Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Abstract

Given a convex optimization problem \((P)\) in a locally convex topological vector space \(X\) with an arbitrary number of constraints, we consider three possible dual problems of \((P),\) namely, the usual Lagrangian dual \((D)\), the perturbational dual \((Q)\), and the surrogate dual \((\Delta )\), the last one recently introduced in a previous paper of the authors (Goberna et al., J Convex Anal 21(4), 2014). As shown by simple examples, these dual problems may be all different. This paper provides conditions ensuring that \(\inf (P)=\max (D)\), \(\inf (P)=\max (Q),\) and \(\inf (P)=\max (\Delta )\) (dual equality and existence of dual optimal solutions) in terms of the so-called closedness regarding to a set. Sufficient conditions guaranteeing \(\min (P)=\sup (Q)\) (dual equality and existence of primal optimal solutions) are also provided, for the nominal problems and also for their perturbational relatives. The particular cases of convex semi-infinite optimization problems (in which either the number of constraints or the dimension of \(X\), but not both, is finite) and linear infinite optimization problems are analyzed. Finally, some applications to the feasibility of convex inequality systems are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Boţ, R.I.: Conjugate Duality in Convex Optimization. Springer, Berlin (2010)

    MATH  Google Scholar 

  2. Dinh, N., Goberna, M.A., López, M.A.: From linear to convex systems: consistency, Farkas Lemma and applications. J. Convex Anal. 13, 279–290 (2006)

    Google Scholar 

  3. Dinh, N., Goberna, M.A., López, M.A., Son, T.Q.: New Farkas-type constraint qualifications in convex infinite programming. ESAIM Control Optim. Calculus Var. 13, 580–597 (2007)

    Article  MATH  Google Scholar 

  4. Ernst, E., Volle, M.: Zero duality gap for convex programs: a generalization of the Clark–Duffin Theorem. J. Optim. Theory Appl. 158, 668–686 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  5. Fang, D.H., Li, C., Ng, K.F.: Constraint qualifications for extended Farkas’s lemmas and Lagrangian dualities in convex infinite programming. SIAM J. Optim. 20, 1311–1332 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Goberna, M.A., López, M.A.: Linear Semi-Infinite Optimization. Wiley, Chichester (1998)

    MATH  Google Scholar 

  7. Goberna, M.A., López, M.A., Volle, M.: Primal attainment in convex infinite optimization duality. J. Convex Anal. 21 (2014, to appear)

  8. Jeyakumar, V., Wolkowicz, H.: Zero duality gaps in infinite dimensional programming. J. Optim. Theory Appl. 67, 87–108 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  9. Joly, J.L.: Une famille de topologies et de convergences sur l’ensemble des fonctionnelles convexes, PhD Thesis, Institut d’Informatique et de Mathématiques Appliquées de Grenoble (IMAG) (1970)

  10. Joly, J.L., Laurent, P.J.: Stability and duality in convex minimization problems. Rev. Française Informat. Recherche Opérationnelle 5, 3–42 (1971)

    MATH  MathSciNet  Google Scholar 

  11. Laurent, P.-J.: Approximation et optimization (French). Hermann, Paris (1972)

    Google Scholar 

  12. Moussaoui, M., Volle, M.: Quasicontinuity and united functions in convex duality theory. Commun. Appl. Nonlinear Anal. 4, 73–89 (1997)

    MATH  MathSciNet  Google Scholar 

  13. Pomerol, J. Ch.: Contribution à la programmation mathé matique: existence de multiplicateurs de Lagrange et stabilité, PhD Thesis, Paris 6 (1980)

  14. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  15. Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, River Edge (2002)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the two anonymous referees for their valuable comments and suggestions that have significantly improved the quality of the paper. M. A. Goberna and M. A. López were partially supported by MINECO of Spain, Grant MTM2011-29064-C03-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Goberna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goberna, M.A., López, M.A. & Volle, M. New glimpses on convex infinite optimization duality. RACSAM 109, 431–450 (2015). https://doi.org/10.1007/s13398-014-0194-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13398-014-0194-2

Keywords

Mathematics Subject Classification