Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An improved initialization method of D-KSVD algorithm for bearing fault diagnosis

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

A novel bearing fault diagnosis method combining feature extraction based on wavelet packets quantifiers and pattern recognition method based on improved initialization method of Discriminative K-SVD (D-KSVD) algorithm is proposed. In D-KSVD algorithm, the representational power of dictionary and discriminative ability of classifier are seriously affected by their initialization values. Therefore, the improved initialization method of D-KSVD is presented and employed for bearing fault diagnosis. The improvement is that during the initialization of training stage, subdictionaries corresponding to each category are trained by K-SVD separately and then the initial dictionary is constructed by cascading the subdictionaries, which can completely represent the characteristics of all categories, and as for the initialization of linear classifier, naive Bayesian classifier is utilized. The experimental results show that under the same parameters the improved D-KSVD has better classification ability compared with traditional D-KSVD and some other classification methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. A. Barkov and N. Barkova, Condition assessment and life prediction of rolling element bearings, Sound and Vibration, 29 (6) (1995) 10–17.

    Google Scholar 

  2. D. Ho and R. Randall, Optimisation of bearing diagnostic techniques using simulated and actual bearing fault signals, Mechanical Systems and Signal Processing, 14 (5) (2000) 763–788.

    Article  Google Scholar 

  3. Q. Xiong, Y. H. Xu, Y. Q. Peng, W. H. Zhang, Y. J. Li and L. Tang, Low-speed rolling bearing fault diagnosis based on EMD denoising and parameter estimate with alpha stable distribution, J. of Mechanical Science and Technology, 31 (4) (2017) 1587–1601.

    Article  Google Scholar 

  4. R. B. Randall, J. Antoni and S. Chobsaard, The relationship between spectral correlation and envelope analysis in the diagnostics of bearing faults and other cyclostationary machine signals, Mechanical Systems and Signal Processing, 15 (5) (2001) 945–962.

    Article  Google Scholar 

  5. C. H. Chen, R. J. Shyu and C. K. Ma, Rotating machinery diagnosis using wavelet packets-fractal technology and neural networks, Journal of Mechanical Science and Technology, 21 (7) (2007) 1058–1065.

    Article  Google Scholar 

  6. Q. Hu, Z. J. He, Z. S. Zhang and Y. Y. Zi, Fault diagnosis of rotating machinery based on improved wavelet package transform and SVMs ensemble, Mechanical Systems and Signal Processing, 21 (2) (2007) 688–705.

    Article  Google Scholar 

  7. Y. H. Feng and F. S. Schlindwein, Normalized wavelet packets quantifiers for condition monitoring, Mechanical Systems and Signal Processing, 23 (3) (2009) 712–723.

    Article  Google Scholar 

  8. Y. Wang, G. H. Xu, L. Liang and K. S. Jiang, Detection of weak transient signals based on wavelet packet transform and manifold learning for rolling element bearing fault diagnosis, Mechanical Systems and Signal Processing, 54-55 (2015) 259–276.

    Article  Google Scholar 

  9. M. Gan, C. Wang and C. A. Zhu, Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings, Mechanical Systems and Signal Processing, 72-73 (2016) 92–104.

    Article  Google Scholar 

  10. S. G. Mallat and Z. Zhang, Matching pursuits with timefrequency dictionaries, IEEE Transactions on Signal Processing, 41 (12) (1993) 3397–3415.

    Article  MATH  Google Scholar 

  11. S. S. B. Chen, D. L. Donoho and M. A. Saunders, Atomic decomposition by basis pursuit, Siam Journal on Scientific Computing, 20 (1) (1998) 33–61.

    Article  MathSciNet  MATH  Google Scholar 

  12. K. Dabov, A. Foi, V. Katkovnik and K. Egiazarian, Image denoising by sparse 3-D transform-domain collaborative filtering, IEEE Transactions on Image Processing, 16 (8) (2007) 2080–2095.

    Article  MathSciNet  Google Scholar 

  13. L. Peotta, L. Granai and P. Vandergheynst, Image compression using an edge adapted redundant dictionary and wavelets, Signal Processing, 86 (3) (2006) 444–456.

    Article  MATH  Google Scholar 

  14. M. Yang, L. Zhang, J. Yang and D. Zhang, Robust sparse coding for face recognition, 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Milan, Italy (2011) 625–632

    Google Scholar 

  15. L. S. Qiao, S. C. Chen and X. Y. Tan, Sparsity preserving projections with applications to face recognition, Pattern Recognition, 43 (1) (2010) 331–341.

    Article  MATH  Google Scholar 

  16. J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry and Y. Ma, Robust face recognition via sparse representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 31 (2) (2009) 210–227.

    Article  Google Scholar 

  17. Z. P. Feng and F. L. Chu, Application of atomic decomposition to gear damage detection, Journal of Sound and Vibration, 302 (1-2) (2007) 138–151.

    Article  Google Scholar 

  18. H. N. Liu, C. L. Liu and Y. X. Huang, Adaptive feature extraction using sparse coding for machinery fault diagnosis, Mechanical Systems and Signal Processing, 25 (2) (2011) 558–574.

    Article  MathSciNet  Google Scholar 

  19. H. F. Tang, J. Chen and G. M. Dong, Sparse representation based latent components analysis for machinery weak fault detection, Mechanical Systems and Signal Processing, 46 (2) (2014) 373–388.

    Article  Google Scholar 

  20. X. F. Chen, Z. H. Du, J. M. Li, X. Li and H. Zhang, Compressed sensing based on dictionary learning for extracting impulse components, Signal Processing, 96 (2014) 94–109.

    Article  Google Scholar 

  21. G. L. He, K. Ding and H. B. Lin, Fault feature extraction of rolling element bearings using sparse representation, Journal of Sound and Vibration, 366 (2016) 514–527.

    Article  Google Scholar 

  22. M. Aharon, M. Elad and A. Bruckstein, K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation, IEEE Transactions on Signal Processing, 54 (11) (2006) 4311–4322.

    Article  MATH  Google Scholar 

  23. K. Engan, S. O. Aase and J. H. Husoy, Multi-frame compression: theory and design, Signal Processing, 80 (10) (2000) 2121–2140.

    Article  MATH  Google Scholar 

  24. R. Grosse, R. Raina, H. Kwong and A. Y. Ng, Shiftinvariant sparse coding for audio classification, Proceedings of the Twenty-Third Conference on Uncertainty in AI, Vancouver, BC, Canada (2007) 149–158

    Google Scholar 

  25. M. Elad and M. Aharon, Image denoising via sparse and redundant representations over learned dictionaries, IEEE Transactions on Image Processing, 15 (12) (2006) 3736–3745.

    Article  MathSciNet  Google Scholar 

  26. O. Bryt and M. Elad, Compression of facial images using the K-SVD algorithm, Journal of Visual Communication and Image Representation, 19 (4) (2008) 270–282.

    Article  Google Scholar 

  27. Z. P. Feng and M. Liang, Complex signal analysis for planetary gearbox fault diagnosis via shift invariant dictionary learning, Measurement, 90 (2016) 382–395.

    Article  Google Scholar 

  28. Z. Y. Fu, H. T. Lu, N. Deng and N. B. Cai, Large scale visual classification via learned dictionaries and sparse representation, Artificial Intelligence and Computational Intelligence, Pt I, 6319 (2010) 321–330.

    Article  Google Scholar 

  29. H. J. Zhu, X. Q. Wang, Y. Zhao, Y. F. Li, W. F. Wang and L. P. Li, Sparse representation based on adaptive multiscale features for robust machinery fault diagnosis, Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science, 229 (12) (2015) 2303–2313.

    Article  Google Scholar 

  30. D. S. Pham and S. Venkatesh, Joint learning and dictionary construction for pattern recognition, 2008 IEEE Conference on Computer Vision and Pattern Recognition, 1-12 (2008) 517–524.

    Google Scholar 

  31. Q. A. Zhang and B. X. Li, Discriminative K-SVD for dictionary learning in face recognition, 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2010) 2691–2698

    Chapter  Google Scholar 

  32. Z. R. Shi and Y. T. Lu, An efficient initialization method for D-KSVD algorithm for image classification, 2013 6th International Congress on Image and Signal Processing (CISP), 1-3 (2013) 1029–1034.

    Article  Google Scholar 

  33. C. E. Shannon and W. Weaver, The mathematical theory of communication, University of Illinois Press (1959).

    MATH  Google Scholar 

  34. X. S. Lou and K. A. Loparo, Bearing fault diagnosis based on wavelet transform and fuzzy inference, Mechanical Systems and Signal Processing, 18 (5) (2004) 1077–1095.

    Article  Google Scholar 

  35. J. A. Tropp and A. C. Gilbert, Signal recovery from random measurements via orthogonal matching pursuit, IEEE Transactions on Information Theory, 53 (12) (2007) 4655–4666.

    Article  MathSciNet  MATH  Google Scholar 

  36. K. Loparo, Bearings vibration data set Case, Western Reserve University, http//www.eecs.cwru.edu/laboratory/bearing/download.htm (2003).

    Google Scholar 

  37. I. Jolliffe, Principal component analysis, Wiley Online Library (2002).

    MATH  Google Scholar 

  38. R. Rubinstein, M. Zibulevsky and M. Elad, Efficient implementation of the K-SVD algorithm using batch orthogonal matching pursuit, CS Technion, 40 (8) (2008) 1–15.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangming Dong.

Additional information

Recommended by Associate Editor Byeng Dong Youn

Haodong Yuan received his B.E. and M.E. in Mechanical Engineering from Zhengzhou University, Zhengzhou, China, in 2009 and 2012, respectively. He is currently pursuing a Ph.D. in vibration signal processing and machinery fault diagnosis at Shanghai Jiao Tong University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, H., Chen, J. & Dong, G. An improved initialization method of D-KSVD algorithm for bearing fault diagnosis. J Mech Sci Technol 31, 5161–5172 (2017). https://doi.org/10.1007/s12206-017-1010-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-017-1010-7

Keywords