Abstract
We formulate a system of ordinary differential equations to model the contribution of antibiotic treatment and immune system to combat bacterial infections. We obtained threshold conditions that determine when the bacteria can be eliminated, which are consistent with biological phenomena. In order to minimize the bacterial population, we formulated an optimal control problem considering the action of both antibiotic and immune system. The optimal control is obtained applying the Pontryagin’s Principle. The results show the relevance of the synergism between the antibiotic treatment and the immune system response.
Similar content being viewed by others
References
Global antimicrobial resistance surveillance system (GLASS) report: early implementation 2020. Geneva: World Health Organization; 2020. Licence: CC BY-NC-SA 3.0 IGO. https://www.who.int/glass/resources/publications/early-implementation-report-2020/en/ Accessed 2 April (2021)
Sultan, I., Rahman, S., Jan, A.T., Siddiqui, M.T., Mondal, A.H., Haq, Q.M.R.: Antibiotics, resistome and resistance mechanisms: a bacterial perspective. Front. Microbiol. 9, 1–16 (2018)
Nikaido, H.: Multidrug resistance in bacteria. Annu. Rev. Biochem. 78, 119–146 (2009)
Beceiro, A., Tomás, M., Bou, G.: Antimicrobial resistance and virulence: a successful or deleterious association in the bacterial world? Clin Microbiol Rev. 26, 185–230 (2013)
Simon, T.D., Kronman, M.P., Whitlock, K.B., Browd, S.R., Holubkov, R., Kestle, J.R., Oakes, W.J.: Reinfection rates following adherence to Infectious Diseases Society of America guideline recommendations in first cerebrospinal fluid shunt infection treatment. J. Neurosurg. Pediatr. 23, 577–585 (2019)
Chaisson, R.E., Churchyard, G.J.: Recurrent tuberculosis-relapse, re-infection and HIV. J. Infect. Dis. 201, 653–655 (2010)
Chaplin, D.: Overview of the immune response. J. Allergy Clin. Immunol. 125, S3–S23 (2010)
Udekwu, K.I., Weiss, H.: Pharmacodynamic considerations of collateral sensitivity in design of antibiotic treatment regimen. Drug Des. Dev. Ther. 12, 2249–2257 (2018)
Bonhoeffer, S., Lipsitch, M., Levin, B.R.: Evaluating treatment protocols to prevent antibiotic resistance. Proc. Natl. Acad. Sci. 94, 12106–12111 (1997)
Scire, J., Hozé, N., Uecker, H.: Aggressive or moderate drug therapy for infectious diseases? Trade-offs between different treatment goals at the individual and population levels. PLoS Comput. Biol. 15(8), 1–31 (2019)
Massad, E., Nascimento, M., Bezerra, F.: An optimization model for antibiotic use. Appl. Math. Comput. 201, 161–167 (2008)
Handel, A., Margolis, E., Levin, B.R.: Exploring the role of the immune response in preventing antibiotic resistance. J. Theor. Biol. 256, 655–662 (2009)
Lowden, J., Miller, R., Yahdi, M.: Optimal control of vancomycin-resistant enterococci using preventive care and treatment of infections. Math. Biosci. 249, 8–17 (2014)
Ibargüen-Mondragón, E., Esteva, L.: On the interactions of sensitive and resistant mycobacterium tuberculosis to antibiotics. Math. Biosci. 246, 84–93 (2013)
Ibargüen-Mondragón, E., Esteva, L., Romero-Leiton, J.P., Hidalgo-Bonilla, S.P., Burbano-Rosero, E.M., Cerón, M., Mosquera, S.: Mathematical modeling on bacterial resistance to multiple antibiotics caused by spontaneus mutations. Biosystems 117, 60–67 (2014)
Ibargüen-Mondragón, E., Romero-Leiton, J.P., Esteva, L., Cerón, M., Hidalgo-Bonilla, S.P.: Stability and periodic solutions for a model of bacterial resistance to antibiotics caused by mutations and plasmids. Appl. Math. Model. 76, 238–251 (2019)
Ibargüen-Mondragón, E., Prieto, K., Hidalgo-Bonilla, S.P.: A model on bacterial resistance considering a generalized law of mass action for plasmid replication. J. Biol. Syst. 28(2), 1–38 (2021)
Ankomah, P., Levin, B.R.: Exploring the collaboration between antibiotics and the immune response in the treatment of acute, self-limiting infections. Proc. Natl. Acad. Sci. 111, 8331–8338 (2014)
Levin, B.R., Baquero, F., Ankomah, P.P., McCall, I.C.: Phagocytes, antibiotics, and self-limiting bacterial infections. Trends Microbiol. 25, 878–892 (2017)
Zharkova, M.S., Orlov, D.S., Golubeva, O.Y., Chakchir, O.B., Eliseev, I.E., Grinchuk, T.M., Shamova, O.V.: Application of antimicrobial peptides of the innate immune system in combination with conventional antibiotics-a novel way to combat antibiotic resistance? Front. Cell. Infect. Microbiol. 9, 1–23 (2019)
Cassone, M., Otvos, L., Jr.: Synergy among antibacterial peptides and between peptides and small-molecule antibiotics. Expert Rev. Anti Infect. Ther. 8, 703–716 (2010)
Leung, C.Y., Weitz, J.S.: Modeling the synergistic elimination of bacteria by phage and the innate immune system. J. Theor. Biol. 429, 241–252 (2017)
Landersdorfer, C.B., Ly, N.S., Xu, H., Tsuji, B.T., Bulitta, J.B.: Quantifying subpopulation synergy for antibiotic combinations via mechanism-based modeling and a sequential dosing design. Antimicrob. Agents Chemother. 57, 2343–2351 (2013)
Nadelman, R.B., Wormser, G.P.: Reinfection in patients with Lyme disease. Clin. Infect. Dis. 45, 1032–1038 (2007)
Ghanbari, B., Djilali, S.: Mathematical and numerical analysis of a three-species predator-prey model with herd behavior and time fractional-order derivative. Math. Models Methods Appl. Sci. 43(4), 1736–1752 (2020)
Perko, L.: Differential Equations and Dynamical Systems, vol. 7. Springer Science & Business Media, New York (2013)
Bentout, S., Tridane, A., Djilali, S., Touaoula, T.M.: Age-structured modeling of COVID-19 epidemic in the USA, UAE and Algeria. Alexandria Eng. J. 60, 401–411 (2021)
Hale, J.: Ordinary Differential Equations. Wiley, New York (1969)
Schmidt, D.S.: Hopf’s bifurcation theorem and the center theorem of liapunov with resonance cases. J. Math. Anal. Appl. 63, 354–370 (1978)
Hisrch, M.W., Smale, S.: Differential Equations, Dynamical Systems, and Linear Algebra. Academic Press, New York (1974)
Ager, S., Gould, K.: Clinical update on Linezolid in the treatment of gram-positive bacterial infections. Infect. Drug. Resist. 5, 87–102 (2012)
Mirt, A.S., Blanco, M.P., Caleiras, E., Rangel, O.: Histopatología y ultraestructura de la cromomicosis causada por cladosporium carrionii. Invest. Clin. 36, 173–182 (1995)
Fleming, W.H., Rishel, R.W.: Deterministic and Stochastic Optimal Control. Spring Verlag, Berlin (1975)
Lenhart, S., Workman, J.T.: Optimal Control Applied to Biological Models. CRC Press, New York (2007)
Kaufman, H.L., et al.: The value of cancer immunotherapy summit at the 2016 society for immunotherapy of cancer 31st anniversary annual meeting. J. Immunother. Cancer. 5, 1–10 (2016)
Poon, A., Chao, L.: The rate of compensatory mutation in the DNA bacteriophage \(\varphi \)X174. Genetics 170, 989–999 (2005)
Zur Wiesch, P.S., Engelstädter, J., Bonhoeffer, S.: Compensation of fitness costs and reversibility of antibiotic resistance mutations. Antimicrob. Agents Chemother. 54, 2085–2095 (2010)
Delano, J.M., Ward, P.A.: The immune system’s role in sepsis progression, resolution, and long-term outcome. Immunol. Rev. 274, 330–353 (2016)
Global tuberculosis report 2020. Geneva: World Health Organization; 2020. Licence: CC BY-NC-SA 3.0 IGO. Retrieved from https://www.who.int/publications/i/item/9789240013131. Accessed 2 April (2021)
Hayes, C.S., Low, D.A.: Signals of growth regulation in bacteria. Curr. Opin. Microbiol. 12, 667–673 (2009)
Khatun, M.S., Biswas, M.H.A.: Mathematical analysis and optimal control applied to the treatment of leukemia. J. Appl. Math. Comput. 64, 331–353 (2020)
Agarwal, P., Singh, R.: Modelling of transmission dynamics of Nipah virus (Niv): a fractional order approach. Phys. A. 547, 1–11 (2020)
Bentout, S., Djilali, S., Kumar, S.: Mathematical analysis of the influence of prey escaping from prey herd on three species fractional predator-prey interaction model. Phys. A. 572, 125840 (2021)
Kumar, S., Ahmadian, A., Kumar, R., Kumar, D., Singh, J., Baleanu, D., Salimi, M.: An efficient numerical method for fractional SIR epidemic model of infectious disease by using Bernstein wavelets. Mathematics 8(4), 1–22 (2020)
Arqub, O.A.: Numerical solutions of systems of first-order, two-point BVPs based on the reproducing kernel algorithm. Calcolo 55(3), 1–28 (2018)
Soufiane, B., Touaoula, T.M.: Global analysis of an infection age model with a class of nonlinear incidence rates. J. Math. Anal. Appl. 434(2), 1211–1239 (2016)
Agarwal, P., Nieto, J.J., Ruzhansky, M., Torres, D.F.: Analysis of Infectious Disease Problems (Covid-19) and Their Global Impact. Springer Singapore, Singapore (2021)
Agarwal, P., Singh, R., ul Rehman, A.: Numerical solution of hybrid mathematical model of dengue transmission with relapse and memory via Ada-Bashforth-Moulton predictor-corrector scheme. Chaos Solitons Fractals 143, 110564 (2021)
Djilali, S., Bentout, S.: Spatiotemporal patterns in a diffusive predator-prey model with prey social behavior. Acta Appl. Math. 169, 125–143 (2020)
Apostol, T.M.: Mathematical Analysisis. Addison-Wesley, Massachusetts (1960)
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
No potential conflict of interest was reported by the authors.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix 1
Appendix 1
Lemma 2
If \(R_1<R_{\max }\), then the solution \(R_2\) defined in (23), of the equation \(\varPhi (R)=0\) satisfies \(R_2\in (0,R_{\max })\).
Proof
Substituting \(R_{max}\) defined in (19) in the inequality \(-R_{max}+R_1 < 0\) we obtain
Inequality (49) is equivalent to
From above inequality we obtain
Adding the term
in both sides of the above inequality we obtain
or equivalently
Oh the other hand, we observe that
In consequence, substituting above equation in the inequality (50) we obtain
Therefore \(\varPhi (R_{max})=-h_2R^2_{max}+h_1R_{max}+h_0<0\). Since \(\varPhi (0)=h_0>0\) and \(\varPhi (R_{max})<0\), then from the Intermediate Value Theorem we conclude \(R_2\in (0,R_{\max })\). \(\square \)
Lemma 3
There exists a unique function \(g:{\mathbb {R}}^7\rightarrow {\mathbb {R}}\) that satisfies \(\sigma _p=g(\beta _r,\beta _s,q,\delta ,\mu _s,\mu _r,\mu _p,K)\).
Proof
Let \(\varDelta _2(z,\sigma _p)=a_2(z,\sigma _p)a_1(z,\sigma _p)-a_3(z,\sigma _p)\) where \(z=(\beta _r,\beta _s,q,\delta ,\mu _s,\mu _r,\mu _p,K)\), then we verify that \(\varDelta _2(z_0,\sigma _p^0)=0\), where \(z_0\) is the parameter vector corresponding to the parameter \(\sigma _p^0\). In addition, from (29) we verified that \(\partial \varDelta _2(z_0,\sigma _p^0)/\partial \sigma _p=\partial \varDelta _2(z_0,\sigma ^0_p)/\partial \sigma _p=-\delta S_2\left[ (q+\delta P_2)\frac{S_2}{R_2}+\mu _p\right] \ne 0\). As a consequence, from the implicit function theorem, there is an open ball \(U\in {\mathbb {R}}^9\) containing \(z_0\) and an interval \(V\subset {\mathbb {R}}\) containing \(\mu _0\) such that there is a unique function \(\sigma _p=g(z)\) defined for \(z\in U\) and \(\mu \in V\) which satisfies \(F(x(\sigma _p^0),\sigma _p^0)=0\), where F is the right side of system (1) [50]. \(\square \)
Rights and permissions
About this article
Cite this article
Ibargüen-Mondragón, E., Esteva, L. & Cerón Gómez, M. An optimal control problem applied to plasmid-mediated antibiotic resistance. J. Appl. Math. Comput. 68, 1635–1667 (2022). https://doi.org/10.1007/s12190-021-01583-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12190-021-01583-0
Keywords
- Plasmid-mediated antibiotic resistance
- Qualitative analysis
- Hopf bifurcation
- Optimal control problem
- Numerical simulations