Abstract
A two-step iterative scheme based on the multiplicative splitting iteration is presented for PageRank computation. The new algorithm is applied to the linear system formulation of the problem. Our method is essentially a two-parameter iteration which can extend the possibility to optimize the iterative process. Theoretical analyses show that the iterative sequence produced by our method is convergent to the unique solution of the linear system, i.e., PageRank vector. An exact parameter region of convergence for the method is strictly proved. In each iteration, the proposed method requires solving two linear sub-systems with the splitting of the coefficient matrix of the problem. We consider using inner iterations to compute approximate solutions of these linear sub-systems. Numerical examples are presented to illustrate the efficiency of the new algorithm.
Similar content being viewed by others
Notes
Here and in what follows, A=M−N is called a splitting of the matrix A if M is a nonsingular matrix.
References
Arasu, A., Novak, J., Tomkins, A., Tomlin, J.: PageRank computation and the structure of the web: experiments and algorithms. In: Proceedings of 11th International Conference on the World Wide Web, Honolulu, 2002. Available online from http://www2002.org/CDROM/poster/173.pdf
Bai, Z.Z.: On the convergence of additive and multiplicative splitting iterations for systems of linear equations. J. Comput. Appl. Math. 154, 195–214 (2003)
Bai, Z.Z., Golub, G.H., Ng, M.K.: Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl. 24(3), 603–626 (2003)
Boldi, P., Santini, M., Vigna, S.: PageRank as a function of the damping factor. In: Proceedings of the 14th International World Web Conference. ACM, New York (2005)
Corso, G.D., Gullí, A., Romani, F.: Comparison of Krylov subspace methods on the PageRank problem. J. Comput. Appl. Math. 210, 159–166 (2007)
Elden, L.: A note on the eigenvalues of the Google matrix. Report LiTH-MAT-R-04-01, Linkoping University (2003)
Gleich, D., Zhukov, L., Berkhin, P.: Fast parallel PageRank: a linear system approach. Yahoo! Research Technical Report YRL-2004-038 (2004). Available online from http://research.yahoo.com/publica-tion/YRL-2004-038.pdf
Gleich, D., Gray, A., Greif, C., Lau, T.: An inner-outer iteration method for computing PageRank. SIAM J. Sci. Comput. 32(1), 349–371 (2010)
Golub, G.H., Greif, C.: An Arnoldi-type algorithm for computing PageRank. BIT Numer. Math. 46, 759–771 (2006)
Golub, G.H., Van Loan, C.F.: Matrix Computation. Johns Hopkins University Press, Baltimore (1996)
Grimmett, G., Stirzakerand, D.: Probability and Random Processes, 3rd edn. Oxford University Press, Oxford (2001)
Haveliwala, T.H., et al.: Computing PageRank using power extrapolation. Stanford University Technical Report (2003)
Ipsen, I., Selee, T.: PageRank computation, with special attention to dangling nodes. SIAM J. Matrix Anal. Appl. 29(4), 1281–1296 (2007)
Kamvar, S.D., Haveliwala, T.H., Manning, C.D., Golub, G.H.: Extrapolation methods for accelerating PageRank computation. In: Twelfth International World Wide Web Conference. ACM, New York (2003)
Kamvar, S.D., Haveliwala, T.H., Manning, C.D., Golub, G.H.: Exploiting the block structure of the web for computing PageRank. Stanford University Technical Report, SCCM-03-02 (2003)
Kamvar, S.D., Haveliwala, T.H., Golub, G.H.: Adaptive methods for the computation of the PageRank. Linear Algebra Appl. 386, 51–65 (2004)
Langville, A.N., Meyer, C.D.: Fiddling with PageRank. Technical Report, Department of Mathematics, North Carolina State University (2003)
Langville, A.N., Meyer, C.D.: Deeper inside PageRank. Internet Math. 1(3), 335–380 (2005)
Langville, A.N., Meyer, C.D.: A survey of eigenvector methods of web information retrieval. SIAM Rev. 47(1), 135–161 (2005)
Langville, A.N., Meyer, C.D.: A reordering for the PageRank problem. SIAM J. Sci. Comput. 27(6), 2112–2120 (2006)
Lin, Y., Shi, X., Wei, Y.: On computing PageRank via lumping the Google matrix. J. Comput. Appl. Math. 224, 702–708 (2009)
Morrison, J.L., Breitling, R., Higham, D.J., Gilbert, D.R.: GeneRank: using search engine technology for the analysis of microarray experiments. BMC Bioinform. 6, 233 (2005)
Page, L., Brin, S., Motwani, R., Winogrnd, T.: The PageRank citation ranking: bring order to the web. Stanford Digital Libraries Working Paper (1998)
Varga, R.: Matrix Iterative Analysis. Prentice Hall, Englewood Cliffs (1962)
Wu, G., Wei, Y.: A power-Arnoldi algorithm for computing PageRank. Numer. Linear Algebra Appl. 14, 521–546 (2007)
Wu, G., Wei, Y.: An Arnoldi-extrapolation algorithm for computing PageRank. J. Comput. Appl. Math. 234, 3196–3212 (2010)
Wu, G., Wei, Y.: Arnoldi versus GMRES for computing PageRank: a theoretical contribution to Google’s PageRank problem. ACM Trans. Inform. Syst. 28, 11 (2010)
Wu, G., Zhang, Y., Wei, Y.: Krylov subspace algorithms for computing GeneRank for the analysis of microarray data mining. J. Comput. Biol. 17, 631–646 (2010)
Yang, A.L., An, J., Wu, Y.J.: A generalized preconditioned HSS method for non-Hermitian positive definite systems. Appl. Math. 216, 1715–1722 (2010)
Yin, G., Yin, J.: On adaptively accelerated method for computing PageRank. Numer. Linear Algebra Appl. 19, 73–85 (2012)
Young, D.M.: Iterative Solution of Large Linear Systems. Academic Press, New York (1971)
Yu, Q., Miao, Z., Wu, G., Wei, Y.: Lumping algorithms for computing Google’s PageRank and its derivative, with attention to unreferenced nodes. Inf. Retr. 15, 503–526 (2012)
Acknowledgements
The authors would like to thank the anonymous referees for their valuable comments and suggestion on the original manuscript. These brought several enhancements to our initial work.
Author information
Authors and Affiliations
Corresponding author
Additional information
The work are supported by Shanghai Natural Science Foundation (10ZR1410900), Key Disciplines of Shanghai Municipality (S30104), Innovation Program of Shanghai Municipal Education Commission (13ZZ068), Natural Science Foundation of Universities of Anhui Province (KJ2011A248, KJ2012Z347) and Young Foundation of Huaibei Normal University (700583).
Rights and permissions
About this article
Cite this article
Gu, C., Wang, L. On the multi-splitting iteration method for computing PageRank. J. Appl. Math. Comput. 42, 479–490 (2013). https://doi.org/10.1007/s12190-013-0645-5
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12190-013-0645-5
Keywords
- PageRank
- Damping factor
- Power method
- Inner-outer iterations
- Splitting iteration methods
- Stationary schemes