Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Linear codes with few weights from weakly regular bent functions based on a generic construction

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

We contribute to the knowledge of linear codes with few weights from special polynomials and functions. Substantial efforts (especially due to C. Ding) have been directed towards their study in the past few years. Such codes have several applications in secret sharing, authentication codes, association schemes and strongly regular graphs. Based on a generic construction of linear codes from mappings and by employing weakly regular bent functions, we provide a new class of linear p-ary codes with three weights given with its weight distribution. The class of codes presented in this paper is different from those known in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, R., Ding, C., Helleseth, T., Kløve, T.: How to build robust shared control systems. J. Des. Codes Crypt. 15(2), 111–124 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Calderbank, A.R., Goethals, J.M.: Three-weight codes and association schemes. Philips J. Res. 39, 143–152 (1984)

    MathSciNet  MATH  Google Scholar 

  3. Calderbank, A.R., Kantor, W.M.: The geometry of two-weight codes. Bull. London Math. Soc. 18, 97–122 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  4. Canteaut, A., Charpin, P., Dobbertin, H.: Weight divisibility of cyclic codes, highly nonlinear functions on G F(2m), and crosscorrelation of maximum-length sequences. SIAM J. Discret. Math. 13, 105–137 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Carlet, C., Charpin, P., Zinoviev, V.: Codes, bent functions and permutations suitable for DES-like cryptosystems. J. Des. Codes Crypt. 15, 125–156 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Carlet, C., Ding, C., Yuan, J.: Linear codes from perfect nonlinear mappings and their secret sharing schemes. IEEE Trans. Inf. Theory 51(6), 2089–2102 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Carlet, C., Mesnager, S.: Four decades of research on bent functions. J. Des. Codes Crypt. 78(1), 5–50 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Choi, S.-T., Kim, J.-Y., No, J.-S., Chung, H.: Weight distribution of some cyclic codes. In: Proceedings IEEE international symposium on information theory, pp 2901–2903 (2012)

  9. Cohen, G., Mesnager, S., Patey, A.: On minimal and quasi-minimal linear codes. In: Proceedings of the 14th international conference on cryptography and coding, Oxford, United Kingdom, IMACC 2013, LNCS 8308, pp 85–98. Springer, Heidelberg (2013)

  10. Cohen, G., Mesnager, S.: On minimal and almost-minimal linear codes. In: Proceedings of the 21st International Symposium on Mathematical Theory of Networks and Systems (MTNS 2014), Session “Coding theory”, pp 928–931, Groningen (2014)

  11. Cohen, G., Mesnager, S.: Variations on minimal linear codes. In: Proceedings of the 4th international castle meeting on coding theory and ApplicationSeries: CIM Series in Mathematical Sciences, vol. 3, pp 125–131. Springer (2015)

  12. Cohen, G., Mesnager, S., Randriambololona, H.: Yet another variation on minimal linear codes. J. Adv. Math. Commun. 10(1), 53–61 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Courteau, B., Wolfmann, J.: On triple-sum-sets and two or three weights codes. J. Discret. Math. 50, 179–191 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  14. Delsarte, P.: On triple-sum-sets and two or three weights codes. IEEE Trans. Inf. Theory 21(5), 575–576 (1975)

    Article  MathSciNet  Google Scholar 

  15. Dillon, J.: Elementary Hadamard difference sets. PhD thesis, University of Maryland (1974)

  16. Ding, C.: Linear codes from some 2-Designs. IEEE Trans. Inf. Theory 61(6), 3265–3275 (2015)

    Article  MathSciNet  Google Scholar 

  17. Ding, C.: A construction of binary linear codes from Boolean functions arXiv:1511.00321v1 (2015)

  18. Ding, K., Ding, C.: Binary linear codes with three weights. IEEE Commun. Lett. 18(11), 1879–1882 (2014)

    Article  MATH  Google Scholar 

  19. Ding, K., Ding, C.: A class of two-weight and three-weight codes and their applications in secret sharing. IEEE Trans. Inf. Theory 61(11), 5835–5842 (2015)

    Article  MathSciNet  Google Scholar 

  20. Ding, C., Li, C., Li, N., Zhou, Z.: Three-weight cyclic codes and their weight distributions. J. Discret. Math. 339(2), 415–427 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ding, C., Luo, J., Niederreiter, H.: Two weight codes punctured from irreducible cyclic codes. In: Li, Y., Ling, S., Niederreiter, H., Wang, H., Xing, C., Zhang, S. (eds.) Proceedings of the 1st International Workshop Coding Theory Cryptography, pp 119–124, Singapore (2008)

  22. Ding, C., Wang, X.: A coding theory construction of new systematic authentication codes. J. Theor. Comput. Sci. 330(1), 81–99 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Feng, K., Luo, J.: Value distribution of exponential sums from perfect nonlinear functions and their applications. IEEE Trans. Inf. Theory 53(9), 3035–3041 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Helleseth, T., Kholosha, A.: Monomial and quadratic bent functions over the finite fields of odd characteristic. IEEE Trans. Inf. Theory 52(5), 2018–2032 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Helleseth, T., Kholosha, A.: New binomial bent functions over the finite fields of odd characteristic. IEEE Trans. Inf. Theory 56(9), 4646–4652 (2010)

    Article  MathSciNet  Google Scholar 

  26. Helleseth, T., Kholosha, A.: Bent functions and their connections to combinatorics. Surveys in Combinatorics 2013, pp 91–126. Cambridge University Press (2013)

  27. Heng, Z., Yue, Q.: Several class of cyclic codes with either optimal three weights or a few weights arXiv:1510.05355 (2015)

  28. Hollmann, H.D.L., Xiang, Q.: A proof of the Welch and Niho conjectures on cross-correlations of binary m-sequences. Journal Finite Fields and Their Applications, Vol. 7, Issue 2, pp 253–286. Cambridge University Press (2001)

  29. Ireland, K., Rosen, M.: A Classical introduction to modern number theory, 2nd ed., vol. 84. Springer, New York (1990). Graduate Texts in Mathematics

  30. Kumar, P.V., Scholtz, R.A., Welch, L.R.: Generalized bent functions and their properties. J. Comb. Theory Ser. A 40(1), 90–107 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  31. Li, C., Yue, Q., Li, F.: Hamming weights of the duals of cyclic codes with two zeros. IEEE Trans. Inf. Theory 60(7), 3895–3902 (2014)

    Article  MathSciNet  Google Scholar 

  32. Mesnager, S.: Bent functions: fundamentals and results. Springer, New-York. To appear

  33. Lidl, R., Niederreiter, H.: Finite fields (Encyclopedia of Mathematics and its Applications), 2nd Edn. Cambridge University Press (1997)

  34. Rothaus, O.S.: On “bent” functions. J. Comb. Theory Ser. A 20, 300–305 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tang, C., Li, N., Qi, Y., Zhou, Z., Helleseth, T.: Linear codes with two or three weights from weakly regular bent functions. IEEE Trans. Inf. Theory 62(3), 1166–1176 (2016)

    Article  MathSciNet  Google Scholar 

  36. Xia, Y., Helleseth, T., Li, C.: Some new classes of cyclic codes with three or six weights. Adv. Math. Commun. 9(1), 23–36 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Xu, G., Cao, X.: Linear codes with two or three weights from some functions with low Walsh spectrum in odd characteristic. arXiv:1510.01031 (2015)

  38. Yuan, J., Carlet, C., Ding, C.: The weight distribution of a class of linear codes from perfect nonlinear functions. IEEE Trans. Inf. Theory 52(2), 712–717 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  39. Yuan, J., Ding, C.: Secret sharing schemes from three classes of linear codes. IEEE Trans. Inf. Theory 52(1), 206–212 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zeng, X., Hu, L., Jiang, W., Yue, Q., Cao, X.: The weight distribution of a class of p-ary cyclic codes. Journal Finite Fields and Their Applications 16(1), 56–73 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhou, Z., Ding, C.: A class of three-weight codes. Journal Finite Fields and Their Applications 25, 79–93 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhou, Z., Li, N., Fan, C., Helleseth, T.: Linear codes with two or three weights from quadratic bent functions. Journal Des. Codes Crypt., 1–13 (2015)

Download references

Acknowledgments

The author would like to thank Prof. Cunsheng Ding for his valuable and constructive comments on a preliminary version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sihem Mesnager.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mesnager, S. Linear codes with few weights from weakly regular bent functions based on a generic construction. Cryptogr. Commun. 9, 71–84 (2017). https://doi.org/10.1007/s12095-016-0186-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-016-0186-5

Keywords

Mathematics Subject Classification (2010)