Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A two-way FSI analysis of multiphase flow in hydrodynamic journal bearing with cavitation

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This work deals with a study of a three-dimensional CFD analysis and multi-phase flow phenomena for hydrodynamic journal bearing with integrated cavitation. The simulations are carried out considering the realistic bearing deformations by two-way fluid–structure interactions (FSI) along with cavitation using ANSYS®Workbench software. The design optimization module is used to generate the optimized solution of the attitude angle and eccentricity for the combination of operating speed and load. Bearings with and without cavitation are investigated. A drop in maximum pressure value is observed when cavitation is considered in the bearing. The rise in oil vapor distribution is noted with an increase in shaft speed which lowers the magnitude of the pressure build up in the bearing. The bearing deformations are analyzed numerically and found increasing with an increase in shaft speed. The experimental data obtained for pressure distribution showed good agreement with numerical data along with a considerable reduction in computation time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

e :

Eccentricity between shaft and bearing, m

C :

Radial clearance, m

R :

Radius of the shaft, m

h :

Film thickness, m

ω :

Angular velocity, rad/sec

W :

Load carrying capacity, N

O’:

Bearing centre

O:

Shaft centre

ρ :

Fluid density, kg/m3

ρ l :

Liquid density, kg/m3

ρ v :

Vapor density, (kg/m3)

\(\vec{v}\) :

Fluid velocity

P :

Static pressure, Pa

\(\overline{\overline{\tau }}\) :

Stress tensor

\(\vec{F}\) :

External body force, N

t :

Time

ε :

Eccentricity ratio

σ :

Liquid surface tension coefficient

\(\vec{v}\) :

Fluid velocity vector

C e, C c :

Mass transfer source terms connected to the growth and collapse of the vapor bubbles, respectively

\(F_{{_{{{\text{cond}}\,}} }}\) :

Condensation coefficient

F evap :

Evaporation coefficient

p v :

Saturation pressure of the fluid

[M s]:

Structural mass matrix

[M f]:

Fluid mass matrix

[F s]:

Structural force matrix

[F f]:

Fluid force matrix

[R]:

Coupling matrix

Δh :

Relative rigid displacement of the two bearing surfaces

δ :

Total elastic deformation of the shaft and bearing system

p b :

Bubble surface pressure

\(\overline{\overline{I}}\) :

Unit tensor

μ :

Fluid viscosity, Pa-s

R b :

Bubble radius, m

\(a_{\text{nue}}\) :

Nucleation site volume fraction

p :

Local pressure

θ :

Angular coordinate

ϕ :

Attitude angle

L :

Length of the bearing

References

  1. Brizmer V, Kligerman Y, Etsion I (2003) A laser surface textured parallel thrust bearing. Tribol Trans 46:397–403. doi:10.1080/05698190490426007

    Article  Google Scholar 

  2. Buscaglia GC, Ciuperca I, Jai M (2005) The effect of periodic textures on the static characteristics of thrust bearings. J Tribol 127:899. doi:10.1115/1.2033896

    Article  Google Scholar 

  3. D’Agostino V, Senatore A (2006) Analytical solution for two-dimensional Reynolds equation for porous journal bearings. Ind Lubr Tribol 58:110–117. doi:10.1108/00368790610651521

    Article  Google Scholar 

  4. Arghir M, Roucou N, Helene M, Frene J (2003) Theoretical analysis of the incompressible laminar flow in a macro-roughness cell. J Tribol 125:309. doi:10.1115/1.1506328

    Article  Google Scholar 

  5. Sahlin F, Glavatskih SB, Almqvist T, Larsson R (2005) Two-dimensional CFD-analysis of micro-patterned surfaces in hydrodynamic lubrication. J Tribol ASME 127:96–102. doi:10.1115/1.1828067

    Article  Google Scholar 

  6. Li J, Chen H (2007) Evaluation of applicability of Reynolds equation for squared transverse roughness compared to CFD. J Tribol 129:963. doi:10.1115/1.2768619

    Article  Google Scholar 

  7. Wodtke M, Olszewski A, Wasilczuk M (2013) Application of the fluid-structure interaction technique for the analysis of hydrodynamic lubrication problems. Proc Inst Mech Eng Part J J Eng Tribol 227:888–897. doi:10.1177/1350650113481147

    Article  Google Scholar 

  8. Lin Q, Wei Z, Wang N, Chen W (2013) Analysis of the lubrication performances of the journal bearing system using computational fluid dynamics and fluid-structure interaction considering the thermal influence and cavitation. Tribol Int 64:8–15. doi:10.1016/j.triboint.2013.03.001

    Article  Google Scholar 

  9. Gandjalikhan Nassab SA, Maneshian B (2007) Thermohydrodynamic analysis of cavitating journal bearings using three different cavitation models. Proc Inst Mech Eng Part J J Eng Tribol 221:501–514. doi:10.1243/13506501JET238

    Article  Google Scholar 

  10. Guo Z, Hirano T, Kirk RG (2005) Application of CFD analysis for rotating machinery—part I: hydrodynamic, hydrostatic bearings, and squeeze film damper. J Eng Gas Turbines Power 127:445. doi:10.1115/1.1807415

    Article  Google Scholar 

  11. Chen PYP, Hahn EJ (1998) Use of computational fluid dynamics in hydrodynamic lubrication. Proc Inst Mech Eng Part J J Eng Tribol 212:427–436. doi:10.1243/1350650981542236

    Article  Google Scholar 

  12. Tucker PG, Keogh PS (1995) A generalized computational fluid dynamics approach for journal bearing performance prediction. Proc Inst Mech Eng Part J J Eng Tribol 209:99–108. doi:10.1243/PIME_PROC_1995_209_412_02

    Article  Google Scholar 

  13. Gertzos KP, Nikolakopoulos PG, Papadopoulos CA (2008) CFD analysis of journal bearing hydrodynamic lubrication by Bingham lubricant. Tribol Int 41:1190–1204. doi:10.1016/j.triboint.2008.03.002

    Article  Google Scholar 

  14. Manshoor B, Jaat M, Izzuddin Z, Amir K (2013) CFD analysis of thin film lubricated journal bearing. Procedia Eng 68:56–62. doi:10.1016/j.proeng.2013.12.147

    Article  Google Scholar 

  15. Ravikovich YA, Ermilov YI, Pugachev AO et al (2014) Prediction of operational characteristics of fluid-film and gas bearings for high-speed turbomachinery using computational fluid dynamics. In: 29th congress international council aeronautical science ICA, pp 1–8

  16. Dhande D, Pande DW, Chatarkar V (2013) Analysis of hydrodynamic journal bearing using fluid structure interaction approach 4(8):33

    Google Scholar 

  17. Liu H, Xu H, Ellison PJ, Jin Z (2010) Application of computational fluid dynamics and fluid-structure interaction method to the lubrication study of a rotor-bearing system. Tribol Lett 38:325–336. doi:10.1007/s11249-010-9612-6

    Article  Google Scholar 

  18. Lin Qiyin, Zhengying Wei NW (2015) Optimum design of recess parameters for a high-speed hybrid journal bearing using fluid-structure interaction and improved orthogonal experiment method. J Balk Tribol Assoc 21:300–313

    Google Scholar 

  19. Lihua Lu, Chen W, Wu B et al (2016) Optimal design of an aerostatic spindle based on fluid-structure interaction method and its verification. Proc Inst Mech Eng Part J J Eng Tribol 230:690–696. doi:10.1177/1350650115611156

    Google Scholar 

  20. Geller M, Schemmann C, Kluck N (2014) Simulation of radial journal bearings using the FSI approach and a multi-phase model with integrated cavitation. Prog Comput Fluid Dyn 14:14–23. doi:10.1504/PCFD.2014.059196

    Article  Google Scholar 

  21. Riedel M, Schmidt M, Stücke P (2013) Numerical investigation of cavitation flow in a journal bearing geometry. EPJ Web Conf 45:01081. doi:10.1051/epjconf/20134501081

    Article  Google Scholar 

  22. Osman TA (2004) Effect of lubricant non-Newtonian behavior and elastic deformation on the dynamic performance of finite journal plastic bearings. Tribol Lett 17:31–40. doi:10.1023/B:TRIL.0000017416.95176.30

    Article  Google Scholar 

  23. Montazeri H (2008) Numerical analysis of hydrodynamic journal bearings lubricated with ferrofluid. Proc Inst Mech Eng Part J J Eng Tribol 222:51–60. doi:10.1243/13506501jet314

    Article  Google Scholar 

  24. Braun MJ, Hannon WM (2010) Cavitation formation and modeling for fluid film bearings: a review. Proc Inst Mech Eng Part J J Eng Tribol 224:839–863. doi:10.1234/13506501JET772

    Article  Google Scholar 

  25. Zwart P, Gerber A, Belamri T (2004) A two-phase flow model for predicting cavitation dynamics. Fifth international conference multiphase flow, Yokohama, Japan, May 30–June 3

  26. Cheqamahi JM, Nili-Ahmadabadi M, Akbarzadeh S, Saghafian M (2016) Numerical analysis of turbocharger’s bearing using dynamic mesh. J Appl Fluid Mech 9(5):2545–2557

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Y. Dhande.

Ethics declarations

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Additional information

Technical Editor: Jader Barbosa Jr..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhande, D.Y., Pande, D.W. A two-way FSI analysis of multiphase flow in hydrodynamic journal bearing with cavitation. J Braz. Soc. Mech. Sci. Eng. 39, 3399–3412 (2017). https://doi.org/10.1007/s40430-017-0750-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-017-0750-8

Keywords