Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Elastohydrodynamic Behavior Analysis of Journal Bearing Using Fluid–Structure Interaction Considering Cavitation

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper presents the lubrication performance analyses of journal bearing using the fluid–structure coupling method, whereas realistic features of cavitation and deformation are accounted for. The multiphase flow model of journal bearing is established with a mixture model considering both cavitation and thermal effects. Moreover, the hydrodynamic characteristics of journal bearing with cavitation are analyzed with the proposed multiphase flow model and the maximum difference is less than 6% between the simulation results and experimental data, which is then verified through a demonstrative application example. Furthermore, the effects of eccentricity ratio, rotational speed and oil-film thickness on the elastohydrodynamic characteristics of journal bearing with different groove shapes are numerically investigated. The numerical results suggest that groove shapes and operating conditions play the crucial roles in changing the elastohydrodynamic characteristics of journal bearing. The change of groove shapes can improve the load-carrying capacity of journal bearing and decrease the average temperature of oil film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deligant, M.; Podevin, P.; Descombes, G.: CFD model for turbochanger journal bearing performances. Appl. Therm. Eng. 31, 811–819 (2011)

    Article  Google Scholar 

  2. Shimpi, M.E.; Deheri, G.M.: Ferrofluid lubrication of rotating curved rough porous circular plates and effect of bearing’s deformation. Arab. J. Sci. Eng. 38, 2865–2874 (2013)

    Article  Google Scholar 

  3. Wang, Y.Q.; Shi, X.J.; Zhang, L.J.: Experimental and numerical study on water-lubricated rubber bearings. Ind. Lubr. Tribol. 66, 282–288 (2014)

    Article  Google Scholar 

  4. Feng, H.; Jiang, S.: Dynamic analysis of water-lubricated motorized spindle considering tilting effect of thrust bearing. Proc. Inst. Mech. Eng. (2016)

  5. Zhang, M.; Yang, J.; Xu, W.: Leakage and rotordynamic performance of a mixed labyrinth seal compared with that of a staggered labyrinth seal. J. Mech. Sci. Technol. 31(5), 2261–2277 (2017)

    Article  Google Scholar 

  6. Yang, J.; Guo, R.; Tian, Y.: Hybrid radial basis function/finite element modeling of journal bearing. Tribol. Int. 41(12), 1169–1175 (2008)

    Article  Google Scholar 

  7. Scaraggi, M.; Comingio, D.; Lorenzis, L.D.: The influence of geometrical and rheological non-linearity on the calculation of rubber friction. Tribol. Int. 101, 402–413 (2016)

    Article  Google Scholar 

  8. Feng, H.; Jiang, S.: Dynamics of a motorized spindle supported on water-lubricated bearings. Proc. Inst. Mech. Eng. Part C 231(3), 459–472 (2017)

    Article  Google Scholar 

  9. Knight, J.D.; Ghadimi, P.: Analysis and observation of cavities in a journal bearing considering flow continuity. Tribol. Trans. 44, 88–96 (2001)

    Article  Google Scholar 

  10. Pierre, I.; Bouyer, J.; Fillon, M.: Thermohydrodynamic behavior of misaligned plain journal bearings: theoretical and experimental approaches. Tribol. Trans. 47, 594–604 (2004)

    Article  Google Scholar 

  11. Singh, U.; Roy, L.; Sahu, M.: Steady-state thermo-hydrodynamic analysis of cylindrical fluid film journal bearing with an axial groove. Tribol. Int. 41, 1135–1144 (2008)

    Article  Google Scholar 

  12. Roy, L.; Laha, S.K.: Steady state and dynamic characteristics of axial grooved journal bearings. Tribol. Int. 42, 754–761 (2009)

    Article  Google Scholar 

  13. Durany, J.; Pereira, J.; Varas, F.: Dynamical stability of journal-bearing devices through numerical simulation of thermohydrodynamic models. Tribol. Int. 43, 1703–1718 (2010)

    Article  Google Scholar 

  14. Boubendir, S.; Larbi, S.; Bennacer, R.: Numerical study of the thermo-hydrodynamic lubrication phenomena in porous journal bearings. Tribol. Int. 44, 1–8 (2011)

    Article  Google Scholar 

  15. Brito, F.P.; Miranda, A.S.; Claro, J.C.P.; Fillon, M.: Experimental comparison of the performance of a journal bearing with a single and a twin axial groove configuration. Tribol. Int. 54, 1–8 (2012)

    Article  Google Scholar 

  16. Hu, J.; Wu, W.; Wu, M.; Yuan, S.: Numerical investigation of the air–oil two-phase flow inside an oil-jet lubricated ball bearing. Int. J. Heat Mass Transf. 68, 85–93 (2014)

    Article  Google Scholar 

  17. Gao, S.; Cheng, K.; Chen, S.: CFD based investigation on influence of orifice chamber shapes for the design of aerostatic thrust bearings at ultra-high speed spindles. Tribol. Int. 92, 211–221 (2015)

    Article  Google Scholar 

  18. Nair, K.P.; Nair, V.P.S.; Jayadas, N.H.: Static and dynamic analysis of elastohydrodynamic elliptical journal bearing with micropolar lubricant. Tribol. Int. 40, 297–305 (2007)

    Article  Google Scholar 

  19. Jiang, S.; Yang, S.; Yin, Z.: Static and dynamic characteristics of externally pressurized annular porous gas thrust bearings. Proc. Inst. Mech. Eng. Part J 230(10), 1221–1230 (2016)

    Article  Google Scholar 

  20. Nair, V.P.S.; Nair, K.P.: Finite element analysis of elastohydrodynamic circular journal bearing with micropolar lubricants. Finite Elem. Anal. Des. 41, 75–89 (2004)

    Article  Google Scholar 

  21. Suy, F.C.; Lagemann, V.; Fusser, H.J.: The transient elastohydrodynamic friction analysis of main bearings. Life Cycle Tribol. 48, 617–626 (2005)

    Article  Google Scholar 

  22. Liu, H.; Xu, H.; Ellison, P.J.; Jin, Z.: Application of computational fluid dynamics and fluid–structure interaction method to the lubrication study of a rotor-bearing system. Tribol. Lett. 38, 325–336 (2010)

    Article  Google Scholar 

  23. Lin, Q.; Wei, Z.; Wang, N.; Chen, W.: Analysis on the lubrication performances of journal bearing system using computational fluid dynamics and fluid–structure considering thermal influence and cavitation. Tribol. Int. 64, 8–15 (2013)

    Article  Google Scholar 

  24. Meng, F.M.; Zhang, L.; Liu, Y.; Li, T.T.: Effect of compound dimple on tribological performances of journal bearing. Tribol. Int. 91, 99–110 (2015)

    Article  Google Scholar 

  25. Dhande, D.Y.; Pande, D.W.: Multiphase flow analysis of hydrodynamic journal bearing using CFD coupled fluid structure interaction considering cavitation. J. King Saud Univ. Eng. Sci. (2016)

  26. Costa, L.; Fillon, M.: An experimental investigation of the effect of groove location and supply pressure on THD performance of a steadily loaded journal bearing. J. Tribol. 122, 227–232 (2000)

    Article  Google Scholar 

  27. Kasolang, S.; Ahmad, M.A.: Preliminary study of pressure profile in hydrodynamic lubrication journal bearing. Procedia Eng. 41, 1743–1749 (2012)

    Article  Google Scholar 

  28. Shyu, S.H.; Jeng, Y.R.; Li, F.L.: A legendre collocation method for thermohydrodynamic journal-bearing problems with Elrod’s cavitation algorithm. Tribol. Int. 41, 493–501 (2008)

    Article  Google Scholar 

  29. Kuznetsov, E.; Glavatskih, S.: Dynamic characteristics of compliant journal bearings considering thermal effects. Tribol. Int. 94, 288–305 (2016)

    Article  Google Scholar 

  30. Nada, G.S.; Osman, T.A.: Static performance of finite hydrodynamic journal bearings lubricated by magnetic fluids with couple stresses. Tribol. Lett. 27, 261–268 (2007)

    Article  Google Scholar 

  31. Gertzos, K.P.; Nikolapoulos, P.G.; Papadopoulos, C.A.: CFD analysis of journal bearing hydrodynamic lubrication by Bingham lubricant. Tribol. Int. 41, 1190–1204 (2008)

    Article  Google Scholar 

  32. Xu, W.; Yang, J.: An approximate solution of muijderman’s model for performance calculation of spiral grooved gas seal. J. Tribol. 139, 051706-1-051706-6 (2017)

    Google Scholar 

  33. Chauhan, A.; Sehgal, R.; Sharma, R.K.: Thermohydrodynamic analysis of elliptical journal bearing with different grade oils. Tribol. Int. 43, 1970–1977 (2010)

    Article  Google Scholar 

  34. Zhang, Z.S.; Yang, Y.M.; Dai, X.D.; Xie, Y.B.: Effects of thermal boundary conditions on plain journal bearing thermohydrodynamic lubrication. Tribol. Trans. 56, 759–770 (2013)

    Article  Google Scholar 

  35. Sander, D.E.; Allmaier, H.; Priebsch, H.H.: Impact of high pressure and shear thinning on journal bearing friction. Tribol. Int. 81, 29–37 (2015)

    Article  Google Scholar 

  36. Wu, W.; Xiong, Z.; Hu, J.; Yuan, S.: Application of CFD to model oil-air flow in a grooved two-disc system. Int. J. Heat Mass Transf. 91, 293–301 (2015)

    Article  Google Scholar 

  37. Zhang, L.; Qian, Z.; Deng, J.; Yin, Y.: Fluid–structure interaction numerical simulation of thermal performance and mechanical property on plate-fins heat exchanger. Heat Mass Transf. 51, 1337–1353 (2015)

    Article  Google Scholar 

  38. Zou, D.; Zhang, J.; Ta, N.; Rao, Z.: The hydroelastic analysis of marine propellers with consideration of the effect of the shaft. Ocean Eng. 131, 95–106 (2017)

    Article  Google Scholar 

  39. Thomsen, K.; Klit, P.: A study on compliant layers and its influence on dynamic response of a hydrodynamic journal bearing. Tribol. Int. 44, 1872–1877 (2011)

    Article  Google Scholar 

  40. Li, Q.; Liu, S.; Pan, X.; Zheng, S.: A new method for studying the 3D transient flow of misaligned journal bearings in flexible rotor-bearing systems. J. Zhejiang Univ. Sci. A 13(4), 293–310 (2013)

    Article  Google Scholar 

  41. Xu, W.; Yang, J.: Spiral-grooved gas face seal for steam turbine shroud tip leakage reduction: performance and feasibility analysis. Tribol. Int. 98, 242–252 (2016)

    Article  Google Scholar 

  42. Gao, G.; Yin, Z.; Jiang, D.; Zhang, X.: Numerical analysis of plain journal bearing under hydrodynamic lubrication by water. Tribol. Int. 75, 31–38 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the “National Natural Science Foundation of China (No. 51705215),” “Natural Science Foundation of Jiangsu Province (No. BK20170824)” and the “Fundamental Research Funds for the Central Universities” (No. 30917011343).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Sun, Y., He, Q. et al. Elastohydrodynamic Behavior Analysis of Journal Bearing Using Fluid–Structure Interaction Considering Cavitation. Arab J Sci Eng 44, 1305–1320 (2019). https://doi.org/10.1007/s13369-018-3467-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3467-9

Keywords