Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Fuzzy fractional coloring of fuzzy graph with its application

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

In this article, a new idea of fuzzy fractional coloring of fuzzy graph is presented and fuzzy fractional chromatic number is defined. A relationship between fuzzy fractional chromatic number and fuzzy fractional clique number is established. Some properties of fuzzy chromatic number of fuzzy graphs and fuzzy fractional chromatic number of fuzzy graphs are proved and the concept of k-strong adjacent vertices is introduced. Fuzzy chromatic number and fuzzy fractional chromatic number have been calculated on lexicographic product of two fuzzy graphs. Also, fuzzy chromatic number, independence number and fuzzy fractional chromatic number have been investigated on disjoint union of two fuzzy graphs. Lastly, a real life application of fuzzy fractional coloring on fuzzy graph is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Akram M, Adeel A (2017) \(m\)-polar fuzzy graphs and \(m\)-polar fuzzy line graphs. J Discrete Math Sci Cryptogr 20(8):1597–1617

    MathSciNet  MATH  Google Scholar 

  • Akram M, Wassem N, Dudek WA (2016) Certain types of edge \(m\)-polar fuzzy graph. Iran J Fuzzy Syst 14(4):27–50

    MathSciNet  Google Scholar 

  • Ananthanarayanan M, Lavanya S (2014) Fuzzy graph coloring using \(\alpha \)-cut. Int J Eng Appl Sci 4(10):23–28

    Google Scholar 

  • Anjali N, Mathew S (2015) On blocks and stars in fuzzy graphs. J Intell Fuzzy Syst 28:1659–1665

    Article  MathSciNet  MATH  Google Scholar 

  • Bhutani KR, Battou A (2003) On \(M\)-strong fuzzy graphs. Inf Sci 155:103–109

    MathSciNet  MATH  Google Scholar 

  • Bhutani KR, Rosenfeld A (2003) Strong arcs in fuzzy graph. Inf Sci 152:319–322

    Article  MathSciNet  MATH  Google Scholar 

  • Chen J, Li S, Ma S, Wang X (2014) \(m\)-polar fuzzy sets: an extension of bipolar fuzzy sets. Sci World J 2014:1–8 (Hindwai Publishing Corporation)

    Google Scholar 

  • Chen L, Chen Y, Wang Y (2019) An improved spectral graph partition intelligent clustering algorithm for low-power wireless network. J Ambient Intell Humaniz Comput. https://doi.org/10.1007/s12652-019-01508-7

    Article  Google Scholar 

  • Eslahchi C, Onagh NB (2006) Vertex strength of fuzzy graphs. Int J Math Math Sci 2006:1–9 (Hindawi Publishing Corporation)

    Article  MathSciNet  MATH  Google Scholar 

  • Ghorai G, Pal M (2015) On some operations and density of m-polar fuzzy graphs. Pac Sci Rev A Natural Sci Eng 17(1):14–22

    Article  Google Scholar 

  • Ghorai G, Pal M (2016) Some properties of m-polar fuzzy graphs. Pac Sci Rev A Natural Sci Eng 18:38–46

    Article  MATH  Google Scholar 

  • Ghorai G, Pal M (2016) A study on m-polar fuzzy planar graphs. Int J Comput Sci Math 7(3):283–292

    Article  MathSciNet  MATH  Google Scholar 

  • Ghorai G, Pal M (2016) Faces and dual of m-polar fuzzy planner graphs. J Intell Fuzzy Syst 31:2043–2049

    Article  MATH  Google Scholar 

  • Ghorai G, Pal M (2017) Planarity in vague graphs with application. Acta Math Acad Paedagogiace Nyregyhziensis 33(2):1–21

    MathSciNet  MATH  Google Scholar 

  • Kauffman A (1973) Introduction a la Theorie des Sous-emsembles Flous. Mansson et Cie 1:1973

    Google Scholar 

  • Mandal S, Sahoo S, Ghorai G, Pal M (2017) Genus value of m-polar fuzzy graphs. J Intell Fuzzy Syst 34(3):1947–1957

    Article  Google Scholar 

  • Mathew S, Sunitha MS (2012) Fuzzy graphs: basics, concepts and applications. Lap Lambert Academic Publishing, Berlin

    Google Scholar 

  • Mordeson JN, Nair PS (1994) Operation on fuzzy graphs. Inf Sci 79(3–4):159–170

    Article  MathSciNet  Google Scholar 

  • Mordeson JN, Nair PS (2000) Fuzzy graph and fuzzy hypergraphs. Physica-Verlag, Heidelberg

    Book  MATH  Google Scholar 

  • Mũnoz S, Ortuño MT, Ramĩrez J, Yàñez J (2005) Coloring fuzzy graphs. Omega 33:211–221

    Article  Google Scholar 

  • Nagoorgani A, Malarvizhi J (2008) Isomorphism on fuzzy graphs. Int J Comput Math Sci 2(11):825–831

    MathSciNet  Google Scholar 

  • Radha K, Arumugam S (2015) On lexicographic products of two fuzzy graphs. Int J Fuzzy Math Arch 7(2):169–176

    Google Scholar 

  • Rashmanlou H, Samanta S, Pal M, Borzooei RA (2015) A study on bipolar fuzzy graphs. J Intell Fuzzy Syst 28(2):571–580

    Article  MathSciNet  MATH  Google Scholar 

  • Rashmanlou H, Samanta S, Pal M, Borzooei RA (2015) Bipolar fuzzy graphs with categorical properties. Int J Comput Intell Syst 8(5):808–818

    Article  MATH  Google Scholar 

  • Rosenfeld A (1975) Fuzzy Graphs, fuzzy sets and their application. Academic Press, New York, pp 77–95

    Google Scholar 

  • Rosyida I, Widodo W, Indrati CR, Sugeng AK (2015) A new approach for determining fuzzy chromatic number of fuzzy graph. J Intell Fuzzy Syst 28:2331–2341

    Article  MathSciNet  MATH  Google Scholar 

  • Rosyida I, Indrati CR, Widodo W, Indriati D, Nurhaida, (2019) Fuzzy chromatic number of union of fuzzy graphs: an algorithm, properties and its application. Fuzzy Sets Syst. https://doi.org/10.1016/j.fss.2019.04.028

  • Sahoo S, Pal M (2016) Intuitionistic fuzzy tolerance graph with application. J Appl Math Comput 55:495–511

    Article  MathSciNet  MATH  Google Scholar 

  • Sahoo S, Pal M (2016) Intuitionistic fuzzy graphs and degree. J Intell Fuzzy Syst 32(1):1059–1067

    Article  MATH  Google Scholar 

  • Samanta S, Pal M (2015) Fuzzy planar graph. IEEE Trans Fuzzy Syst 23:1936–1942

    Article  Google Scholar 

  • Samanta S, Pramanik T, Pal M (2016) Fuzzy colouring of fuzzy graphs. Afrika Math 27:37–50

    Article  MathSciNet  MATH  Google Scholar 

  • Selvi TFSM, Amutha A (2020) A study on harmonious chromatic number of total graph of central graph of generalized Petersen graph. J Ambient Intell Humaniz Comput. https://doi.org/10.1007/s12652-020-01697-6

    Article  Google Scholar 

  • Sunitha MS, Kumar AV (2002) Complement of a fuzzy graph. Indian J Pure Appl Math 33(9):1451–1464

    MathSciNet  MATH  Google Scholar 

  • Sunitha MS, Mathew S (2013) Fuzzy graph theory: a survey. Ann Pure Appl Math 4:92–110

    Google Scholar 

  • Talebi AA, Rashmanlou H (2013) Isomorphism on interval-valued fuzzy graphs. Ann Fuzzy Math Informatics 6(1):47–58

    MathSciNet  MATH  Google Scholar 

  • Talebi AA, Rashmanlou H (2014) Complement and isomorphism on bipolar fuzzy graphs. Fuzzy Inf Eng 6:505–522

    Article  MathSciNet  Google Scholar 

  • Yang HL, Li SG, Yang WH, Lu Y (2013) Notes on “bipolar fuzzy graphs”. Inf Sci 242:113–121

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 1965:338–353

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors are highly grateful to the learned reviewers for their valuable comments and suggestions to improve the quality of the article. Financial support of first author offered by University Grants commission, New Delhi, India (UGC Ref.No:1215/CSIR-UGC NET DEC.2016) is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganesh Ghorai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahapatra, T., Ghorai, G. & Pal, M. Fuzzy fractional coloring of fuzzy graph with its application. J Ambient Intell Human Comput 11, 5771–5784 (2020). https://doi.org/10.1007/s12652-020-01953-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-020-01953-9

Keywords