Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Where to Look Next? Combining Static and Dynamic Proto-objects in a TVA-based Model of Visual Attention

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

To decide “Where to look next ?” is a central function of the attention system of humans, animals and robots. Control of attention depends on three factors, that is, low-level static and dynamic visual features of the environment (bottom-up), medium-level visual features of proto-objects and the task (top-down). We present a novel integrated computational model that includes all these factors in a coherent architecture based on findings and constraints from the primate visual system. The model combines spatially inhomogeneous processing of static features, spatio-temporal motion features and task-dependent priority control in the form of the first computational implementation of saliency computation as specified by the “Theory of Visual Attention” (TVA, [7]). Importantly, static and dynamic processing streams are fused at the level of visual proto-objects, that is, ellipsoidal visual units that have the additional medium-level features of position, size, shape and orientation of the principal axis. Proto-objects serve as input to the TVA process that combines top-down and bottom-up information for computing attentional priorities so that relatively complex search tasks can be implemented. To this end, separately computed static and dynamic proto-objects are filtered and subsequently merged into one combined map of proto-objects. For each proto-object, attentional priorities in the form of attentional weights are computed according to TVA. The target of the next saccade is the center of gravity of the proto-object with the highest weight according to the task. We illustrate the approach by applying it to several real world image sequences and show that it is robust to parameter variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. http://www.uni-bielefeld.de/psychologie/ae/Ae01/IIP/.

  2. http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/.

  3. testing, camera 3, ftp://ftp.pets.rdg.ac.uk/pub/VS-PETS/.

  4. http://www.cs.cmu.edu/~saada/Projects/CrowdSegmentation/.

References

  1. Adelson EH, Bergen JR. Spatiotemporal energy models for the perception of motion. J Opt Soc Am A. 1985;2(2):284–99.

    Article  CAS  PubMed  Google Scholar 

  2. Ali S, Shah M. A lagrangian particle dynamics approach for crowd flow segmentation and stability analysis. In: IEEE conference on computer vision and pattern recognition, 2007. CVPR ’07. 2007. p. 1–6.

  3. Aziz M, Mertsching B. Fast and robust generation of feature maps for region-based visual attention. IEEE Trans Image Process. 2008;17(5):633 –44.

    Article  PubMed  Google Scholar 

  4. Belardinelli A, Pirri F, Carbone A. Motion saliency maps from spatiotemporal filtering. Attention in Cognitive Systems 2009. p. 112–23.

  5. Breazeal C, Scassellati B. A context-dependent attention system for a social robot. In: IJCAI ’99. San Francisco: Morgan Kaufmann Publishers Inc.; 1999. p. 1146–53.

  6. Bruce NDB, Tsotsos JK. Saliency, attention, and visual search: an information theoretic approach. J Vis. 2009;9(3), 1–24.

    Google Scholar 

  7. Bundesen C. A theory of visual attention. Psychol Rev. 1990;97(4):523–47.

    Article  CAS  PubMed  Google Scholar 

  8. Bundesen C, Habekost T. Principles of visual attention: linking mind and brain. Oxford: Oxford University Press; 2008.

    Google Scholar 

  9. Bundesen C, Habekost T, Kyllingsbaek S. A neural theory of visual attention: bridging cognition and neurophysiology. Psychol Rev. 2005;112(2):291–328.

    Article  PubMed  Google Scholar 

  10. Carbone E, Schneider WX. Gaze is special: the control of stimulus-driven saccades is not subject to central, but visual attention limitations. Atten Percept Psychophys. (in press).

  11. Clark A. Feature-placing and proto-objects. Philos Psychol. 2004;17(4):443+.

    Article  Google Scholar 

  12. Comaniciu D, Meer P. Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell. 2002;24(5):603–19.

    Article  Google Scholar 

  13. Daugman JG. Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. J Opt Soc Am A. 1985;2(7):1160–9.

    Article  CAS  PubMed  Google Scholar 

  14. De Monasterio FM, Gouras P. Functional properties of ganglion cells of the rhesus monkey retina. J Physiol. 1975;251(1): 167–95.

    CAS  PubMed  Google Scholar 

  15. DeAngelis GC, Ohzawa I, Freeman RD. Spatiotemporal organization of simple-cell receptive fields in the cat’s striate cortex. i. general characteristics and postnatal development. J Neurophysiol. 1993;69(4):1091–117.

    CAS  PubMed  Google Scholar 

  16. Deubel H, Schneider WX. Saccade target selection and object recognition: evidence for a common attentional mechanism. Vis Res. 1996;36(12):1827–37.

    Article  CAS  PubMed  Google Scholar 

  17. Domijan D, Šetić M. A feedback model of figure-ground assignment. J Vis. 2008;8(7):1–27.

    Article  PubMed  Google Scholar 

  18. Dosil R, Fdez-Vidal XR, Pardo XM. Motion representation using composite energy features. Pattern Recognit. 2008;41(3):1110–23.

    Article  Google Scholar 

  19. Driscoll J II, RP Cave K. A visual attention network for a humanoid robot. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, 1998. p. 12–6.

  20. Findlay JM. Global visual processing for saccadic eye movements. Vis Res. 1982;22(8):1033–45.

    Article  CAS  PubMed  Google Scholar 

  21. Forssén PE. Low and medium level vision using channel representations. Ph.D. thesis, Linköping University, Sweden, SE-581 83 Linköping, Sweden (2004). Dissertation No. 858, ISBN 91-7373-876-X.

  22. Frey HP, Konig P, Einhauser W. The role of first- and second-order stimulus features for human overt attention, perception and psychophysics. Percept Psychophys. 2007;69(2):153–61.

    PubMed  Google Scholar 

  23. Frintrop S, Klodt M, Rome E. A real-time visual attention system using integral images. In: Proceedings of the 5th international conference on computer vision systems (2007).

  24. Frintrop S, Rome E, Christensen HI. Computational visual attention systems and their cognitive foundations: a survey. ACM Trans Appl Percept. 2010;7(1):1–39.

    Article  Google Scholar 

  25. Geisler WS, Albrecht DG. Visual cortex neurons in monkeys and cats: detection, discrimination, and identification. Vis Neurosci. 1997;14:897–919.

    Article  CAS  PubMed  Google Scholar 

  26. Goodale MA, Milner AD. Separate visual pathways for perception and action. Trends Neurosci. 1992;15(1):20–5.

    Article  CAS  PubMed  Google Scholar 

  27. Goodale MA, Westwood DA. An evolving view of duplex vision: separate but interacting cortical pathways for perception and action. Curr Opin Neurobiol. 2004;14(2):203–11.

    Article  CAS  PubMed  Google Scholar 

  28. van Hateren JH, Ruderman DL. Independent component analysis of natural image sequences yields spatio-temporal filters similar to simple cells in primary visual cortex. Proc Biol Sci. 1998;265(1412):2315–20.

    Article  PubMed  Google Scholar 

  29. Heeger DJ. Optical flow using spatiotemporal filters. Int J Comput Vis. 1988;1(4):279–302.

    Article  Google Scholar 

  30. Itti L, Baldi P. Bayesian surprise attracts human attention. Vis Res. 2009;49(10):1295–306.

    Article  PubMed  Google Scholar 

  31. Itti L, Koch C. Feature combination strategies for saliency-based visual attention systems. J Electron Imag. 2001;10(1):161–9.

    Article  Google Scholar 

  32. Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans Pattern Anal Mach Intell. 1998;20(11):1254–9.

    Article  Google Scholar 

  33. Kehrer L, Meinecke C. A space-variant filter model of texture segregation: parameter adjustment guided by psychophysical data. Biol Cybern. 2003;88(3):183–200.

    Article  CAS  PubMed  Google Scholar 

  34. Koch C, Ullman S. Shifts in selective visual attention: towards the underlying neural circuitry. Hum Neurobiol. 1985;4(4):219–27.

    CAS  PubMed  Google Scholar 

  35. Land M, Tatler B. Looking and acting: vision and eye movements in natural behaviour. Oxford: Oxford University Press; 2009.

    Google Scholar 

  36. Le Meur O, Le Callet P, Barba D. Predicting visual fixations on video based on low-level visual features. Vis Res. 2007;47(19):2483–98.

    Article  PubMed  Google Scholar 

  37. Mahadevan V, Vasconcelos N. Spatiotemporal saliency in dynamic scenes. IEEE Trans Pattern Anal Mach Intell. 2009;32:171–7.

    Article  Google Scholar 

  38. Marat S, Ho Phuoc T, Granjon L, Guyader N, Pellerin D, Guérin-Dugué A. Modelling spatio-temporal saliency to predict gaze direction for short videos. Int J Comput Vis. 2009;82(3):231–43.

    Article  Google Scholar 

  39. Moren J, Ude A, Koene A, Cheng G. Biologically based top-down attention modulation for humanoid interactions. Int J HR. 2008;5(1):3–24.

    Google Scholar 

  40. Morrone MC, Burr DC. Feature detection in human vision A phase-dependent energy model. Proc R Soc Lond B Biol Sci. 1988;235(1280):221–45.

    Article  Google Scholar 

  41. Nagai Y. From bottom-up visual attention to robot action learning. In: Proceedings of 8 IEEE international conference on development and learning. IEEE Press; 2009.

  42. Nagai Y, Hosoda K, Morita A, Asada M. A constructive model for the development of joint attention. Conn Sci. 2003;15(4): 211–29.

    Article  Google Scholar 

  43. Navalpakkam, V, Itti L. An integrated model of top-down and bottom-up attention for optimal object detection. In: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR), New York, NY. 2006. p. 2049–56.

  44. Navalpakkam V, Itti L. A goal oriented attention guidance model. In: Biologically Motivated Computer Vision, pp. 81–118. Springer (2010).

  45. Nothdurft H. The role of features in preattentive vision: comparison of orientation, motion and color cues. Vis Res. 1993;33(14):1937–58.

    Article  CAS  PubMed  Google Scholar 

  46. Olveczky Bence P, Baccus SA, Meister M. Segregation of object and background motion in the retina. Nature. 2003;423:401–8.

    Article  CAS  PubMed  Google Scholar 

  47. Orabona F, Metta G, Sandini G. A proto-object based visual attention model. In: Attention in cognitive systems. Theories and systems from an interdisciplinary viewpoint. 2008. p. 198–215.

  48. Palmer SE. Vision science. Cambridge: MIT; 1999.

    Google Scholar 

  49. Park S, Shin J, Lee M. Biologically inspired saliency map model for bottom-up visual attention. In: Biologically motivated computer vision. Springer; 2010. p. 113–45.

  50. Riesenhuber M, Poggio T. Hierarchical models of object recognition in cortex. Nat Neurosci. 1999;2(11):1019–25.

    Article  CAS  PubMed  Google Scholar 

  51. Rosenholtz R. A simple saliency model predicts a number of motion popout phenomena. Vis Res. 1999;39(19):3157–63.

    Article  CAS  PubMed  Google Scholar 

  52. Ruesch J, Lopes M, Bernardino A, Hornstein J, Santos-Victor J, Pfeifer R. Multimodal saliency-based bottom-up attention a framework for the humanoid robot icub. In: International conference on robotics and automation, Pasadena, CA, USA. 2008. p. 962–7.

  53. Schaefer G, Stich M. UCID - An Uncompressed Colour Image Database. In: Storage and retrieval methods and applications for multimedia 2004. Proceedings of SPIE, vol. 5307. 2004. p. 472–80.

  54. Schneider WX. VAM: A neuro-cognitive model for visual attention control of segmentation, object recognition, and space-based motor action. Vis Cogn. 1995;2(2–3):331–76.

    Article  Google Scholar 

  55. Scholl BJ. Objects and attention: the state of the art. Cognition. 2001;80(1–2):1–46.

    Article  CAS  PubMed  Google Scholar 

  56. Steil, JJ, Heidemann G, Jockusch J, Rae R, Jungclaus N, Ritter, H.: Guiding attention for grasping tasks by gestural instruction: The gravis-robot architecture. In: Proceedings IROS 2001, IEEE 2001. p. 1570–7.

  57. Sun Y, Fisher R, Wang F, Gomes HM. A computer vision model for visual-object-based attention and eye movements. Comput Vis Image Underst. 2008;112(2):126–42.

    Article  Google Scholar 

  58. Tatler B (2009) Current understanding of eye guidance. Vis Cogn. 777–89.

  59. Torralba A, Oliva A, Castelhano MS, Henderson JM. Contextual guidance of eye movements and attention in real-world scenes: the role of global features in object search. Psychol Rev. 2006;113(4):766–86.

    Article  PubMed  Google Scholar 

  60. Treisman A. The binding problem. Curr Opin Neurobiol. 1996;6(2):171–8.

    Article  CAS  PubMed  Google Scholar 

  61. Treisman AM, Gelade G. A feature-integration theory of attention. Cogn Psychol. 1980;12(1):97–136.

    Article  CAS  PubMed  Google Scholar 

  62. Tsotsos JK, Culhane SM, Winky WYK, Lai Y, Davis N, Nuflo F Modeling visual attention via selective tuning. Artif Intell. 1995;78(1–2):507–45.

    Article  Google Scholar 

  63. Van Essen D, Anderson C. Information processing strategies and pathways in the primate visual system. In: Zornetzer S, Davis J, Lau C, McKenna T (eds.), An introduction to neural and electronic networks. Academic Press, New York; 1995. p. 45–76.

    Google Scholar 

  64. Walther D, Itti L, Riesenhuber M, Poggio T, Koch C. Attentional selection for object recognition—a gentle way. In: Biologically motivated computer vision, Springer; 2002. p. 251–67.

  65. Walther D, Koch C. Modeling attention to salient proto-objects. Neural Netw. 2006;19(9):1395–407.

    Article  PubMed  Google Scholar 

  66. Watson AB. Detection and recognition of simple spatial forms. Technical report, NASA Ames Research Center; 1983.

  67. Watson AB, Albert Jr J. Model of human visual-motion sensing. J Opt Soc Am A. 1985;2(2):322–41.

    Google Scholar 

  68. Wildes RP, Bergen JR. Qualitative spatiotemporal analysis using an oriented energy representation. In: ECCV ’00: Proceedings of the 6th European conference on computer vision-part II. 2000. p. 768–84.

  69. Wischnewski M, Steil JJ, Kehrer L, Schneider WX. Integrating inhomogeneous processing and proto-object formation in a computational model of visual attention. In: Human centered robot systems. 2009. p. 93–102.

  70. Wolfe JM, Horowitz TS. What attributes guide the deployment of visual attention and how do they do it? Nat Rev Neurosci. 2004;5(6):495–501.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by grants of the Cluster of Excellence - Cognitive Interaction Technology (CITEC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Wischnewski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wischnewski, M., Belardinelli, A., Schneider, W.X. et al. Where to Look Next? Combining Static and Dynamic Proto-objects in a TVA-based Model of Visual Attention. Cogn Comput 2, 326–343 (2010). https://doi.org/10.1007/s12559-010-9080-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-010-9080-1

Keywords