Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Strategies for Efficient Numerical Implementation of Hybrid Multi-scale Agent-Based Models to Describe Biological Systems

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Biologically related processes operate across multiple spatiotemporal scales. For computational modeling methodologies to mimic this biological complexity, individual scale models must be linked in ways that allow for dynamic exchange of information across scales. A powerful methodology is to combine a discrete modeling approach, agent-based models (ABMs), with continuum models to form hybrid models. Hybrid multi-scale ABMs have been used to simulate emergent responses of biological systems. Here, we review two aspects of hybrid multi-scale ABMs: linking individual scale models and efficiently solving the resulting model. We discuss the computational choices associated with aspects of linking individual scale models while simultaneously maintaining model tractability. We demonstrate implementations of existing numerical methods in the context of hybrid multi-scale ABMs. Using an example model describing Mycobacterium tuberculosis infection, we show relative computational speeds of various combinations of numerical methods. Efficient linking and solution of hybrid multi-scale ABMs is key to model portability, modularity, and their use in understanding biological phenomena at a systems level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Adra, S., T. Sun, S. MacNeil, M. Holcombe, and R. Smallwood. Development of a three dimensional multiscale computational model of the human epidermis. PLoS ONE 5:e8511, 2010.

    Article  Google Scholar 

  2. Alarcón, T., H. M. Byrne, and P. K. Maini. Towards whole-organ modelling of tumour growth. Prog. Biophys. Mol. Biol. 85:451–472, 2004.

    Article  Google Scholar 

  3. An, G., Q. Mi, J. Dutta-Moscato, and Y. Vodovotz. Agent-based models in translational systems biology. Wiley Interdiscip. Rev. Syst. Biol. Med. 1:159–171, 2009.

    Article  Google Scholar 

  4. Anderson, A. R. A., M. A. J. Chaplain, and K. A. Rejniak (eds.). Single-Cell-Based Models in Biology and Medicine. Birkhäuser Basel: Basel, 2007.

    MATH  Google Scholar 

  5. Angermann, B. R., et al. Computational modeling of cellular signaling processes embedded into dynamic spatial contexts. Nat. Methods 9:283–289, 2012.

    Article  Google Scholar 

  6. Athale, C. A., and T. S. Deisboeck. The effects of EGF-receptor density on multiscale tumor growth patterns. J. Theor. Biol. 238:771–779, 2006.

    Article  MathSciNet  Google Scholar 

  7. Athale, C., Y. Mansury, and T. S. Deisboeck. Simulating the impact of a molecular “decision-process” on cellular phenotype and multicellular patterns in brain tumors. J. Theor. Biol. 233:469–481, 2005.

    Article  Google Scholar 

  8. Bailey, A. M., M. B. Lawrence, H. Shang, A. J. Katz, and S. M. Peirce. Agent-based model of therapeutic adipose-derived stromal cell trafficking during ischemia predicts ability to roll on P-selectin. PLoS Comput. Biol. 5:e1000294, 2009.

    Article  Google Scholar 

  9. Barakat, H. Z., and J. A. Clark. On the solution of the diffusion equations by numerical methods. J. Heat Transfer 88:421, 1966.

    Article  Google Scholar 

  10. Basak, S., M. Behar, and A. Hoffmann. Lessons from mathematically modeling the NF-κB pathway. Immunol. Rev. 246:221–238, 2012.

    Article  Google Scholar 

  11. Bauer, A. L., C. A. Beauchemin, and A. S. Perelson. Agent-based modeling of host-pathogen systems: the successes and challenges. Inf. Sci. (NY) 179:1379–1389, 2009.

    Article  Google Scholar 

  12. Berg, E. L. Systems biology in drug discovery and development. Drug Discov. Today 19:113–125, 2013.

    Article  Google Scholar 

  13. Bird, R. B., W. E. Stewart, and E. N. Lightfoot. Transport Phenomena. New York: Wiley, 1994.

    Google Scholar 

  14. Braun, D. A., M. Fribourg, and S. C. Sealfon. Cytokine response is determined by duration of receptor and signal transducers and activators of transcription 3 (STAT3) activation. J. Biol. Chem. 288:2986–2993, 2013.

    Article  Google Scholar 

  15. Chakrabarti, A., S. Verbridge, A. D. Stroock, C. Fischbach, and J. D. Varner. Multiscale models of breast cancer progression. Ann. Biomed. Eng. 40:2488–2500, 2012.

    Article  Google Scholar 

  16. Choi, T., M. R. Maurya, D. M. Tartakovsky, and S. Subramaniam. Stochastic operator-splitting method for reaction–diffusion systems. J. Chem. Phys. 137:184102, 2012.

    Article  Google Scholar 

  17. Christley, S., and G. An. Agent-Based Modeling in Translational Systems Biology. In: Complex Systems and Computational Biology Approaches to Acute Inflammation SE—3, edited by Y. Vodovotz, and G. An. New York, NY: Springer, 2013, pp. 29–49.

    Chapter  Google Scholar 

  18. Cilfone, N. A., C. R. Perry, D. E. Kirschner, and J. J. Linderman. Multi-scale modeling predicts a balance of tumor necrosis factor-α and interleukin-10 controls the granuloma environment during Mycobacterium tuberculosis infection. PLoS ONE 8:e68680, 2013.

    Article  Google Scholar 

  19. Costa, B. Spectral methods for partial differential equations. Cubo - Revista de Matemática 6:1–32, 2004.

  20. Coveney, P. V., and P. W. Fowler. Modelling biological complexity: a physical scientist’s perspective. J. R. Soc. Interface 2:267–280, 2005.

    Article  Google Scholar 

  21. Csomós, P., I. Faragó, and Á. Havasi. Weighted sequential splittings and their analysis. Comput. Math. Appl. 50:1017–1031, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  22. Dada, J. O., and P. Mendes. Multi-scale modelling and simulation in systems biology. Integr. Biol. (Camb) 3:86–96, 2011.

    Article  Google Scholar 

  23. Daubechies, I. The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inf. Theory 36:961–1005, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  24. Deisboeck, T. S., Z. Wang, P. Macklin, and V. Cristini. Multiscale cancer modeling. Annu. Rev. Biomed. Eng. 13:127–155, 2011.

    Article  Google Scholar 

  25. Duhamel, P., and M. Vetterli. Fast fourier transforms: a tutorial review and a state of the art. Signal Process. 19:259–299, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  26. Fallahi-Sichani, M., M. El-Kebir, S. Marino, D. E. Kirschner, and J. J. Linderman. Multiscale computational modeling reveals a critical role for TNF-α receptor 1 dynamics in tuberculosis granuloma formation. J. Immunol. 186:3472–3483, 2011.

    Article  Google Scholar 

  27. Fallahi-Sichani, M., J. L. Flynn, J. J. Linderman, and D. E. Kirschner. Differential risk of tuberculosis reactivation among anti-TNF therapies is due to drug binding kinetics and permeability. J. Immunol. 188:3169–3178, 2012.

    Article  Google Scholar 

  28. Fallahi-Sichani, M., D. E. Kirschner, and J. J. Linderman. NF-κB signaling dynamics play a key role in infection control in tuberculosis. Front. Physiol. 3:170, 2012.

    Article  Google Scholar 

  29. Figueredo, G. P., T. V. Joshi, J. M. Osborne, H. M. Byrne, and M. R. Owen. On-lattice agent-based simulation of populations of cells within the open-source Chaste framework. Interface Focus 3:20120081, 2013.

    Article  Google Scholar 

  30. Flynn, J. L., and J. Chan. Immunology of tuberculosis. Annu. Rev. Immunol. 19:93–129, 2001.

    Article  Google Scholar 

  31. Fornberg, B. A practical guide to pseudospectral methods. Cambridge: Cambridge University Press, 1996.

    MATH  Google Scholar 

  32. Frieboes, H. B., et al. Computer simulation of glioma growth and morphology. Neuroimage 37(Suppl 1):S59–S70, 2007.

    Article  Google Scholar 

  33. Frigo, M., and S. G. Johnson. The Design and Implementation of FFTW3. Proc. IEEE 93:216–231, 2005.

    Article  Google Scholar 

  34. Geiser, J., G. Tanoğlu, and N. Gücüyenen. Higher order operator splitting methods via Zassenhaus product formula: theory and applications. Comput. Math. Appl. 62:1994–2015, 2011.

    Article  MATH  MathSciNet  Google Scholar 

  35. Gong, C., J. J. Linderman, and D. Kirschner. Harnessing the heterogeneity of T cell differentiation fate to fine-tune generation of effector and memory T cells. Front. Immunol. 5:1–15, 2014.

    Article  Google Scholar 

  36. Gong, C., J. T. Mattila, M. Miller, J. L. Flynn, J. J. Linderman, and D. Kirschner. Predicting lymph node output efficiency using systems biology. J. Theor. Biol. 335C:169–184, 2013.

    Article  Google Scholar 

  37. Gottlieb, D., and C.-W. Shu. On the Gibbs phenomenon and its resolution. SIAM Rev. 39:644–668, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  38. Guo, Z., P. M. A. Sloot, and J. C. Tay. A hybrid agent-based approach for modeling microbiological systems. J. Theor. Biol. 255:163–175, 2008.

    Article  MathSciNet  Google Scholar 

  39. Hedengren, J. D., and T. F. Edgar. Order reduction of large scale DAE models. Comput. Chem. Eng. 29:2069–2077, 2005.

    Article  Google Scholar 

  40. Hedengren, J. D., and T. F. Edgar. In situ adaptive tabulation for real-time control. Ind. Eng. Chem. Res. 44:2716–2724, 2005.

    Article  Google Scholar 

  41. Heidlauf, T., and O. Röhrle. Modeling the chemoelectromechanical behavior of skeletal muscle using the parallel open-source software library OpenCMISS. Comput. Math. Methods Med. 2013:517287, 2013.

    Article  Google Scholar 

  42. Holcombe, M., et al. Modelling complex biological systems using an agent-based approach. Integr. Biol. (Camb) 4:53–64, 2012.

    Article  Google Scholar 

  43. Hou, T. Y., and R. Li. Computing nearly singular solutions using pseudo-spectral methods. J. Comput. Phys. 226:379–397, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  44. Hunt, C. A., R. C. Kennedy, S. H. J. Kim, and G. E. P. Ropella. Agent-based modeling: a systematic assessment of use cases and requirements for enhancing pharmaceutical research and development productivity. Wiley Interdiscip. Rev. Syst. Biol. Med. 5:461–480, 2013.

    Article  Google Scholar 

  45. Karlsen, K. H., K.-A. Lie, J. Natvig, H. Nordhaug, and H. Dahle. Operator splitting methods for systems of convection–diffusion equations: nonlinear error mechanisms and correction strategies. J. Comput. Phys. 173:636–663, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  46. Kaul, H., Z. Cui, and Y. Ventikos. A multi-paradigm modeling framework to simulate dynamic reciprocity in a bioreactor. PLoS ONE 8:e59671, 2013.

    Article  Google Scholar 

  47. Kim, M., R. J. Gillies, and K. A. Rejniak. Current advances in mathematical modeling of anti-cancer drug penetration into tumor tissues. Front. Oncol. 3:278, 2013.

    Google Scholar 

  48. Kirschner, D. E., S. T. Chang, T. W. Riggs, N. Perry, and J. J. Linderman. Toward a multiscale model of antigen presentation in immunity. Immunol. Rev. 216:93–118, 2007.

    Google Scholar 

  49. Kirschner, D. E., C. A. Hunt, S. Marino, M. Fallahi-Sichani, and J. J. Linderman. Tuneable resolution as a systems biology approach for multi-scale, multi-compartment computational models. Wiley Interdiscip. Rev. Syst. Biol. Med. 6:289–309, 2014.

    Article  Google Scholar 

  50. Krinner, A., I. Roeder, M. Loeffler, and M. Scholz. Merging concepts—coupling an agent-based model of hematopoietic stem cells with an ODE model of granulopoiesis. BMC Syst. Biol. 7:117, 2013.

    Article  Google Scholar 

  51. Lauffenburger, D. A., and J. J. Linderman. Receptors: Models For Binding, Trafficking, and Signaling. New York: Oxford University Press, 1993.

    Google Scholar 

  52. LeVeque, R. J. Finite Difference Methods for Ordinary and Partial Differential Equations. Society for Industrial and Applied Mathematics, 2007.

  53. Linderman, J. J., and D. E. Kirschner. In silico models of M. tuberculosis infection provide a route to new therapies. Drug Discov. Today Dis. Model. 1–5, 2014.

  54. Lucas, T. A. Operator splitting for an immunology model using reaction–diffusion equations with stochastic source terms. SIAM J. Numer. Anal. 46:3113–3135, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  55. Marino, S., M. El-Kebir, and D. Kirschner. A hybrid multi-compartment model of granuloma formation and T cell priming in tuberculosis. J. Theor. Biol. Elsevier 280:50–62, 2011.

    Article  Google Scholar 

  56. Marino, S., I. B. Hogue, C. J. Ray, and D. E. Kirschner. A methodology for performing global uncertainty and sensitivity analysis in systems biology. J. Theor. Biol. 254:178–196, 2008.

    Article  MathSciNet  Google Scholar 

  57. Marino, S., J. J. Linderman, and D. E. Kirschner. A multifaceted approach to modeling the immune response in tuberculosis. Wiley Interdiscip. Rev. Syst. Biol. Med. 3:479–489, 2011.

    Article  Google Scholar 

  58. Materi, W., and D. S. Wishart. Computational systems biology in drug discovery and development: methods and applications. Drug Discov. Today 12:295–303, 2007.

    Article  Google Scholar 

  59. Mitha, F., T. A. Lucas, F. Feng, T. B. Kepler, and C. Chan. The multiscale systems immunology project: software for cell-based immunological simulation. Source Code Biol. Med. 3:6, 2008.

    Article  Google Scholar 

  60. Mugler, D. H., and R. A. Scott. Fast fourier transform method for partial differential equations, case study: the 2-D diffusion equation. Comput. Math. Appl. 16:221–228, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  61. Palsson, S., et al. The development of a fully-integrated immune response model (FIRM) simulator of the immune response through integration of multiple subset models. BMC Syst. Biol. BMC Syst. Biol. 7:95, 2013.

    Article  Google Scholar 

  62. Peaceman, D. W., and H. H. Rachford, Jr. The numerical solution of parabolic and elliptic differential equations. J. Soc. Ind. Appl. Math. 3:28–41, 1955.

    Article  MATH  MathSciNet  Google Scholar 

  63. Petersen, B. K., G. E. Ropella, and C. A. Hunt. Toward modular biological models: defining analog modules based on referent physiological mechanisms. BMC Syst. Biol. 8:95, 2014.

    Article  Google Scholar 

  64. Pienaar, E., et al. A computational tool integrating host immunity with antibiotic dynamics to study tuberculosis treatment. J. Theor. Biol. 2014 (in Press).

  65. Pope, S. B. Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation. Combust. Theory Model. 1:41–63, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  66. Press, W. H. Numerical recipes in C++: the art of scientific computing (2nd ed.). Cambridge, UK: Cambridge University Press, 2002.

    Google Scholar 

  67. Qutub, A. A., F. Mac Gabhann, E. D. Karagiannis, P. Vempati, and A. S. Popel. Multiscale models of angiogenesis. IEEE Eng. Med. Biol. Mag. 28:14–31, 2009.

    Article  Google Scholar 

  68. Qutub, A. A., and A. S. Popel. Elongation, proliferation & migration differentiate endothelial cell phenotypes and determine capillary sprouting. BMC Syst. Biol. 3:13, 2009.

    Article  Google Scholar 

  69. Rao, S., A. van der Schaft, K. van Eunen, B. M. Bakker, and B. Jayawardhana. A model reduction method for biochemical reaction networks. BMC Syst. Biol. 8:52, 2014.

    Article  Google Scholar 

  70. Rapin, N., O. Lund, M. Bernaschi, and F. Castiglione. Computational immunology meets bioinformatics: the use of prediction tools for molecular binding in the simulation of the immune system. PLoS ONE 5:e9862, 2010.

    Article  Google Scholar 

  71. Ray, J. C. J., J. L. Flynn, and D. E. Kirschner. Synergy between individual TNF-dependent functions determines granuloma performance for controlling Mycobacterium tuberculosis infection. J. Immunol. 182:3706–3717, 2009.

    Article  Google Scholar 

  72. Riley, K. F., M. P. Hobson, and S. J. Bence. Mathematical Methods for Physics and Engineering: A Comprehensive Guide. Cambridge: Cambridge University Press, 2002.

    Book  Google Scholar 

  73. Santoni, D., M. Pedicini, and F. Castiglione. Implementation of a regulatory gene network to simulate the TH1/2 differentiation in an agent-based model of hypersensitivity reactions. Bioinformatics 24:1374–1380, 2008.

    Article  Google Scholar 

  74. Segovia-Juarez, J. L., S. Ganguli, and D. Kirschner. Identifying control mechanisms of granuloma formation during M. tuberculosis infection using an agent-based model. J. Theor. Biol. 231:357–376, 2004.

    Article  MathSciNet  Google Scholar 

  75. Singer, M., S. Pope, and H. Najm. Modeling unsteady reacting flow with operator splitting and ISAT. Combust. Flame 147:150–162, 2006.

    Article  Google Scholar 

  76. Sloot, P. M. A., and A. G. Hoekstra. Multi-scale modelling in computational biomedicine. Brief. Bioinform. 11:142–152, 2010.

    Article  Google Scholar 

  77. Southern, J., et al. Multi-scale computational modelling in biology and physiology. Prog. Biophys. Mol. Biol. 96:60–89, 2008.

    Article  Google Scholar 

  78. Stefanini, M. O., F. T. H. Wu, F. Mac Gabhann, and A. S. Popel. The presence of VEGF receptors on the luminal surface of endothelial cells affects VEGF distribution and VEGF signaling. PLoS Comput. Biol. 5:e1000622, 2009.

    Article  MathSciNet  Google Scholar 

  79. Stern, J. R., S. Christley, O. Zaborina, J. C. Alverdy, and G. An. Integration of TGF-β- and EGFR-based signaling pathways using an agent-based model of epithelial restitution. Wound Repair Regen. 20:862–871, 2012.

    Article  Google Scholar 

  80. Strang, G. On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5:506–517, 1968.

    Article  MATH  MathSciNet  Google Scholar 

  81. Sun, T., S. Adra, R. Smallwood, M. Holcombe, and S. MacNeil. Exploring hypotheses of the actions of TGF-beta1 in epidermal wound healing using a 3D computational multiscale model of the human epidermis. PLoS ONE 4:e8515, 2009.

    Article  Google Scholar 

  82. Sundnes, J., G. T. Lines, and A. Tveito. An operator splitting method for solving the bidomain equations coupled to a volume conductor model for the torso. Math. Biosci. 194:233–248, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  83. Swat, M. H., G. L. Thomas, J. M. Belmonte, A. Shirinifard, D. Hmeljak, and J. A. Glazier. Multi-scale modeling of tissues using CompuCell 3D. Methods Cell Biol. 110:325–366, 2012.

    Article  Google Scholar 

  84. Tay, S., J. J. Hughey, T. K. Lee, T. Lipniacki, S. R. Quake, and M. W. Covert. Single-cell NF-kappaB dynamics reveal digital activation and analogue information processing. Nature 466:267–271, 2010.

    Article  Google Scholar 

  85. Trefethen, L. N. Finite Difference and Spectral Methods for Ordinary and Partial Differential Equations. Unpublished Text, 1996.

  86. Walker, D. C., and J. Southgate. The virtual cell–a candidate co-ordinator for “middle-out” modelling of biological systems. Brief. Bioinform. 10:450–461, 2009.

    Article  Google Scholar 

  87. Walpole, J., J. A. Papin, and S. M. Peirce. Multiscale computational models of complex biological systems. Annu. Rev. Biomed. Eng. 15:137–154, 2013.

    Article  Google Scholar 

  88. Wang, Z., V. Bordas, J. Sagotsky, and T. S. Deisboeck. Identifying therapeutic targets in a combined EGFR-TGFβR signalling cascade using a multiscale agent-based cancer model. Math. Med. Biol. 29:95–108, 2012.

    Article  MATH  Google Scholar 

  89. Wang, Z., J. D. Butner, R. Kerketta, V. Cristini, and T. S. Deisboeck. Simulating cancer growth with multiscale agent-based modeling. Semin. Cancer Biol. 1–9, 2014. doi:10.1016/j.semcancer.2014.04.001

  90. Wang, J., et al. Multi-scale agent-based modeling on melanoma and its related angiogenesis analysis. Theor. Biol. Med. Model. 10:41, 2013.

    Article  Google Scholar 

  91. Wise, S., J. Kim, and J. Lowengrub. Solving the regularized, strongly anisotropic Cahn–Hilliard equation by an adaptive nonlinear multigrid method. J. Comput. Phys. 226:414–446, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  92. Wise, S. M., J. S. Lowengrub, and V. Cristini. An adaptive multigrid algorithm for simulating solid tumor growth using mixture models. Math. Comput. Model. 53:1–20, 2011.

    Article  MATH  MathSciNet  Google Scholar 

  93. Wolff, K., C. Barrett-Freeman, M. R. Evans, A. B. Goryachev, and D. Marenduzzo. Modelling the effect of myosin X motors on filopodia growth. Phys. Biol. 11:016005, 2014.

    Article  Google Scholar 

  94. Yoshida, H. Construction of higher order symplectic integrators. Phys. Lett. A 150:262–268, 1990.

    Article  MathSciNet  Google Scholar 

  95. Zhang, L., et al. Developing a multiscale, multi-resolution agent-based brain tumor model by graphics processing units. Theor. Biol. Med. Model. 8:46, 2011.

    Article  Google Scholar 

  96. Zingg, D. W., and T. T. Chisholm. Runge-Kutta methods for linear ordinary differential equations. Appl. Numer. Math. 31:227–238, 1999.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We thank Paul Wolberg and Joe Waliga for computational assistance. This research was supported in part through computational resources and services provided by Advanced Research Computing at the University of Michigan, Ann Arbor. This research was funded by the following NIH Grants: R01 EB012579 (DEK and JJL) and R01 HL 110811 (DEK and JJL).

Conflict of Interest

Nicholas Cilfone, Denise Kirschner, and Jennifer Linderman declare no conflicts of interests.

Ethical Standards

No human or animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer J. Linderman.

Additional information

Associate Editor Michael R. King oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cilfone, N.A., Kirschner, D.E. & Linderman, J.J. Strategies for Efficient Numerical Implementation of Hybrid Multi-scale Agent-Based Models to Describe Biological Systems. Cel. Mol. Bioeng. 8, 119–136 (2015). https://doi.org/10.1007/s12195-014-0363-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-014-0363-6

Keywords