Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A study of dimensional differences of tooth marks (pits and scores) on bones modified by small and large carnivores

  • Original Paper
  • Published:
Archaeological and Anthropological Sciences Aims and scope Submit manuscript

Abstract

The use of tooth mark sizes to infer carnivore types when analyzing the modification of faunal assemblages has been criticized on the base of intense overlap in tooth mark size among differently sized carnivores. The present study analyzes this overlap and presents some critical explanations for it. This work is based on the largest collection of tooth pit dimensional data collected to date for some of the most relevant carnivore types. The study empirically shows that small and large carnivores can be clearly differentiated when using tooth pit size, with a higher discrimination when using tooth marks on dense shafts than on cancellous ends. It is argued that most previous studies of tooth mark sizes have reproduced a higher overlap probably because sample sizes were small, and experiments were carried out using small carcasses (which require a smaller bite force) or for a combination of factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andrews P, Fernández-Jalvo Y (1997) Surface modifications of the Sima de los Huesos fossil humans. J Hum Evol 33:191–217

    Article  Google Scholar 

  • Binford LR (1981) Bones: ancient men, modern myths. Academic Press, New York

  • Blumenschine RJ (1986) Early hominid scavenging opportunities. Implications of carcass availability in the Serengueti and Ngorongoro ecosystems. BAR International Series 283. BAR International, Oxford

    Google Scholar 

  • Blumenschine RJ (1988) An experimental model of the timing of hominid and carnivore influence on archaeological bone assemblages. J Archaeol Sci 15:483–502

    Article  Google Scholar 

  • Blumenschine RJ (1995) Percussion marks, tooth marks and the experimental determinations of the timing of hominin and carnivore access to long bones at FLK Zinjanthropus, Olduvai Gorge, Tanzania. J Hum Evol 29:21–51

    Google Scholar 

  • Borrero LA, Martin FM, Vargas J (2005) Tafonomía de la interacción entre pumas y guanacos en el Parque Nacional Torres del Paine, Chile. Magallania 33:95–114

    Article  Google Scholar 

  • Brain CK (1981) The hunters or the hunted? University of Chicago Press, Chicago

    Google Scholar 

  • Bunn HT (1982) Meat-eating and human evolution: studies on the diet and subsistence patterns of Plio-Pleistocene hominins in East Africa. Ph.D. dissertation. University of California, Berkeley

  • Cavallo JA (1998) A re-examination of Isaac’s central-place foraging hypothesis. Ph.D. dissertation, Anthropology Department, Rutgers, New Brunswick, NJ

  • Cavallo JA, Blumenschine RJ (1989) Tree-stored leopard kills: expanding the hominid scavenging niche. J Hum Evol 18(4):393–399

    Article  Google Scholar 

  • Delaney-Rivera C, Plummer TW, Hodgson JA, Forrest F, Hertel F, Oliver JS (2009) Pits and pitfalls: taxonomic variability and patterning in tooth mark dimensions. J Archaeol Sci 36:2597–2608

    Article  Google Scholar 

  • Domíguez-Rodrigo M (1999a) Flesh availability and bone modification in carcasses consumed by lions. Paleogeography Paleoclimate Paleoecology 149:373–388

    Article  Google Scholar 

  • Domíguez-Rodrigo M (1999b) Meat-eating and carcass procurement by hominids at the FLK Zinj 22 site, Olduvai Gorge, Tanzania: a new experimental approach to the old hunting-versus-scavenging debate. In: Ullrich H (ed) Lifestyles and survival strategies in Pliocene and Pleistocene hominids. Edition Archea, Schwelm, pp 89–111

    Google Scholar 

  • Domínguez-Rodrigo M (1993) La formación de las acumulaciones óseas de macrofauna: Revisión de los criterios de discernimiento de los agentes biológicos no antrópicos desde un enfoque ecológico. Zephyrus 46:03–122

    Google Scholar 

  • Domínguez-Rodrigo M, Martí R (1996) Estudio etnoarqueológico de un campamento temporal Ndorobo (maasai) en Kulalu (Kenia). Trab Prehist 131:131–144

    Article  Google Scholar 

  • Domínguez-Rodrigo M, Pickering TR (2010) A multivariate approach for discriminating bone accumulations created by spotted hyenas and leopards: harnessing actualistic data from East and Southern Africa. J Taphonomy 8:155–179

    Google Scholar 

  • Dominguez-Rodrigo M, Piqueras A (2003) The use of tooth pits to identify carnivore taxa in tooth-marked archaeofaunas and their relevance to reconstruct hominid carcass processing behaviours. J Archaeol Sci 30:1385–1391

    Article  Google Scholar 

  • Domínguez-Rodrigo M, Serrallonga J, Medina V (1998) Food availability and social stress among captive baboons: referential data for early hominid food transport at sites. l’Anthropologie 36:225–230

    Google Scholar 

  • Domínguez-Rodrigo M, Barba M, Egeland CP (2007a) Deconstructing Olduvai: a taphonomic study of the Bed I sites. Springer, Dordrecht

    Book  Google Scholar 

  • Domínguez-Rodrigo M, Egeland CP, Pickering TR (2007b) Equifinality in carnivore tooth marks and the extended concept of archaeological palimpsests: implications for models of passive scavenging of early hominids. In: Pickering TR, Schick K, Toth N (eds) Breathing life into fossils: taphonomic studies in honor of C.K. (Bob) Brain. Stone Age Institute Press, Bloomington, pp 255–288

    Google Scholar 

  • Estévez EJ, Mamelli L (2000) Muerte en el canal: experiencias bioestratigráficas controladas sobre la acción sustractiva de cánidos. Archaeofauna 9:7–16

    Google Scholar 

  • Faith JT (2007) Sources of variation in carnivore tooth-marks frequencies in a modern spotted hyena (Crocuta crocuta) den assemblage, Amboseli Park, Kenya. J Archaeol Sci 34(10):1601–1609

    Article  Google Scholar 

  • Fernández-Jalvo Y, Andrews P (2011) When humans chew bones. J Hum Evol 60:117–123

    Article  Google Scholar 

  • Hair JF, Anderson RE, Tatham RL, Black WC (1998) Multivariate data analysis. Prentice Hall, New York

    Google Scholar 

  • Haynes G (1980a) Prey bones and predators. Potential ecologic information from analysis bones of bone site. Ossa 7:75–97

    Google Scholar 

  • Haynes G (1980b) Evidence of carnivore gnawing on Pleistocene and recent mammalian bones. Paleobiology 6(3):341–351

    Google Scholar 

  • Haynes G (1982) Utilization and skeletal disturbances of north American prey carcasses. Artic 35:266–281

    Google Scholar 

  • Haynes G (1983) A guide for differentiating mammalian carnivore taxa responsible for gnaw damage to herbivore limb bones. Paleobiology 9:164–172

    Google Scholar 

  • Kerbis-Peterhans JC (1990) The role of porcupines, leopards and hyaenas in ungulate carcass dispersal: implications for paleoanthropology. Department of Anthropology, University of Chicago, Chicago

    Google Scholar 

  • Lewis JP, Traill A (1999) Statistics explained. Addison-Wesley, Harlow

    Google Scholar 

  • Lloveras L, Moreno-García M, Nadal J (2008) Taphonomic analysis of leporid remains obtained from modern Iberian Lynx (Lynx pardinus) scats. J Archaeol Sci 35:1–13

    Article  Google Scholar 

  • Mondini M (2000) Tafonomía de abrigos rocosos de la Puna. Formación de conjuntos escatológicos por zorros y sus implicaciones arqueológicas. Archeofauna 9:151–164

    Google Scholar 

  • Montalvo CI, Pessino ME, Bagatto FC, Montalvo CI (2008) Taphonomy of the bones of rodents consumed by Andean hog-nosed skunks (Conepatus chinga, Carnivora, Mephitidae) in central Argentina. J Archaeol Sci 35:1481–1488

    Article  Google Scholar 

  • Muñoz AS, Mondini M, Durán V, Gasco A (2008) Los pumas (Puma concolor) como agentes tafonómicos. Análisis actualístico de un sitio de matanza en los Andes de Mendoza, Argentina. Geobios 41:123–131

    Article  Google Scholar 

  • Nasti A (1996) Predadores, carroñeros y huesos: la acción del puma y el zorro como agentes modificadores de esqueletos de ungulados en la Puna meridional, Argentina. In: Meléndez Hevia G, Blasco Sancho MF, Pérez Urresti I (eds) II Reunión de Tafonomía y Fosilización. Zaragoza, pp 265–269

  • Pickering TR, Dominguez-Rodrigo M, Egeland CP, Brain CK (2004) Beyond leopards: tooth marks and the contribution of multiple carnivore taxa to the accumulation of the Swartkans Member 3 fossil assemblage. J Hum Evol 46:595–604

    Article  Google Scholar 

  • Pinto-Llona AC, Andrews PJ, Etxebarría F (2005) Tafonomía y Paleobiología de úrsidos cuaternarios cantábricos. Fundación oso de Asturias, Proaza

    Google Scholar 

  • Prendergast ME, Domínguez-Rodrigo M (2008) Taphonomic analyses of a hyena den and a natural-death assemblage near Lake Eyasi (Tanzania). J Taphonomy 6(3–4):301–335

    Google Scholar 

  • Ruiter JD, Berger LR (2000) Leopard as a taphonomic agents in dolomitic caves. Implications for bone accumulations in the hominid bearing deposits of South Africa. J Archaeol Sci 27:665–684

    Article  Google Scholar 

  • Saladié P, Huguet R, C Díez, Rodríguez-Hidalgo A, Carbonell E (2012) Taphonomic modifications produced by modern brown bears (Ursus arctos). Int J Osteoarchaeol (in press)

  • Selvaggio MM (1994) Identifying the timing and sequence of hominid and carnivore involvement with Plio-Pleistocene bone assemblages from carnivore tooth marks and stone-tool butchery marks on bone surfaces. Ph.D. dissertation, Rutgers University, New Brunswick

  • Selvaggio MM, Wilder J (2001) Identifying the involvement of multiple carnivore taxon with archaeological bone assemblages. J Archaeol Sci 28:465–470

    Article  Google Scholar 

  • Sutcliffe AJ (1973) Caves of the east African Rift Valley. Trans Cave Res Group Great Brit 15:41–65

    Google Scholar 

  • Wilcox RR (2005) Introduction to robust estimation and hypothesis testing. Elsevier Academic Press, London

    Google Scholar 

  • Yravedra J, Lagos L, Bárcena F (2011) A taphonomic study of wild wolf (Canis lupus) modification of horse bones in northwestern Spain. J Taphonomy 9:37–66

    Google Scholar 

Download references

Acknowledgments

We thank J. Kerbis-Peterhans for having allowed one of us (MDR) access to the Maasai Mara hyena den collection. We thank F. Bárcena for having allowed JY access to the Campelo Montain wolf carcasses and S. Ripoll for carcasses processed by foxes in Ayllón. We are also indebted to two anonymous reviewers for their useful comments on an earlier draft of this paper. We also thank M. Prendergast for her comments and editorial suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Domínguez-Rodrigo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrés, M., Gidna, A.O., Yravedra, J. et al. A study of dimensional differences of tooth marks (pits and scores) on bones modified by small and large carnivores. Archaeol Anthropol Sci 4, 209–219 (2012). https://doi.org/10.1007/s12520-012-0093-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12520-012-0093-4

Keywords