Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Mussels Wandering Optimization: An Ecologically Inspired Algorithm for Global Optimization

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

Over the last decade, we have encountered various complex optimization problems in the engineering and research domains. Some of them are so hard that we had to turn to heuristic algorithms to obtain approximate optimal solutions. In this paper, we present a novel metaheuristic algorithm called mussels wandering optimization (MWO). MWO is inspired by mussels’ leisurely locomotion behavior when they form bed patterns in their habitat. It is an ecologically inspired optimization algorithm that mathematically formulates a landscape-level evolutionary mechanism of the distribution pattern of mussels through a stochastic decision and Lévy walk. We obtain the optimal shape parameter μ of the movement strategy and demonstrate its convergence performance via eight benchmark functions. The MWO algorithm has competitive performance compared with four existing metaheuristics, providing a new approach for solving complex optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Weise T. Global optimization algorithms theory and application, Germany. 2009. it-weise.de.

  2. Michalewicz Z, Fogel DB. How to solve it: modern heuristics, 2nd ed. Berlin: Springer; 2004.

    Book  Google Scholar 

  3. Nobakhti A. On natural based optimization. Cognit Comput. 2010;2:97–119.

    Article  Google Scholar 

  4. Shadbolt Nigel Nature-inspired computing. IEEE Intell Syst. 2004;1/2:1–3.

    Google Scholar 

  5. Zhang J, Zhan Z, et al. Enhancing evolutionary computation algorithms via machine learning techniques: a survey. IEEE Comput Intell Mag. 2011;68–75.

  6. Zhang J, Chung H, Lo W Clustering-based adaptive crossover and mutation probabilities for genetic algorithms. IEEE Trans Evol Comput. 2007;11(3):326–35.

    Article  Google Scholar 

  7. Chen Shu-Heng, et al. Genetic programming: an emerging engineering tool. Int J Knowl Based Intell Eng Syst. 2008;12(1):1–2.

    Google Scholar 

  8. Fogel LJ. Intelligence through simulated evolution : forty years of evolutionary programming. New York: Wiley; 1999.

    Google Scholar 

  9. Price K, Storn R, Lampinen J. Differential evolution: a practical approach to global optimization. Berlin: Springer; 2005.

    Google Scholar 

  10. Gao Y, Culberson J. Space complexity of estimation of distribution algorithms. Evol Comput. 2005;13(1):125–43.

    Article  PubMed  Google Scholar 

  11. Kennedy J, Eberhart RC. Swarm intelligence. San Francisco: Morgan Kaufmann; 2001.

    Google Scholar 

  12. Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings of the international conference on neural networks. Australia: Perth; 1995. pp. 1942–48.

  13. Dorigo M, Gambardella L. Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans Evol Comput. 1997;1(1):53–66.

    Article  Google Scholar 

  14. Karaboga D, Akay B. A comparative Study of artificial bee colony algorithm. Appl Math Comput. 2009;214:108–32.

    Article  Google Scholar 

  15. He S, Wu Q, Saunders J. Group search optimizer: an optimization algorithm inspired by animal searching behavior. IEEE Trans Evol Comput. 2009;13(5):973–90.

    Article  Google Scholar 

  16. Passino K. Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst Mag. 2002;22:52–67.

    Article  Google Scholar 

  17. Kirkpatrick S, Gelatt C, Vecchi M. Optimization by simulated annealing. Science, 1983;220(4598):671–80.

    Article  PubMed  CAS  Google Scholar 

  18. Haykin S. Neural networks: a comprehensive foundation. Englewood: Prentice Hall; 1999.

    Google Scholar 

  19. Bagheria A, Zandiehb M, Mahdavia Iraj, Yazdani M. An artificialimmunealgorithm for the flexible job-shop scheduling problem. Futur Gener Comput Syst. 2010;26(4):533–41.

    Article  Google Scholar 

  20. Lam A, Li V. Chemical-reaction-inspired metaheuristic for optimization. IEEE Trans Evol Comput. 2010;14(3):381–99.

    Article  Google Scholar 

  21. Chen X, Ong Y, Lim M. Research frontier: memetic computation—past, present and future. IEEE Comput Intell Mag. 2010;5(2):24–36.

    Article  Google Scholar 

  22. Geem Z, Kim J, Loganathan G. A new heuristic optimization algorithm: harmony search. Simulation, 2001;76(2):60–68.

    Article  Google Scholar 

  23. Simon D. Biogeography-based optimization. IEEE Trans Evol Comput. 2008;12(6):702–13.

    Article  Google Scholar 

  24. Yang X-S. Cuckoo search via Lévy flights. World Congr Nat Biol Inspired Comput, 2009.

  25. Eusuffa M, Lanseyb K, Pashab F. Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization. Eng Optim. 2006;38(2):129–54.

    Article  Google Scholar 

  26. Zelinka I. SOMA: self-organizing migrating algorithm. Berlin: Springer; 2004. pp. 167–217.

    Google Scholar 

  27. Kang Q, An J, Wang L, Wu Q. Unification and diversity of computation models for generalized swarm intelligence. Int J Artif Intell Tools. 2012;21(3):1240012.

    Article  Google Scholar 

  28. Daniel G. Why did you Lévy?. Sci Technol Human Values 2011;332:1514.

    Article  Google Scholar 

  29. Alfaro Andrea C. Population dynamics of the green-lipped mussel, Perna canaliculus, at various spatial and temporal scales in northern New Zealand. J Exp Mar Biol Ecol. 2006;334:294–315.

    Article  Google Scholar 

  30. Haag WR, Warren ML. Role of ecological factors and reproductive strategies in structuring freshwater mussel communities. Can J Fish Aquat Sci. 1998;55:297–306.

    Article  Google Scholar 

  31. Strayer D, Downing J, Haag W Changing perspectives on pearly mussels-North America’s most imperiled animals. BioScience, 2004;54(5):429–39.

    Article  Google Scholar 

  32. de Jager M. Lvy walks evolve through interaction between movement and environmental complexity. Science, 2011;332:1551–53.

    Article  PubMed  CAS  Google Scholar 

  33. Viswanathan G. Fish in Lévy-flight foraging. Nat Environ Pollut Technol. 2010;465:1018–19.

    Article  PubMed  CAS  Google Scholar 

  34. Viswanathan G. Lévy flight search patterns of wandering albatrosses, Nature. 1996;381:413–15.

    Article  CAS  Google Scholar 

  35. Brockmann D, Hufnagel L, Geisel T. The scaling laws of human travel. Nature 2006;439:462–65.

    Article  PubMed  CAS  Google Scholar 

  36. Cai Z, Wang Y. A multiobjective optimization-based evolutionary algorithm for constrained optimization. IEEE Trans Evol Comput. 2006;10:658–75.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. M. Zhou and Prof. R. Kozma for helpful discussions and constructive comments. The authors also thank the reviewers for their instrumental comments in improving this paper from its original version. This work was supported in part by the National Science Foundation of China (grants no. 61005090, 61034004, 61272271, and 91024023), the Natural Science Foundation Program of Shanghai (grant no. 12ZR1434000), the Program for New Century Excellent Talents in University of MOE of China (grant no. NECT-10-0633), and the Ph.D. Programs Foundation of MOE of China (grant no. 20100072110038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

An, J., Kang, Q., Wang, L. et al. Mussels Wandering Optimization: An Ecologically Inspired Algorithm for Global Optimization. Cogn Comput 5, 188–199 (2013). https://doi.org/10.1007/s12559-012-9189-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-012-9189-5

Keywords