Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

RoHS Regulation: Challenges in the Measurement of Substances of Concern in Industrial Products by Different Analytical Techniques

  • Review Paper
  • Published:
MAPAN Aims and scope Submit manuscript

Abstract

The European Union’s as well as India’s reduction of hazardous materials (RoHS) directives state that producers of certain categories of electrical and electronic equipments will not be able to offer for sale any product that contains any of hazardous substances: Cd, Pb, Hg, Cr6+, polybrominated biphenyls (PBB), polybrominated diphenyl ethers (PBDE), bis(2-ethylhexyl) phthalate (DEHP), butyl benzyl phthalate (BBP), dibutyl phthalate (DBP) and diisobutyl phthalate (DIBP) beyond the specified limits. Allowable concentration levels in any homogeneous material contained within a product are extremely low: 0.01% for Cd and 0.1% for other substances by weight. These substances when present in quantities in excess of the permissible limits are considered hazardous and damaging to the environment and human health. With the introduction of the RoHS Directive many manufacturing companies in the world are pursuing chemical testing as a means to identify and quantify these hazardous substances. This article presents various testing methods that are currently available to the manufacturing firms who need to generate data to prove that their products are compliant to the RoHS directive. The utility of portable X-ray fluorescence spectrometer (XRF) and also the potential of laser-induced breakdown spectrometer (LIBS) for rapid screening applications is described. For quantitative determination of Pb, Cd, Hg and Cr, the role of instrumental analytical techniques such as atomic absorption spectrometry, XRF, instrumental neutron activation analysis, inductively coupled plasma optical emission spectrometry, the inductively coupled plasma mass spectrometry (ICP-MS), LIBS and the potential of the new analytical technique, microwave plasma atomic emission spectrometry is discussed. Applicability of hyphenated techniques such as HPLC-ICP-MS for Cr6+, GC–MS for the determination of PBB, PBDE and phthalates, and the importance of certified reference materials, challenges and future trends are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. V. Kuntz, White paper on European Union RoHS directive: understanding exemptions, Assent, Canada, (2015) 1–14.

  2. http://www.chemsafetypro.com/Topics/Restriction/Directive_EU_2015_863_EU_RoHS_Restricts_4_Phthalates_DEHP_BBP_DBP_DIBP.html.

  3. S. Chatterjee, India’s readiness on ROHS directives: a strategic analysis, Glob. J. Sci. Frontier Res. Interdiscip., 12(1) (2012) 1–13.

    Google Scholar 

  4. U. Rambabu, V. Balaram, R. Ratheesh, S. Chatterjee, M.K. Babu and N.R. Munirathnam, Assessment of hazardous substances in electrical cables: implementation of RoHS regulations in India, J. Test. Eval., 46(5) (2018). https://doi.org/10.1520/JTE20160645. ISSN 0090-3973.

  5. https://www.revolvy.com/main/index.php?s=Restriction%20of%20Hazardous%20Substances%20Directive.

  6. http://www.ecsnuk.org/Legislation/WEEE/India%20WEEE/India%20and%20EU%20WEEE%20and%20RoHS%20comparison.pdf.

  7. T.W. Dahl, M. Ruhl, E.U. Hammarlund, D.E. Canfield, M.T. Rosing and C. J. Bjerrum, Tracing euxinia by molybdenum concentrations in sediments using handheld X-ray fluorescence spectroscopy (HHXRF), Chem. Geol., 360–361 (2013) 241–251.

    Article  Google Scholar 

  8. G.E.M. Hall, M.B. McClenaghan and L. Pagé, Application of portable XRF to the direct analysis of till samples from various deposit types in Canada, Geochem. Explor. Environ. Anal., 16 (2015) 62–84.

    Article  Google Scholar 

  9. V. Balaram, Field-portable instruments in mineral exploration: past, present and future, J. Appl. Geochem., 19(4) (2017) 382–399.

    Google Scholar 

  10. N.H. Nilsson, B. Malmgren-Hansen and I. Christensen, Development and use of screening methods to determine chromium (VI) and brominated flame retardants in electrical and electronic equipment, Danish Ministry of the Environment (2009) pp. 1–35.

  11. K.Ting, M. Gill and O. Garbin, GC/MS screening method for phthalate esters in children’s toys, J. AOAC Int., 92(3) (2009) 951–958.

    Google Scholar 

  12. A. E. Harvey Jr., J.A. Smart and E.S. Amis, Simultaneous spectrophotometric determination of iron(ii) and total iron with 1,10-phenanthroline, Anal. Chem., 27(1) (1955) 26–29.

    Article  Google Scholar 

  13. L. Hua, Y.C. Chan, Y.P. Wu and B.Y. Wu, Determination of hexavalent chromium (Cr6+) in electronic and electrical components and products to comply with RoHS regulations, J Hazard. Mater., 163(2–3) (2008) 1360–1368.

    Google Scholar 

  14. S.K. Pradhan and P.K. Tarafder, Scheme for performance evaluations of UV–visible spectrophotometer by standard procedures including certified reference materials for the analysis of geological samples, MAPAN-J. Metrol. Soc. India, 31(4) (2017) 275–281.

    Google Scholar 

  15. V. Balaram, R. Mathur, M. Satyanarayanan, S.S. Sawant, P. Roy, K.S.V. Subramanyam, C.T. Kamala, K.V. Anjaiah, S.L. Ramesh and B. Dasaram, A rapid method for the determination of gold in rocks, ores and other geological materials by F-AAS and GF-AAS after separation and preconcentration by DIBK extraction for prospecting studies. MAPAN-J. Metrol. Soc. India, 27(2) (2012) 87–95.

    Google Scholar 

  16. A.M.G. Alegria, M.G. Canez-Carrasco, M. Serna-Felix and A. Gomez-Alverez, Estimation of uncertainty in the determination of serum electrolytes (Na, K, Ca, Mg) by flame atomic absorption spectroscopy, MAPAN-J. Metrol. Soc. India, (2018), https://doi.org/10.1007/s12647-017-0244-2.

    Google Scholar 

  17. A. Walsh, The application of atomic absorption spectra to chemical analysis, Spectrochim. Acta 7 (1955) 108–117.

    Article  ADS  Google Scholar 

  18. L. Boris, Recent advances in absolute analysis by graphite furnace atomic absorption spectrometry, Spectrochim. Acta Part B At. Spectrosc., 45 (1990) 633–655.

    Article  Google Scholar 

  19. A.T. Duarte, M.B. Dessuy, M.M. Silva, M.G.R Vale and B. Welz, Determination of cadmium and lead in plastic material from waste electronic equipment using solid sampling graphite furnace atomic absorption spectrometry, Microchem. J., 96 (2010) 102–107.

    Article  Google Scholar 

  20. A.T. Duarte, M.B. Dessuy, M.G.R. Vale and B. Welz, Determination of chromium and antimony in polymers from electrical and electronic equipment using high resolution continuum source graphite furnace atomic absorption spectrometry, Anal. Methods, 24 (2013) 6941–6946.

    Article  Google Scholar 

  21. R. Mathur, V. Balaram and S. Babu, Determination of mercury in geological samples by cold vapor atomic absorption spectrometric technique, Indian J. Chem., 44A (2005) 1619–1624.

    Google Scholar 

  22. A. Hioki, M. Ohata, S. Matsuyama and S. Kinugasa, Development of plastic certified reference materials (CRMs) to cope with restrictions on hazardous substances—CRMs for analysis of heavy metals and brominated flame retardants regulated by RoHS directive, Synthesiol. Engl. Ed., 8(1) (2015) 29–42.

    Article  Google Scholar 

  23. R. Glocker and H. Schreiber, Quantitative Röntgenspektralanalyse mit Kalterregung des Spektrums, Ann. Physik., 85 (1928) 1089–1102.

    Article  ADS  Google Scholar 

  24. P.J. Potts and C. Webb, X-ray fluorescence spectrometry, J. Geochem. Explor., 44(1–3) (1992) 251–296.

    Article  Google Scholar 

  25. E.L. Hoffman, Instrumental neutron activation in geoanalysis, J. Geochem. Explor., 44(1–3) (1992) 297–319.

    Article  Google Scholar 

  26. A. El-Taher, Elemental analysis of granite by instrumental neutron activation analysis (INAA) and X-ray fluorescence analysis (XRF), Appl. Radiat. Isot., 70(1) (2012) 350–354.

    Article  Google Scholar 

  27. R.A. Nadkarni and G.H. Morrison, Multielement analysis of sludge samples by instrumental neutron activation analysis, Environ. Lett., 6(4) (1974) 273–285.

    Article  Google Scholar 

  28. K. Park and N. Kang, Instrumental neutron activation analysis of mass fractions of toxic metals in plastic, Talanta, 73 (2007) 791–794.

    Article  Google Scholar 

  29. M. Tsutomu, O. Ryo, I. Yuto, S. Shun, T. Koichi and O. Masaki, Precise determination of bromine in PP resin pellet by instrumental neutron activation analysis using internal standardization, J. Radioanal. Nucl. Chem., 303(2) (2015) 1417–1420.

    Article  Google Scholar 

  30. N. Ismail, and J. Yoo, Determination of Lead (Pb) concentration level in solder finished product using Laser Induced Breakdown Spectroscopy (LIBS), Proceedings on 12th electronics packaging technology conference, Singapore, (2010) pp. 456–461.

  31. A.A. Bol’shakov, J.H. Yoo, C. Liu, J.R. Plumer and R.E. Russo, Laser-induced breakdown spectroscopy in industrial and security applications, Appl. Opt., 49(13) (2010) C133–C142.

    Google Scholar 

  32. S. Greenfield, I.L.I. Jones and C.T. Berry, High pressure plasmas as spectroscopic emission sources, Analyst, 89 (1964) 713–720.

    Article  ADS  Google Scholar 

  33. R.H. Wendt and V. Fassel, Inductively-coupled plasma spectrometric excitation source, Anal. Chem., 37 (1965) 920–922.

    Article  Google Scholar 

  34. V. Balaram, K.V. Anjaiah and M.R.P. Reddy, A comparative study on the trace and rare earth element analysis of an Indian polymetallic nodule reface sample by inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry, Analyst, 120 (1995) 1401–1406.

    Article  ADS  Google Scholar 

  35. H.J. Cho and S.W. Myung, Determination of cadmium, chromium and lead in polymers by ICP-OES using a high pressure asher (HPA), Bull. Korean Chem. Soc., 32(2) (2011) 489–497.

    Article  MathSciNet  Google Scholar 

  36. R.S. Houk, V.A. Fassel, G.D. Flesch, H.J. Svec, A.L. Gray and C.E. Taylor, Inductively coupled argon plasma as an ion source for mass spectrometric determination of trace elements, Anal. Chem., 52 (1980) 2283–2289.

    Article  Google Scholar 

  37. V. Balaram, Recent trends in the instrumental analysis of rare earth elements in geological and industrial materials, Trends Anal. Chem., 15 (1996) 475–486.

    Google Scholar 

  38. V. Balaram, M. Satyanarayanan, P.K. Murthy, C. Mohapatra and K.L. Prasad, Quantitative multi-element analysis of cobalt crust from Afanasy-Nikitin seamount in the north central Indian Ocean by inductively coupled plasma time-of-flight mass spectrometry, MAPAN-J. Metrol. Soc. India, 28(2) (2013) 63–77.

    Google Scholar 

  39. M. Satyanarayanan, V. Balaram, S.S. Sawant, K.S.V. Subramanyam, V. Krishna, B. Dasaram, and C. Manikyamba, Rapid determination of REE, PGE and other trace elements in geological and environmental materials by HR-ICP-MS, At. Spectrosc., 39(1) (2018) 1–15.

    Google Scholar 

  40. M.C. Santos, J.A. Nóbregab and S. Cadorea, Determination of Cd, Cr, Hg and Pb in plastics from waste electrical and electronic equipment by inductively coupled plasma mass spectrometry with collision–reaction interface technology, J. Hazard. Mater., 190 (2011) 833–839.

    Article  Google Scholar 

  41. F. Kyoko and C. Atsushi, Determination of trace amounts of mercury, lead, and cadmium in steel and iron ore, JFE GIHO, 13 (2006) 35–41.

    Google Scholar 

  42. C. Mans, D. Alber, M. Radtke, S. Hanning, A. Buhler and M. Kreyenschmidt, New polymeric candidate reference materials for XRF and LA-ICP-MS—development and preliminary characterization, X-ray Spectrom., 38 (2009) 52–57.

    Article  ADS  Google Scholar 

  43. H. Osterlund, L. Rodushkin, K. Ylinenjarvi and D.C. Baxter, Determination of total chlorine and bromine in solid wastes by sintering and inductively coupled plasma-sector field mass spectrometry, Waste Manage., 29(4) (2008) 1258–1264.

    Article  Google Scholar 

  44. B. Novotnik, T. Zuliani, J. Scancar and R. Milacic, The determination of Cr(VI) in corrosion protection coatings by speciated isotope dilution, ICP-MS.J. Anal. At. Spectrom., 27 (2012) 1484–1493.

    Article  Google Scholar 

  45. M.R. Hammer, A magnetically excited microwave plasma source for atomic emission spectroscopy with performance approaching that of the inductively coupled plasma, Spectrochim. Acta Part B, 63 (2008) 456–464.

    Article  ADS  Google Scholar 

  46. V. Balaram, V. Dharmendra, P. Roy, C. Taylor, P. Kar, A.K. Raju and A. Krishnaiah, Determination of precious metals in rocks and ores by microwave plasma-atomic emission spectrometry (MP-AES) for geochemical prospecting, Curr. Sci., 104(9) (2013) 1207–1215.

    Google Scholar 

  47. C.T. Kamala, V. Balaram, V. Dharmendra, P. Roy, M. Satyanarayanan, K.S.V. Subramanyam, Application of microwave plasma atomic emission spectrometry (MP-AES) for environmental monitoring of industrially contaminated sites in Hyderabad city, Environ. Monit. Assess. 186 (2014) 7097–7113.

    Article  Google Scholar 

  48. V. Sreenivasulu, V. Dharmendra, V. Balaram, C.N. Rao A. Krishnaiah, H. Zhengxu and Z. Zhen, Determination of B, P and Mo in bio-sludge samples by microwave plasma atomic emission spectrometry (MP-AES), Appl. Sci., 7 (2017) 264–273.

    Article  Google Scholar 

  49. L.D. George, S.A. Renata, D. Schiavo, A.N. Joaquim, Determination of Cr, Ni, Pb and V in gasoline and ethanol fuel by microwave plasma optical emission spectrometry, J. Anal. At. Spectrom., 28 (2013) 755–759.

    Article  Google Scholar 

  50. D. Pfeil, Measurement techniques for mercury: which approach is right for you?, Spectroscopy, 26(9) (2011) 40–43.

    Google Scholar 

  51. Z. Grosser, L. Thompson and L. Davidowski, Inorganic analysis for environmental RoHS compliance, American Laboratory, October (2007) pp. 1–4.

  52. G.M.M. Rahman, H.M.S. Kingston, T.G. Towns, R.J. Vitale and K.R. Clay, Determination of hexavalent chromium by using speciated isotope-dilution mass spectrometry after microwave speciated extraction of environmental and other solid materials, Anal. Bioanal. Chem., 382 (2005) 1111–1120.

    Article  Google Scholar 

  53. S. Yue-Feng, W. Feng, B. Li-Ying, X. Bin and C. Shi, Determination and factor analysis of trace hexavalent chromium in plastics for RoHS directive, Acta Chim. Sin., 66(6) (2008) 662–668.

    Google Scholar 

  54. L. Hua, Y.C. Chan, Y.P. Wu and B.Y. Wu, The determination of hexavalent chromium (Cr6+) in electronic and electrical components and products to comply with RoHS regulations, J. Hazard. Mater., 163 (2009) 1360–1368.

    Article  Google Scholar 

  55. J.S. Kim, Y.R. Choi, Y.S. Kim, Y.J. Lee, Y.H. Ko, S.Y. Kwon and S.B. Heo, Determination of hexavalent chromium (Cr(VI)) in plastics using organic-assisted alkaline extraction, Anal. Chim. Acta, 690(2) (2011) 182–189.

    Article  Google Scholar 

  56. E. Hoh, L. Zhu, R.A. Hites, Novel flame retardants, 1,2-bis(2,4,6-tribromophenoxy) ethane and 2,3,4,5,6-pentabromoethylbenzene, in United States’ environmental samples, Environ. Sci. Technol., 39 (2005) 2472–2477.

    Article  ADS  Google Scholar 

  57. J.H. Christensen, M. Glasius, M. Pécseli, J. Platz, G. Pritz, Polybrominated diphenyl ethers (PBDEs) in marine fish and blue mussels from southern Greenland, Chemosphere, 47(6) (2002) 631–638.

    Article  ADS  Google Scholar 

  58. E. Eljarrat and D. Barceló, Priority lists for persistent organic pollutants and emerging contaminants based on their relative toxic potency in environmental samples, Trends Anal. Chem., 22(10) (2003) 655–665.

    Article  Google Scholar 

  59. L.G. Costa and G. Giordano, Developmental neurotoxicity of polybrominated diphenyl ether (PBDE) flame retardants, Neurotoxicology, 28(6) (2007)1047–1067.

    Article  Google Scholar 

  60. M. Riess and R. Eldi, Identification of brominated flame retardants in polymeric materials by reversed-phase liquid chromatography with ultraviolet detection, J. Chromatogr. A, 827 (1998) 65–71.

    Article  Google Scholar 

  61. B. Kolarik, C. Bornehag, K. Naydenov, J. Sundell, P. Stavova and O.F. Nielsen, Concentrations of phthalates in settled dust in Bulgarian homes in relation to building characteristic and cleaning habits in the family, Atmos. Environ., 42(37) (2008) 8553–8559.

    Article  ADS  Google Scholar 

  62. H. Shen, Simultaneous screening and determination eight phthalates in plastic products for food use by sonication-assisted extraction/GC–MS methods, Talanta, 66(3) (2005) 734–739.

    Article  Google Scholar 

  63. C.K. Wei, L.C. Fung and M. Pang, Determination of six phthalates in polypropylene consumer products by sonification assisted extraction-GC–MS method, Malaysian J. Anal. Sci., 15(2) (2011) 167–174.

    Google Scholar 

  64. S. G. Aggarwal, Recent developments in aerosol measurement techniques and the metrological issues, MAPAN-J. Metrol. Soc. India, 25(3) (2010) 165–189.

    Google Scholar 

  65. M. Schlummer, F. Brandl, A. Mäurer and R. van Eldik, Analysis of flame retardant additives in polymer fractions of waste of electric and electronic equipment (WEEE) by means of HPLC-UV/MS and GPC-HPLC-UV. J Chromatogr. A, 1064(1) (2005) 39–51.

    Article  Google Scholar 

  66. Y. Chen, J. Li, L. Chen, S. Chen and W. Diao, Brominated flame retardants (BFRs) in waste electrical and electronic equipment (WEEE) plastics and printed circuit boards (PCBs), Procedia Environ. Sci., 16 (2012) 552–559.

    Article  Google Scholar 

  67. M. Pöhlein, B. Müller, M. Wolf and R. van Eldik, GIT Labor-Fachzeitschrift, 48 (2004) 754 (in German language).

    Google Scholar 

  68. M. Shao, J. Jiang, M. Li, L. Wu and M. Hu, Recent developments in the analysis of polybrominated diphenyl ethers and polybrominated biphenyls in plastic, Rev. Anal. Chem., 35(3) (2016) 133–143.

    Article  Google Scholar 

  69. M.S. Qureshi, A.R.M. Yusoff, M.D.H. Wirzal, Sirajuddin, J. Barek, H.I. Afridi and Z. Ustundag, Methods for the determination of endocrine-disrupting phthalate esters, Crit. Rev. Anal. Chem., 46(2) (2016) 146–159.

    Article  Google Scholar 

  70. H. Vasakova, A powerful tool for material identification: Raman Spectroscopy, Int. J. Math. Models Methods Appl. Sci., 7(5) (2011) 1205–1212.

    Google Scholar 

  71. R. Taurino, M. Cannio, T. Mafredini and P. Pozzi, An efficient and fast analytical procedure for the bromine determination in waste electrical and electronic equipment plastics, Environ. Technol., 35(21–24) (2014) 3147–3152.

    Article  Google Scholar 

  72. S. Kikuchi, K. Kawauchi, S. Ooki, M. Kurosawa, H. Honjho and T. Yagishita, Non-destructive rapid analysis of brominated flame retardants in electrical and electronic equipment using Raman Spectroscopy, Anal. Sci., 20 (2004) 1111–1112.

    Article  Google Scholar 

  73. J.E. Martin, L.L.A. Smith, G. Adjei-Bekoe and R. Thomas, Comparison of different sample preparation procedures for the determination of RoHS/WEEE-regulated elements in printed circuit boards and electrical components by EDXRF, Spectroscopy 25(4) (2010) 40–47.

    Google Scholar 

  74. V. Balaram, Microwave dissolution techniques for the analysis of geological materials by ICP-MS, Curr. Sci., 73 (1997) 1019–1023.

    Google Scholar 

  75. F. Vilaplana, A. Ribes-Greus and S. Karlsson, Microwave-assisted extraction for qualitative and quantitative determination of brominated flame retardants in styrenic plastic fractions from waste electrical and electronic equipment (WEEE), Talanta, 78(1) (2009) 33–39.

    Article  Google Scholar 

  76. USGS (2017) https://pubs.usgs.gov/gip/0167/gip167.pdf.

  77. RoHS FAQ Guidance document (2016) http://ec.europa.eu/environment/waste/rohs_eee/pdf/faq.pdf.

  78. K.S.V. Subramanyam, V. Balaram, U.V.B. Reddy, M. Satyanarayanan, P. Roy and S.S. Sawant. Problems involved in using improper calibration CRMs in geochemical analyses: a case study on mafic rocks of Boggulakonda Pluton, East of Cuddapah Basin, India, MAPAN-J. Metrol. Soc. India, 28(1) (2013) 1–9.

    Google Scholar 

  79. V. Balaram, M.L. Patil, A.K. Agrawal, D.V.S. Rao, S.N. Charan, M. Satyanarayanan, R. Mathur, K. Kapilavastu, D.S. Sarma, M.S. Gowda, S.L. Ramesh, P. Sangurmath, K.V. Anjaiah, B. Dasaram, R.K. Saxena and Z. Begum, Preparation and certification of high-grade gold geochemical reference material, Accred. Qual. Assur., 11 (2006) 329–335.

    Article  Google Scholar 

  80. M. Pöhlein, R.U. Bertran, M. Wolf, R. van Eldik, Preparation of reference materials for the determination of RoHS-relevant flame retardants in styrenic polymers, Anal. Bioanal. Chem., 394 (2009) 583–595.

    Article  Google Scholar 

  81. NMIJ 2008 CRM 8108-a http://www.seishinsyoji.co.jp/Standard/2007.11Plastic%20Reference%20Material.pdf.

  82. M. Ohata and A. Hioki, Development of PVC and PP resin pellet certified reference materials for heavy metal analysis with respect to the RoHS directive, Anal. Sci., 29 (2013) 239–246.

    Article  Google Scholar 

  83. C. Bergh, G. Luongo, S. Wise and C. Östman, Organophosphate and phthalate esters in standard reference material 2585 organic contaminants in house dust, Anal. Bioanal. Chem., 402(1) (2012) 51–59.

    Article  Google Scholar 

  84. G. Flora, D. Gupta and A. Tiwari, Toxicity of lead: a review with recent updates, Interdiscip. Toxicol., 5(2) (2012) 47–58.

    Article  Google Scholar 

  85. B.F. Azevedo, L.B. Furieri, F.M. Peçanha, G.A. Wiggers, P.F. Vassallo, M.R. Simões, J. Fiorim, P.R. Batista, M. Fioresi, L. Rossoni, I. Stefanon, M.J. Alonso, M. Salaices and D.V. Vassallo, Toxic effects of mercury on the cardiovascular and central nervous systems, J. Biomed. Biotechnol., Article ID 949048, (2012) 1–11, https://doi.org/10.1155/2012/949048.

  86. U.S. Department of Health and Human Services, Public Health Service, Agency for toxic Substances and Disease Registry (ATSDR), Toxicological Profile for Cadmium (2012).

  87. U.S. Department of Labor, Health effects of hexavalent chromium, Occupational Safety and Health Administration (2006).

  88. M.A. Siddiqi, R.H. Laessig and K.D. Reed, Polybrominated diphenyl ethers (PBDEs): new pollutants-old diseases, Clin. Med. Res., 1(4) (2003) 281–290.

    Article  Google Scholar 

  89. A. Covaci, S. Voorspoels, L. Ramos, H. Neels and R. Blust, Recent developments in the analysis of brominated flame retardants and brominated natural compounds, J. Chromatogr. A, 1153 (2007) 145–171.

    Article  Google Scholar 

  90. C.F. Wilkinson and J.C. Lamb IV, The potential health effects of phthalate esters in children’s toys: a review and risk assessment, Regul. Toxicol. Pharmacol., 30(2) (1999) 140–155.

    Article  Google Scholar 

  91. L. Randall, V. Wal, T.M. Ticich, J.R. West and A. Paul, Trace metal detection by laser-induced breakdown spectroscopy, Appl. Spectrosc., 53(10) (1999) 1226–1236.

  92. V. Balaram, V. Dharmendra, P. Roy, C. Taylor, C.T. Kamala, M. Satyanarayanan, P. Kar, K.S.V. Subramanyam, A.K. Raju, A. Krishnaiah, Analysis of geochemical samples by microwave plasma-AES, At. Spectrosc., 35(2) (2014) 65–78.

    Google Scholar 

  93. B. Welz, Atomic absorption spectroscopy, 2nd edn., VCH, Weinheim and Deerfield Beach, FL (1985) p. 506.

    Google Scholar 

  94. X. Hou and B.T. Jones, Inductively coupled plasma/optical emission spectrometry. In: Encyclopedia of analytical chemistry, R.A. Meyers (Ed.) John Wiley & Sons Ltd, Chichester (2000) pp. 9468–9485

    Google Scholar 

  95. V. Balaram and T.G. Rao, Rapid determination of REE and other trace elements in geological samples by microwave acid digestion and ICP-MS, At. Spectrosc., 24(6) (2003) 206–212.

    Google Scholar 

  96. B. Passariello, M. Barbaro, S. Quaresima, A.A. Marabini, Determination of mercury by inductively coupled plasma-mass spectrometry, Microchemical J., 54(4) (1996) 348–354.

    Article  Google Scholar 

  97. V.R. Bellotto and N. Miekeley, Improvements in calibration procedures for the quantitative determination of trace elements in carbonate material (mussel shells) by laser ablation ICP-MS, Fresenius J. Anal. Chem., 367(2000) 635–640.

    Article  Google Scholar 

  98. R. Van Grieken and J. Injuk, Current applications of XRF and micro-XRF techniques in environmental and industrial fields (1999) (unpublished work).

  99. B. Binici, M. Bilsel, M. Karakas, I. Koyuncu and A.C. Goren, An efficient GC-IDMS method for determination of PBDEs and PBB in plastic materials, Talanta, 116 (2013) 417–426.

    Article  Google Scholar 

  100. N. Boley, Development of a procedure for the determination of selected brominated flame retardants (PBB, PBDE) in plastics by HPLC-ICP-MS. National Measurement Office, Teddington, (2010) pp. 1–41.

    Google Scholar 

Download references

Acknowledgements

One of the authors (VB) would like to express sincere thanks to the Ministry of Electronics and Information Technology (MeitY), Government of India, New Delhi and the Director, C-MET, Hyderabad for appointing him as the Chairman of the Monitoring Committee for the RoHS Project at C-MET, Hyderabad during 2012–2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Balaram.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balaram, V., Rambabu, U., Reddy, M.R.P. et al. RoHS Regulation: Challenges in the Measurement of Substances of Concern in Industrial Products by Different Analytical Techniques. MAPAN 33, 329–346 (2018). https://doi.org/10.1007/s12647-018-0263-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-018-0263-7

Keywords