Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An optimal control problem applied to plasmid-mediated antibiotic resistance

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

We formulate a system of ordinary differential equations to model the contribution of antibiotic treatment and immune system to combat bacterial infections. We obtained threshold conditions that determine when the bacteria can be eliminated, which are consistent with biological phenomena. In order to minimize the bacterial population, we formulated an optimal control problem considering the action of both antibiotic and immune system. The optimal control is obtained applying the Pontryagin’s Principle. The results show the relevance of the synergism between the antibiotic treatment and the immune system response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Global antimicrobial resistance surveillance system (GLASS) report: early implementation 2020. Geneva: World Health Organization; 2020. Licence: CC BY-NC-SA 3.0 IGO. https://www.who.int/glass/resources/publications/early-implementation-report-2020/en/ Accessed 2 April (2021)

  2. Sultan, I., Rahman, S., Jan, A.T., Siddiqui, M.T., Mondal, A.H., Haq, Q.M.R.: Antibiotics, resistome and resistance mechanisms: a bacterial perspective. Front. Microbiol. 9, 1–16 (2018)

    Article  Google Scholar 

  3. Nikaido, H.: Multidrug resistance in bacteria. Annu. Rev. Biochem. 78, 119–146 (2009)

    Article  Google Scholar 

  4. Beceiro, A., Tomás, M., Bou, G.: Antimicrobial resistance and virulence: a successful or deleterious association in the bacterial world? Clin Microbiol Rev. 26, 185–230 (2013)

    Article  Google Scholar 

  5. Simon, T.D., Kronman, M.P., Whitlock, K.B., Browd, S.R., Holubkov, R., Kestle, J.R., Oakes, W.J.: Reinfection rates following adherence to Infectious Diseases Society of America guideline recommendations in first cerebrospinal fluid shunt infection treatment. J. Neurosurg. Pediatr. 23, 577–585 (2019)

    Article  Google Scholar 

  6. Chaisson, R.E., Churchyard, G.J.: Recurrent tuberculosis-relapse, re-infection and HIV. J. Infect. Dis. 201, 653–655 (2010)

    Article  Google Scholar 

  7. Chaplin, D.: Overview of the immune response. J. Allergy Clin. Immunol. 125, S3–S23 (2010)

    Article  Google Scholar 

  8. Udekwu, K.I., Weiss, H.: Pharmacodynamic considerations of collateral sensitivity in design of antibiotic treatment regimen. Drug Des. Dev. Ther. 12, 2249–2257 (2018)

    Article  Google Scholar 

  9. Bonhoeffer, S., Lipsitch, M., Levin, B.R.: Evaluating treatment protocols to prevent antibiotic resistance. Proc. Natl. Acad. Sci. 94, 12106–12111 (1997)

    Article  Google Scholar 

  10. Scire, J., Hozé, N., Uecker, H.: Aggressive or moderate drug therapy for infectious diseases? Trade-offs between different treatment goals at the individual and population levels. PLoS Comput. Biol. 15(8), 1–31 (2019)

    Article  Google Scholar 

  11. Massad, E., Nascimento, M., Bezerra, F.: An optimization model for antibiotic use. Appl. Math. Comput. 201, 161–167 (2008)

    MathSciNet  MATH  Google Scholar 

  12. Handel, A., Margolis, E., Levin, B.R.: Exploring the role of the immune response in preventing antibiotic resistance. J. Theor. Biol. 256, 655–662 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lowden, J., Miller, R., Yahdi, M.: Optimal control of vancomycin-resistant enterococci using preventive care and treatment of infections. Math. Biosci. 249, 8–17 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ibargüen-Mondragón, E., Esteva, L.: On the interactions of sensitive and resistant mycobacterium tuberculosis to antibiotics. Math. Biosci. 246, 84–93 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ibargüen-Mondragón, E., Esteva, L., Romero-Leiton, J.P., Hidalgo-Bonilla, S.P., Burbano-Rosero, E.M., Cerón, M., Mosquera, S.: Mathematical modeling on bacterial resistance to multiple antibiotics caused by spontaneus mutations. Biosystems 117, 60–67 (2014)

    Article  Google Scholar 

  16. Ibargüen-Mondragón, E., Romero-Leiton, J.P., Esteva, L., Cerón, M., Hidalgo-Bonilla, S.P.: Stability and periodic solutions for a model of bacterial resistance to antibiotics caused by mutations and plasmids. Appl. Math. Model. 76, 238–251 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ibargüen-Mondragón, E., Prieto, K., Hidalgo-Bonilla, S.P.: A model on bacterial resistance considering a generalized law of mass action for plasmid replication. J. Biol. Syst. 28(2), 1–38 (2021)

    MathSciNet  MATH  Google Scholar 

  18. Ankomah, P., Levin, B.R.: Exploring the collaboration between antibiotics and the immune response in the treatment of acute, self-limiting infections. Proc. Natl. Acad. Sci. 111, 8331–8338 (2014)

    Article  Google Scholar 

  19. Levin, B.R., Baquero, F., Ankomah, P.P., McCall, I.C.: Phagocytes, antibiotics, and self-limiting bacterial infections. Trends Microbiol. 25, 878–892 (2017)

    Article  Google Scholar 

  20. Zharkova, M.S., Orlov, D.S., Golubeva, O.Y., Chakchir, O.B., Eliseev, I.E., Grinchuk, T.M., Shamova, O.V.: Application of antimicrobial peptides of the innate immune system in combination with conventional antibiotics-a novel way to combat antibiotic resistance? Front. Cell. Infect. Microbiol. 9, 1–23 (2019)

    Article  Google Scholar 

  21. Cassone, M., Otvos, L., Jr.: Synergy among antibacterial peptides and between peptides and small-molecule antibiotics. Expert Rev. Anti Infect. Ther. 8, 703–716 (2010)

    Article  Google Scholar 

  22. Leung, C.Y., Weitz, J.S.: Modeling the synergistic elimination of bacteria by phage and the innate immune system. J. Theor. Biol. 429, 241–252 (2017)

    Article  MATH  Google Scholar 

  23. Landersdorfer, C.B., Ly, N.S., Xu, H., Tsuji, B.T., Bulitta, J.B.: Quantifying subpopulation synergy for antibiotic combinations via mechanism-based modeling and a sequential dosing design. Antimicrob. Agents Chemother. 57, 2343–2351 (2013)

    Article  Google Scholar 

  24. Nadelman, R.B., Wormser, G.P.: Reinfection in patients with Lyme disease. Clin. Infect. Dis. 45, 1032–1038 (2007)

    Article  Google Scholar 

  25. Ghanbari, B., Djilali, S.: Mathematical and numerical analysis of a three-species predator-prey model with herd behavior and time fractional-order derivative. Math. Models Methods Appl. Sci. 43(4), 1736–1752 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  26. Perko, L.: Differential Equations and Dynamical Systems, vol. 7. Springer Science & Business Media, New York (2013)

    MATH  Google Scholar 

  27. Bentout, S., Tridane, A., Djilali, S., Touaoula, T.M.: Age-structured modeling of COVID-19 epidemic in the USA, UAE and Algeria. Alexandria Eng. J. 60, 401–411 (2021)

    Article  Google Scholar 

  28. Hale, J.: Ordinary Differential Equations. Wiley, New York (1969)

    MATH  Google Scholar 

  29. Schmidt, D.S.: Hopf’s bifurcation theorem and the center theorem of liapunov with resonance cases. J. Math. Anal. Appl. 63, 354–370 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hisrch, M.W., Smale, S.: Differential Equations, Dynamical Systems, and Linear Algebra. Academic Press, New York (1974)

    Google Scholar 

  31. Ager, S., Gould, K.: Clinical update on Linezolid in the treatment of gram-positive bacterial infections. Infect. Drug. Resist. 5, 87–102 (2012)

    Google Scholar 

  32. Mirt, A.S., Blanco, M.P., Caleiras, E., Rangel, O.: Histopatología y ultraestructura de la cromomicosis causada por cladosporium carrionii. Invest. Clin. 36, 173–182 (1995)

    Google Scholar 

  33. Fleming, W.H., Rishel, R.W.: Deterministic and Stochastic Optimal Control. Spring Verlag, Berlin (1975)

    Book  MATH  Google Scholar 

  34. Lenhart, S., Workman, J.T.: Optimal Control Applied to Biological Models. CRC Press, New York (2007)

    Book  MATH  Google Scholar 

  35. Kaufman, H.L., et al.: The value of cancer immunotherapy summit at the 2016 society for immunotherapy of cancer 31st anniversary annual meeting. J. Immunother. Cancer. 5, 1–10 (2016)

    Google Scholar 

  36. Poon, A., Chao, L.: The rate of compensatory mutation in the DNA bacteriophage \(\varphi \)X174. Genetics 170, 989–999 (2005)

    Article  Google Scholar 

  37. Zur Wiesch, P.S., Engelstädter, J., Bonhoeffer, S.: Compensation of fitness costs and reversibility of antibiotic resistance mutations. Antimicrob. Agents Chemother. 54, 2085–2095 (2010)

    Article  Google Scholar 

  38. Delano, J.M., Ward, P.A.: The immune system’s role in sepsis progression, resolution, and long-term outcome. Immunol. Rev. 274, 330–353 (2016)

    Article  Google Scholar 

  39. Global tuberculosis report 2020. Geneva: World Health Organization; 2020. Licence: CC BY-NC-SA 3.0 IGO. Retrieved from https://www.who.int/publications/i/item/9789240013131. Accessed 2 April (2021)

  40. Hayes, C.S., Low, D.A.: Signals of growth regulation in bacteria. Curr. Opin. Microbiol. 12, 667–673 (2009)

    Article  Google Scholar 

  41. Khatun, M.S., Biswas, M.H.A.: Mathematical analysis and optimal control applied to the treatment of leukemia. J. Appl. Math. Comput. 64, 331–353 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  42. Agarwal, P., Singh, R.: Modelling of transmission dynamics of Nipah virus (Niv): a fractional order approach. Phys. A. 547, 1–11 (2020)

    Article  MathSciNet  Google Scholar 

  43. Bentout, S., Djilali, S., Kumar, S.: Mathematical analysis of the influence of prey escaping from prey herd on three species fractional predator-prey interaction model. Phys. A. 572, 125840 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  44. Kumar, S., Ahmadian, A., Kumar, R., Kumar, D., Singh, J., Baleanu, D., Salimi, M.: An efficient numerical method for fractional SIR epidemic model of infectious disease by using Bernstein wavelets. Mathematics 8(4), 1–22 (2020)

    Article  Google Scholar 

  45. Arqub, O.A.: Numerical solutions of systems of first-order, two-point BVPs based on the reproducing kernel algorithm. Calcolo 55(3), 1–28 (2018)

    MathSciNet  MATH  Google Scholar 

  46. Soufiane, B., Touaoula, T.M.: Global analysis of an infection age model with a class of nonlinear incidence rates. J. Math. Anal. Appl. 434(2), 1211–1239 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  47. Agarwal, P., Nieto, J.J., Ruzhansky, M., Torres, D.F.: Analysis of Infectious Disease Problems (Covid-19) and Their Global Impact. Springer Singapore, Singapore (2021)

    Book  MATH  Google Scholar 

  48. Agarwal, P., Singh, R., ul Rehman, A.: Numerical solution of hybrid mathematical model of dengue transmission with relapse and memory via Ada-Bashforth-Moulton predictor-corrector scheme. Chaos Solitons Fractals 143, 110564 (2021)

    Article  MathSciNet  Google Scholar 

  49. Djilali, S., Bentout, S.: Spatiotemporal patterns in a diffusive predator-prey model with prey social behavior. Acta Appl. Math. 169, 125–143 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  50. Apostol, T.M.: Mathematical Analysisis. Addison-Wesley, Massachusetts (1960)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Ibargüen-Mondragón.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

Lemma 2

If \(R_1<R_{\max }\), then the solution \(R_2\) defined in (23), of the equation \(\varPhi (R)=0\) satisfies \(R_2\in (0,R_{\max })\).

Proof

Substituting \(R_{max}\) defined in (19) in the inequality \(-R_{max}+R_1 < 0\) we obtain

$$\begin{aligned} -\frac{(R_s-1)K}{R_s\left( 1+\frac{\delta \sigma _pK}{\beta _s\mu _p}\right) }+R_1<0. \end{aligned}$$
(49)

Inequality (49) is equivalent to

$$\begin{aligned} \frac{(R_s-1)K}{R_s}\left( \frac{\delta \sigma _pK}{\mu _p\beta _r}-1\right) -\frac{(R_s-1)K}{R_s\left( 1+\frac{\delta \sigma _pK}{\beta _s\mu _p}\right) }+R_1 -\frac{(R_s-1)K}{R_s}\left( \frac{\delta \sigma _pK}{\mu _p\beta _r}-1\right) <0. \end{aligned}$$

From above inequality we obtain

$$\begin{aligned}&\frac{(R_s-1)K}{R_s}\left( \frac{\delta \sigma _pK}{\mu _p\beta _r}-1\right) -\frac{(R_s-1)K}{R_s\left( 1+\frac{\delta \sigma _pK}{\beta _s\mu _p}\right) }\\&\quad \left[ 1+\left( \dfrac{\delta \sigma _pK}{\mu _p\beta _r}-1\right) \left( 1+\dfrac{\delta \sigma _pK}{\beta _s\mu _p}\right) \right] +R_1<0. \end{aligned}$$

Adding the term

$$\begin{aligned} -\frac{qK}{\beta _r}\left( 1+\frac{\delta \sigma _pK}{\mu _p\beta _s}\right) , \end{aligned}$$

in both sides of the above inequality we obtain

$$\begin{aligned}&-\left[ 1+\left( \frac{\delta \sigma _pK}{\mu _p\beta _r}-1\right) \left( 1+\frac{\delta \sigma _pK}{\beta _s\mu _p}\right) \right] \frac{(R_s-1)K}{R_s\left( 1+\frac{\delta \sigma _pK}{\beta _s\mu _p}\right) } +R_1\\&\qquad \quad +\frac{(R_s-1)K}{R_s}\left( \frac{\delta \sigma _pK}{\mu _p\beta _r}-1\right) -\frac{qK}{\beta _r}\left( 1+\frac{\delta \sigma _pK}{\mu _p\beta _s}\right) <-\frac{qK}{\beta _r}\left( 1+\frac{\delta \sigma _pK}{\mu _p\beta _s}\right) , \end{aligned}$$

or equivalently

$$\begin{aligned} -h_2R_{max}+h_1<-\frac{qK}{\beta _r}\left( 1+\frac{\delta \sigma _pK}{\mu _p\beta _s}\right) . \end{aligned}$$
(50)

Oh the other hand, we observe that

$$\begin{aligned} \frac{qK}{\beta _r}\left( 1+\frac{\delta \sigma _pK}{\mu _p\beta _s}\right) = \dfrac{\frac{qK}{\beta _r}\frac{(R_s-1)K}{R_s}}{\frac{(R_s-1)K}{R_s}\frac{1}{1+\frac{\delta \sigma _pK}{\mu _p\beta _s}}}=\frac{h_0}{R_{max}}. \end{aligned}$$

In consequence, substituting above equation in the inequality (50) we obtain

$$\begin{aligned} -h_2R_{max}+h_1<-\frac{h_0}{R_{max}}. \end{aligned}$$

Therefore \(\varPhi (R_{max})=-h_2R^2_{max}+h_1R_{max}+h_0<0\). Since \(\varPhi (0)=h_0>0\) and \(\varPhi (R_{max})<0\), then from the Intermediate Value Theorem we conclude \(R_2\in (0,R_{\max })\). \(\square \)

Lemma 3

There exists a unique function \(g:{\mathbb {R}}^7\rightarrow {\mathbb {R}}\) that satisfies \(\sigma _p=g(\beta _r,\beta _s,q,\delta ,\mu _s,\mu _r,\mu _p,K)\).

Proof

Let \(\varDelta _2(z,\sigma _p)=a_2(z,\sigma _p)a_1(z,\sigma _p)-a_3(z,\sigma _p)\) where \(z=(\beta _r,\beta _s,q,\delta ,\mu _s,\mu _r,\mu _p,K)\), then we verify that \(\varDelta _2(z_0,\sigma _p^0)=0\), where \(z_0\) is the parameter vector corresponding to the parameter \(\sigma _p^0\). In addition, from (29) we verified that \(\partial \varDelta _2(z_0,\sigma _p^0)/\partial \sigma _p=\partial \varDelta _2(z_0,\sigma ^0_p)/\partial \sigma _p=-\delta S_2\left[ (q+\delta P_2)\frac{S_2}{R_2}+\mu _p\right] \ne 0\). As a consequence, from the implicit function theorem, there is an open ball \(U\in {\mathbb {R}}^9\) containing \(z_0\) and an interval \(V\subset {\mathbb {R}}\) containing \(\mu _0\) such that there is a unique function \(\sigma _p=g(z)\) defined for \(z\in U\) and \(\mu \in V\) which satisfies \(F(x(\sigma _p^0),\sigma _p^0)=0\), where F is the right side of system (1) [50]. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibargüen-Mondragón, E., Esteva, L. & Cerón Gómez, M. An optimal control problem applied to plasmid-mediated antibiotic resistance. J. Appl. Math. Comput. 68, 1635–1667 (2022). https://doi.org/10.1007/s12190-021-01583-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-021-01583-0

Keywords

Mathematics Subject Classification