Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On the multi-splitting iteration method for computing PageRank

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

A two-step iterative scheme based on the multiplicative splitting iteration is presented for PageRank computation. The new algorithm is applied to the linear system formulation of the problem. Our method is essentially a two-parameter iteration which can extend the possibility to optimize the iterative process. Theoretical analyses show that the iterative sequence produced by our method is convergent to the unique solution of the linear system, i.e., PageRank vector. An exact parameter region of convergence for the method is strictly proved. In each iteration, the proposed method requires solving two linear sub-systems with the splitting of the coefficient matrix of the problem. We consider using inner iterations to compute approximate solutions of these linear sub-systems. Numerical examples are presented to illustrate the efficiency of the new algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Here and in what follows, A=MN is called a splitting of the matrix A if M is a nonsingular matrix.

References

  1. Arasu, A., Novak, J., Tomkins, A., Tomlin, J.: PageRank computation and the structure of the web: experiments and algorithms. In: Proceedings of 11th International Conference on the World Wide Web, Honolulu, 2002. Available online from http://www2002.org/CDROM/poster/173.pdf

  2. Bai, Z.Z.: On the convergence of additive and multiplicative splitting iterations for systems of linear equations. J. Comput. Appl. Math. 154, 195–214 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bai, Z.Z., Golub, G.H., Ng, M.K.: Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl. 24(3), 603–626 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boldi, P., Santini, M., Vigna, S.: PageRank as a function of the damping factor. In: Proceedings of the 14th International World Web Conference. ACM, New York (2005)

    Google Scholar 

  5. Corso, G.D., Gullí, A., Romani, F.: Comparison of Krylov subspace methods on the PageRank problem. J. Comput. Appl. Math. 210, 159–166 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Elden, L.: A note on the eigenvalues of the Google matrix. Report LiTH-MAT-R-04-01, Linkoping University (2003)

  7. Gleich, D., Zhukov, L., Berkhin, P.: Fast parallel PageRank: a linear system approach. Yahoo! Research Technical Report YRL-2004-038 (2004). Available online from http://research.yahoo.com/publica-tion/YRL-2004-038.pdf

  8. Gleich, D., Gray, A., Greif, C., Lau, T.: An inner-outer iteration method for computing PageRank. SIAM J. Sci. Comput. 32(1), 349–371 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Golub, G.H., Greif, C.: An Arnoldi-type algorithm for computing PageRank. BIT Numer. Math. 46, 759–771 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Golub, G.H., Van Loan, C.F.: Matrix Computation. Johns Hopkins University Press, Baltimore (1996)

    Google Scholar 

  11. Grimmett, G., Stirzakerand, D.: Probability and Random Processes, 3rd edn. Oxford University Press, Oxford (2001)

    Google Scholar 

  12. Haveliwala, T.H., et al.: Computing PageRank using power extrapolation. Stanford University Technical Report (2003)

  13. Ipsen, I., Selee, T.: PageRank computation, with special attention to dangling nodes. SIAM J. Matrix Anal. Appl. 29(4), 1281–1296 (2007)

    Article  MathSciNet  Google Scholar 

  14. Kamvar, S.D., Haveliwala, T.H., Manning, C.D., Golub, G.H.: Extrapolation methods for accelerating PageRank computation. In: Twelfth International World Wide Web Conference. ACM, New York (2003)

    Google Scholar 

  15. Kamvar, S.D., Haveliwala, T.H., Manning, C.D., Golub, G.H.: Exploiting the block structure of the web for computing PageRank. Stanford University Technical Report, SCCM-03-02 (2003)

  16. Kamvar, S.D., Haveliwala, T.H., Golub, G.H.: Adaptive methods for the computation of the PageRank. Linear Algebra Appl. 386, 51–65 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Langville, A.N., Meyer, C.D.: Fiddling with PageRank. Technical Report, Department of Mathematics, North Carolina State University (2003)

  18. Langville, A.N., Meyer, C.D.: Deeper inside PageRank. Internet Math. 1(3), 335–380 (2005)

    Article  MathSciNet  Google Scholar 

  19. Langville, A.N., Meyer, C.D.: A survey of eigenvector methods of web information retrieval. SIAM Rev. 47(1), 135–161 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Langville, A.N., Meyer, C.D.: A reordering for the PageRank problem. SIAM J. Sci. Comput. 27(6), 2112–2120 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lin, Y., Shi, X., Wei, Y.: On computing PageRank via lumping the Google matrix. J. Comput. Appl. Math. 224, 702–708 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Morrison, J.L., Breitling, R., Higham, D.J., Gilbert, D.R.: GeneRank: using search engine technology for the analysis of microarray experiments. BMC Bioinform. 6, 233 (2005)

    Article  Google Scholar 

  23. Page, L., Brin, S., Motwani, R., Winogrnd, T.: The PageRank citation ranking: bring order to the web. Stanford Digital Libraries Working Paper (1998)

  24. Varga, R.: Matrix Iterative Analysis. Prentice Hall, Englewood Cliffs (1962)

    Google Scholar 

  25. Wu, G., Wei, Y.: A power-Arnoldi algorithm for computing PageRank. Numer. Linear Algebra Appl. 14, 521–546 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wu, G., Wei, Y.: An Arnoldi-extrapolation algorithm for computing PageRank. J. Comput. Appl. Math. 234, 3196–3212 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wu, G., Wei, Y.: Arnoldi versus GMRES for computing PageRank: a theoretical contribution to Google’s PageRank problem. ACM Trans. Inform. Syst. 28, 11 (2010)

    Article  Google Scholar 

  28. Wu, G., Zhang, Y., Wei, Y.: Krylov subspace algorithms for computing GeneRank for the analysis of microarray data mining. J. Comput. Biol. 17, 631–646 (2010)

    Article  MathSciNet  Google Scholar 

  29. Yang, A.L., An, J., Wu, Y.J.: A generalized preconditioned HSS method for non-Hermitian positive definite systems. Appl. Math. 216, 1715–1722 (2010)

    MathSciNet  MATH  Google Scholar 

  30. Yin, G., Yin, J.: On adaptively accelerated method for computing PageRank. Numer. Linear Algebra Appl. 19, 73–85 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Young, D.M.: Iterative Solution of Large Linear Systems. Academic Press, New York (1971)

    MATH  Google Scholar 

  32. Yu, Q., Miao, Z., Wu, G., Wei, Y.: Lumping algorithms for computing Google’s PageRank and its derivative, with attention to unreferenced nodes. Inf. Retr. 15, 503–526 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their valuable comments and suggestion on the original manuscript. These brought several enhancements to our initial work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanqing Gu.

Additional information

The work are supported by Shanghai Natural Science Foundation (10ZR1410900), Key Disciplines of Shanghai Municipality (S30104), Innovation Program of Shanghai Municipal Education Commission (13ZZ068), Natural Science Foundation of Universities of Anhui Province (KJ2011A248, KJ2012Z347) and Young Foundation of Huaibei Normal University (700583).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, C., Wang, L. On the multi-splitting iteration method for computing PageRank. J. Appl. Math. Comput. 42, 479–490 (2013). https://doi.org/10.1007/s12190-013-0645-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-013-0645-5

Keywords

Mathematics Subject Classification