcohol intoxication effects on simulated driving: exploring alcohol-dose effects on brain activation using functional MRI. Neuropsychopharmacology, 29, 2097–3017.
Dickerson, B. C., & Sperling, R. A. (2009). Large-scale functional brain network abnormalities in Alzheimer’s disease: insights from functional neuroimaging. Behavioural Neurology, 21, 63–75.
Faraco, C. C., Unsworth, N., Langley, J., Terry, D., Li, K., Zhang, D., Liu, T., & Miller, L. S. (2011). Complex span tasks and hippocampal recruitment during working memory. NeuroImage, 55(2), 773–787.
Friston, K. J., Harrison, L., & Penny, W. (2003). Dynamic causal modeling. NeuroImage, 19, 1273–1302.
Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews Neuroscience, 8, 700–711.
Gao, J.-H., & Yee, S.-H. (2003). Iterative temporal clustering analysis for the detection of multiple response peaks in fMRI. Magnetic Resonance Imaging, 21, 51–53.
Gilbert, C. D., & Sigman, M. (2007). Brain states: top-down influences in sensory processing. Neuron, 54, 677–696.
Hagmann, P., Cammoun, L., Gigandet, X., Gerhard, S., Ellen Grant, P., Wedeen, V., Meuli, R., Thiran, J.-P., Honey, C. J., & Sporns, O. (2010). MR connectomics: principles and challenges. Journal of Neuroscience Methods, 194, 34–45.
Honey, C. J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J. P., Meuli, R., & Hagmann, P. (2009). Predicting human resting-state functional connectivity from structural connectivity. Proceedings of the National Academy of Sciences, 106, 2035–2040.
Hu, X., Deng, F., Li, K., Zhang, T., Chen, H., Jiang, X., Lv, J., Zhu, D., Faraco, C., Zhang, D., Mesbah, A., Han, J., Hua, X., Xie, L., Miller, S., Guo, L., & Liu, T. (2010). Bridging low-level features and high-level semantics via fMRI brain imaging for video classification. Proceedings of the international conference on Multimedia (pp. 451–460). Firenze, Italy: ACM.
Hu, X., Li, K., Han, J., Hua, X.-S., Guo, L., & Liu, T. (2012). Bridging the semantic gap via functional brain imaging, IEEE Transactions on Multimedia, 14(2): 314–325
Hu, X., Guo, L., Zhang, D., Li, K., Zhang, T., Lv, J., Han, J., Liu, T. (2011). Assessing the dynamics on functional brain networks using spectral graph theory. Proceedings of the 2010 IEEE international symposium Biomedical imaging: From nano to Macro (pp. 2144–2149). Rotterdam, Netherlands: IEEE Press.
Kennedy, D. N. (2010). Making connections in the connectome era. Neuroinformatics, 8(2), 61–62.
Li, K., Guo, L., Li, G., Nie, J., Faraco, C., Zhao, Q., Miller, L. S., & Liu, T. (2010). Cortical surface based identification of brain networks using high spatial resolution resting state FMRI data. Proceedings of the 2010 IEEE international symposium on Biomedical imaging: From nano to Macro (pp. 656–659). Rotterdam, Netherlands: IEEE Press.
Li, X., Li, K., Guo, L., Lim, C., & Liu, T. (2011). Fiber-centered granger causality analysis. Proceedings of the 14th international conference on Medical image computing and computerassisted intervention. (pp. 14(Pt 2):251–259.) Springer, Germany.
Li, K., Guo, L., Zhu, D., Hu, X., Han, J., & Liu, T. (2012). Individual functional ROI optimization via maximization of group-wise consistency of structural and functional profiles. Neuroinformatics, 10, 225–242.
Lindquist, M. A., Waugh, C., & Wager, T. D. (2007). Modeling state-related fMRI activity using change-point theory. NeuroImage, 35, 1125–1141.
Liu, T., Li, H., Wong, K., Tarokh, A., Guo, L., & Wong, S. T. C. (2007). Brain tissue segmentation based on DTI data. NeuroImage, 38, 114–123.
Liu, T., Nie, J., Tarokh, A., Guo, L., & Wong, S. (2008). Reconstruction of Central Cortical Surface from MRI Brain Images: Method and Application. NeuroImage, 40(3), 991–1002.
Liu, T. (2011). A few thoughts on brain ROIs. Brain Imaging and Behavior, 5, 189–202.
Lim, C., Li, X., Li, K., Guo, L., & Liu, T. (2011). Brain state change detection via fiber-centered functional connectivity analysis, Biomedical Imaging: From Nano to Macro, 2011 IEEE International Symposium on, 2155–2160.
Lv, J., Guo, L., Hu, X., Zhang, T., Li, K., Zhang, D., et al. (2010). Fiber-centered analysis of brain connectivity using DTI and resting state FMRI data. In: T. Jiang, N. Navab, J. Pluim, & M. Viergever, (Eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2010 (pp. 143–150). Springer Berlin/Heidelberg.
Lynall, M. E., Bassett, D. S., Kerwin, R., McKenna, P. J., Kitzbichler, M., Muller, U., & Bullmore, E. (2010). Functional connectivity and brain networks in schizophrenia. Journal of Neuroscience, 30(28), 9477–9487.
Majeed, W., Magnuson, M., Hasenkamp, W., Schwarb, H., Schumacher, E. H., Barsalou, L., & Keilholz, S. D. (2011). Spatiotemporal dynamics of low frequency BOLD fluctuations in rats and humans. NeuroImage, 54, 1140–1150.
Morgan, V. L., Price, R. R., Arain, A., Modur, P., & Abou-Khalil, B. (2004). Resting functional MRI with temporal clustering analysis for localization of epileptic activity without EEG. NeuroImage, 21, 473–481.
Passingham, R. E., Stephan, K. E., & Kotter, R. (2002). The anatomical basis of functional localization in the cortex. Nature Reviews Neuroscience, 3, 606–616.
Robinson, L. F., Wager, T. D., & Lindquist, M. A. (2010). Change point estimation in multi-subject fMRI studies. NeuroImage, 49, 1581–1592.
Saxe, R., Brett, M., & Kanwisher, N. (2006). Divide and conquer: a defense of functional localizers. Neuroimage, 30, 1088–1096.
Shen, D., & Davatzikos, C. (2002). HAMMER: hierarchical attribute matching mechanism for elastic registration. IEEE Trans. on Medical Imaging, 21(11), 1421–1439.
Smith, S. M., Miller, K. L., Salimi-Khorshidi, G., Webster, M., Beckmann, C. F., Nichols, T. E., Ramsey, J. D., & Woolrich, M. W. (2011). Network modelling methods for FMRI. NeuroImage, 54, 875–891.
Sporns, O., Tononi, G., & Kötter, R. (2005). The human connectome: a structural description of the human brain. PLoS Computational Biology, 1, e42.
Thompson, P. M., & Toga, A. W. (1996). A surface-based technique for 1336 warping 3-dimensional images of the brain. IEEE Transaction on Medical Imaging, 15(4), 1–16.
Tsunoda, K., Yamane, Y., Nishizaki, M., & Tanifuji, M. (2001). Complex objects are represented in macaque inferotemporal cortex by the combination of feature columns. Nature Neuroscience, 4, 832–838.
Van Dijk, K. R. A., Hedden, T., Venkataraman, A., Evans, K. C., Lazar, S. W., & Buckner, R. L. (2010). Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. Journal of Neurophysiology, 103, 297–321.
Wang, L., Zang, Y., He, Y., Liang, M., Zhang, X., Tian, L., Wu, T., Jiang, T., & Li, K. (2006). Changes in hippocampal connectivity in the early stages of Alzheimer’s disease: Evidence from resting state fMRI. NeuroImage, 31, 496–504.
Zalesky, A., Fornito, A., & Bullmore, E. T. (2010). Network-based statistic: identifying differences in brain networks. NeuroImage, 53, 1197–1207.
Zang, Y., Jiang, T., Lu, Y., He, Y., & Tian, L. (2004). Regional homogeneity approach to fMRI data analysis. NeuroImage, 22, 394–400.
Zhang, T., Guo, L., Hu, X., Li, K., Jin, C., Cui, G., et al. (2011). Predicting functional cortical ROIs via DTI-derived fiber shape models. Cerebral Cortex, in press.
Zhu, D., Li, K., Faraco, C., Deng, F., Zhang, D., Jiang, X., et al. (2011). Optimization of functional brain ROIs via maximization of consistency of structural connectivity profiles, NeuroImage, in press.
Zhu, D., Li, K., Guo, L., Jiang, X., Zhang, T., Zhang, D., et al. (2012). DICCCOL: Dense Individualized and Common Connectivity-based Cortical Landmarks, *Joint first authors, accepted, Cerebral Cortex.
Acknowledgements
T Liu was supported by the NIH Career Award EB 006878, NIH R01 HL087923-03 S2, NIH R01 DA033393 and The University of Georgia start-up research funding. Parts of the OSPAN working memory fMRI data sets were provided by Carlos Faraco and L. Stephen Miller. The authors would like to thank the anonymous reviewers for their constructive comments and suggestions.
Author information
Authors and Affiliations
Corresponding author
Additional information
Xiang Li and Chulwoo Lim are joint first authors.
Rights and permissions
About this article
Cite this article
Li, X., Lim, C., Li, K. et al. Detecting Brain State Changes via Fiber-Centered Functional Connectivity Analysis. Neuroinform 11, 193–210 (2013). https://doi.org/10.1007/s12021-012-9157-y
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12021-012-9157-y