Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Membrane computing and image processing: a short survey

  • Review Paper
  • Published:
Journal of Membrane Computing Aims and scope Submit manuscript

Abstract

Membrane computing is a well-known research area in computer science inspired by the organization and behavior of live cells and tissues. Their computational devices, called P systems, work in parallel and distributed mode and the information is encoded by multisets in a localized manner. All these features make P systems appropriate for dealing with digital images. In this paper, some of the open research lines in the area are presented, focusing on segmentation problems, skeletonization and algebraic-topological aspects of the images. An extensive bibliography about the application of membrane computing to the study of digital images is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Image borrowed from [143]

Fig. 2

Images borrowed from [139]

Fig. 3

Image borrowed from [49]

Fig. 4

Figure borrowed from [49]

Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. A preliminary version of this paper can be found at [47].

  2. Some of these applications were collected in the volume [34].

  3. An overview of 2D picture array generating models based on membrane computing can be found in [164].

  4. Adapted from the Example 1 in [22].

  5. A recent literature survey devoted exclusively to image segmentation by using membrane computing can be found in [174].

  6. White connected components surrounded by black connected components.

  7. For a good overview, the reader can refer to [114].

  8. A detailed description is out of the scope of this paper. An interested reader can consult the bibliography.

References

  1. Adeoye OS. A survey of emerging biometric technologies. Int J Comput Appl. 2010;9(10):1–5.

    Google Scholar 

  2. Alsalibi B, Venkat I, Al-Betar MA. A membrane-inspired bat algorithm to recognize faces in unconstrained scenarios. Eng Appl Artif Intell. 2017;64:242–60.

    Article  Google Scholar 

  3. Alsalibi B, Venkat I, Subramanian K, Lutfi SL, Wilde PD. The impact of bio-inspired approaches toward the advancement of face recognition. ACM Comput Surv. 2015;48(1):1–33.

    Article  Google Scholar 

  4. Alsalibi B, Venkat I, Subramanian KG, Christinal HA. A bio-inspired software for homology groups of 2d digital images. Asian Conf Membr Comput ACMC. 2014;2014:1–4.

    Google Scholar 

  5. Annadurai S, Kalyani T, Dare VR, Thomas DG. P systems generating iso-picture languages. Prog Nat Sci. 2008;18(5):617–22.

    Article  MathSciNet  MATH  Google Scholar 

  6. Ayache N. Medical image analysis and simulation. In: Shyamasundar RK, Ueda K, editors. ASIAN. Lecture notes in computer science, vol. 1345. Berlin: Springer; 1997. p. 4–17.

  7. Ballard D. Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognit. 1981;13(2):111–22.

    Article  MATH  Google Scholar 

  8. Berciano A, Díaz-Pernil D, Christinal HA, Venkat I, Subramanian KG. First steps for a corner detection using membrane computing. Asian Conf Membr Comput ACMC. 2014;2014:1–6.

    Google Scholar 

  9. Bie D, Gutiérrez-Naranjo MA, Zhao J, Zhu, Y. A membrane computing framework for self-reconfigurable robots. Nat Comput. 2018. https://doi.org/10.1007/s11047-018-9702-1.

  10. Blum H. An associative machine for dealing with the visual field and some of its biological implications. In: Bernard EE, Kare MR, editors. Proceedings of the 2nd annual bionics symposium, held at Cornell University, 1961. Biological prototypes and synthetic systems, vol. 1. New York: Plenum Press; 1962. p. 244–60.

  11. Blum H. An associative machine for dealing with the visual field and some of its biological implications. Computer and Mathematical Sciences Laboratory, Electronics Research Directorate, Air Force Cambridge Research Laboratories, Office of Aerospace Research, United States Air Force; 1962.

  12. Borrego-Ropero R, Díaz-Pernil D, Pérez-Jiménez MJ. Tissue simulator: a graphical tool for tissue P systems. In: Vaszil G, editors. Proceedings of the International Workshop Automata for Cellular and Molecular Computing. MTA SZTAKI, Budapest, Hungary. Satellite of the 16th International Symposium on Fundamentals of Computational Theory; 2007. p. 23–34.

  13. Campadelli P, Casiraghi E, Esposito A. Liver segmentation from computed tomography scans: a survey and a new algorithm. Artif Intell Med. 2009;45(2–3):185–96.

    Article  Google Scholar 

  14. Carnero J, Christinal HA, Díaz-Pernil D, Reina-Molina R, Subathra MSP. Improved parallelization of an image segmentation bio-inspired algorithm. In: Babu BV, Nagar A, Deep K, Pant M, Bansal JC, Ray K, Gupta U, editors. Proceedings of the second international conference on soft computing for problem solving, vol. 236, SocProS 2012, December 28–30, 2012, JK Lakshmipat University (JKLU), Jaipur, India. Advances in intelligent systems and computing. Springer; 2012. p. 75–82.

  15. Carnero J, Díaz-Pernil D, Gutiérrez-Naranjo MA. Designing tissue-like P systems for image segmentation on parallel architectures. In: Martínez-del-Amor MA, Păun G, Pérez-Hurtado I, Romero-Campero FJ, Valencia-Cabrera L, editors. Ninth brainstorming week on membrane computing. Sevilla: Fénix Editora; 2011. p. 43–62.

    Google Scholar 

  16. Carnero J, Díaz-Pernil D, Molina-Abril H, Real P. Image segmentation inspired by cellular models using hardware programming. Image A Appl Math Image Eng. 2010;1(3):143–50.

    Google Scholar 

  17. Carranza C, Murray V, Pattichis M, Barriga ES. Multiscale AM-FM decompositions with GPU acceleration for diabetic retinopathy screening. In: IEEE southwest symposium on image analysis and interpretation (SSIAI); 2012. p. 121–24.

  18. Cecilia JM, García JM, Guerrero GD, Martínez-del-Amor MA, Pérez-Hurtado I, Pérez-Jiménez MJ. Simulating a P system based efficient solution to SAT by using GPUs. J Log Algebraic Program. 2010;79(6):317–25.

    Article  MathSciNet  MATH  Google Scholar 

  19. Cecilia JM, García JM, Guerrero GD, Martínez-del-Amor MA, Pérez-Hurtado I, Pérez-Jiménez MJ. Simulation of P systems with active membranes on CUDA. Brief Bioinform. 2010;11(3):313–22.

    Article  Google Scholar 

  20. Ceterchi R, Gramatovici R, Jonoska, N. Tiling rectangular pictures with P systems. In: Martín-Vide et al. [107]; 2004. p. 88–103.

  21. Ceterchi R, Gramatovici R, Jonoska N, Subramanian KG. Tissue-like P systems with active membranes for picture generation. Fundamenta Informaticae. 2003;56(4):311–28.

    MathSciNet  MATH  Google Scholar 

  22. Ceterchi R, Mutyam M, Păun G, Subramanian KG. Array-rewriting P systems. Nat Comput. 2003;2(3):229–49.

    Article  MathSciNet  MATH  Google Scholar 

  23. Chang Y, Li X. Adaptive image region-growing. IEEE Trans Image Process. 1994;3(6):868–72.

    Article  Google Scholar 

  24. Chao J, Nakayama J. Cubical singular simplex model for 3D objects and fast computation of homology groups. In: 13th international conference on pattern recognition (ICPR’96), vol. IV. IEEE Computer Society, Los Alamitos, CA, USA; 1996. p. 190–94.

  25. Cheng H, Jiang X, Sun Y, Wang J. Color image segmentation: advances and prospects. Pattern Recognit. 2001;34(12):2259–81.

    Article  MATH  Google Scholar 

  26. Christinal HA, Berciano A, Díaz-Pernil D, Gutiérrez-Naranjo MA. Searching partially bounded regions with P systems. In: Pant M, Deep K, Nagar A, Bansal JC, editors. Proceedings of the third international conference on soft computing for problem solving: SocProS 2013, vol. 1. New Delhi: Springer; 2014. p. 45–54.

  27. Christinal HA, Díaz-Pernil D, Gutiérrez-Naranjo MA, Pérez-Jiménez MJ. Array tissue-like P systems. In: Martínez del Amor MA, Păun G, Pérez Hurtado I, Riscos-Núñez A, editors. Eighth brainstorming week on membrane computing. Sevilla: Fénix Editora; 2010. p. 37–51.

  28. Christinal HA, Díaz-Pernil D, Gutiérrez-Naranjo MA, Pérez-Jiménez MJ. Thresholding of 2D images with cell-like P systems. Rom J Inf Sci Technol (ROMJIST). 2010;13(2):131–40.

    Google Scholar 

  29. Christinal HA, Díaz-Pernil D, Real P. Segmentation in 2D and 3D image using tissue-like P system. In: Bayro-Corrochano E, Eklundh JO, editors. Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications 14th Iberoamerican Conference on Pattern Recognition, CIARP 2009, Guadalajara, Jalisco, Mexico, November 15–18, 2009. Proceedings, lecture notes in computer science, vol. 5856. Berlin: Springer; 2009. p. 169–76.

  30. Christinal HA, Díaz-Pernil D, Real P. Using membrane computing for obtaining homology groups of binary 2D digital images. In: Wiederhold P, Barneva RP, editors. Combinatorial Image Analysis 13th International Workshop, IWCIA 2009, Playa del Carmen, Mexico, November 24–27, 2009. Proceedings, lecture notes in computer science, vol. 5852. Berlin: Springer; 2009. p. 383–96.

  31. Christinal HA, Díaz-Pernil D, Real P. P systems and computational algebraic topology. Mathematical and computer modelling, vol. 52, 1982–1996. The BIC-TA 2009 special issue, international conference on bio-inspired computing: theory and applications; 2010. p. 11–12.

  32. Christinal HA, Díaz-Pernil D, Real P. Region-based segmentation of 2D and 3D images with tissue-like P systems. Advances in theory and applications of pattern recognition, image processing and computer vision. Pattern Recognit Lett. 2012;32(16):2206–12.

    Article  Google Scholar 

  33. Christinal HA, Díaz-Pernil D, Real JP, Selvan SE. Color segmentation of 2D images with thresholding. In: Mathew J, Patra P, Pradhan DK, Kuttyamma AJ, editors. Proceedings of eco-friendly computing and communication systems: international conference, ICECCS 2012, Kochi, India, August 9–11. Berlin: Springer; 2012. p. 162–69.

  34. Ciobanu G, Pérez-Jiménez MJ, Păun G, editors. Applications of membrane computing. Natural computing series. Berlin: Springer; 2006.

    Google Scholar 

  35. Collins R, Lipton A, Kanade T. Introduction to the special section on video surveillance. IEEE Trans Pattern Anal Mach Intell. 2000;22(8):745–6.

    Article  Google Scholar 

  36. Cook CR, Wang PSP. A Chomsky hierarchy of isotonic array grammars and languages. Comput Graph Image Process. 1978;8(1):144–52.

    Article  Google Scholar 

  37. Dassow J, Păun G. Regulated rewriting in formal language theory. 1st ed. New York: Springer Publishing Company Incorporated; 2012.

    MATH  Google Scholar 

  38. Davies E. Computer and machine vision: theory, algorithms practicalities. Waltham: Elsevier Science; 2012.

    Google Scholar 

  39. Dersanambika KS, Krithivasan K. Contextual array P systems. Int J Comput Math. 2004;81(8):955–69.

    Article  MathSciNet  MATH  Google Scholar 

  40. Dersanambika KS, Krithivasan K, Subramanian KG. P systems generating hexagonal picture languages. In: Martín-Vide et al. [107]; 2003. p. 168–80.

  41. Díaz-Pernil D, Berciano A, Peña-Cantillana F, Gutiérrez-Naranjo MA. Bio-inspired parallel computing of representative geometrical objects of holes of binary 2D-images. Int J Bioinspired Comput. 2017;9(2):77–92.

    Article  Google Scholar 

  42. Díaz-Pernil D, Berciano A, Peña-Cantillana F, Gutiérrez-Naranjo MA. Segmenting images with gradient-based edge detection using membrane computing. Pattern Recognit Lett. 2013;34(8):846–55.

    Article  Google Scholar 

  43. Díaz-Pernil D, Christinal HA, Gutiérrez-Naranjo MA, Real P. Using membrane computing for effective homology. Appl Algebra Eng Commun Comput. 2012;23(5–6):233–49.

    Article  MathSciNet  MATH  Google Scholar 

  44. Díaz-Pernil D, Fondón I, Peña-Cantillana F, Gutiérrez-Naranjo MA. Fully automatized parallel segmentation of the optic disc in retinal fundus images. Geometric, topological and harmonic trends to image processing. Pattern Recognit Lett. 2016;83(1):99–107.

    Article  Google Scholar 

  45. Díaz-Pernil D, Gutiérrez-Naranjo MA, Molina-Abril H, Real P. A bio-inspired software for segmenting digital images. In: Nagar AK, Thamburaj R, Li K, Tang Z, Li R, editors. Fifth international conference on bio-inspired computing: theories and applications, BIC-TA 2010, University of Hunan, Liverpool Hope University, Liverpool, United Kingdom/Changsha, China, September 8–10 and September 23–26, 2010, vol. 2. Beijing: IEEE Computer Society; 2010. p. 1377–81.

  46. Díaz-Pernil D, Gutiérrez-Naranjo MA, Molina-Abril H, Real P. Designing a new software tool for digital imagery based on P systems. Nat Comput. 2011;11(3):381–6.

    Article  MathSciNet  MATH  Google Scholar 

  47. Díaz-Pernil D, Gutiérrez-Naranjo MA, Peng H. Some notes on membrane computing and image processing. Bull Int Membr Comput Soc. 2016;2:103–28.

    Google Scholar 

  48. Díaz-Pernil D, Gutiérrez-Naranjo MA, Real P, Sánchez-Canales V. Computing homology groups in binary 2D imagery by tissue-like P systems. Rom J Inf Sci Technol. 2010;13(2):141–52.

    Google Scholar 

  49. Díaz-Pernil D, Peña-Cantillana F, Gutiérrez-Naranjo MA. Skeletonizing images by using spiking neural P systems. In: Martínez-del-Amor MA, Păun G, Pérez-Hurtado I, Romero-Campero FJ, editors. Tenth brainstorming week on membrane computing, vol. I. Sevilla: Fénix Editora; 2012. p. 91–110.

    Google Scholar 

  50. Díaz-Pernil D, Peña-Cantillana F, Gutiérrez-Naranjo MA. A parallel algorithm for skeletonizing images by using spiking neural P systems. Neurocomputing. 2013;115:81–91.

    Article  Google Scholar 

  51. Duda RO, Hart PE. Use of the Hough transformation to detect lines and curves in pictures. Commun ACM. 1972;15(1):11–5.

    Article  MATH  Google Scholar 

  52. Dufresne TE, Sarwal A, Dhawan AP. A gray-level thinning method for delineation and representation of arteries. Comput Med Imaging Graph. 1994;18(5):343–55.

    Article  Google Scholar 

  53. Egmont-Petersen M, de Ridder D, Handels H. Image processing with neural networks—a review. Pattern Recognit. 2002;35(10):2279–301.

    Article  MATH  Google Scholar 

  54. Eilenberg S, MacLane S. Relations between homology and homotopy groups of spaces. Ann Math. 1945;46(3):480–509.

    Article  MathSciNet  MATH  Google Scholar 

  55. Eilenberg S, MacLane S. Relations between homology and homotopy groups of spaces. II. Ann Math. 1950;51(3):514–33.

    Article  MathSciNet  MATH  Google Scholar 

  56. Fernau H, Freund R, Schmid ML, Subramanian KG, Wiederhold P. Contextual array grammars and array P systems. Ann Math Artif Intell. 2015;75(1–2):5–26.

    Article  MathSciNet  MATH  Google Scholar 

  57. Ferretti C, Mauri G, Zandron C. P systems with string objects. In: Păun et al. [129]; 2010. p. 168–97.

  58. Freedman D, Chen C. Algebraic topology for computer vision. In: Science and technology; 2009. p. 239–68.

  59. Freund R. Array grammars. Tech. Rep. 15/00, Research Group on Mathematical Linguistics, Rovira i Virgili University, Tarragona; 2000.

  60. Frijters D, Lindenmayer A. A model for the growth and flowering of aster novae-angliae on the basis of table< 1, 0> L-systems. In: Rozenberg G, Salomaa A, editors. L systems, most of the papers were presented at a conference in Aarhus, Denmark, January 14–25, 1974, lecture notes in computer science, vol. 15. Springer; 1974. p. 24–52.

  61. Gamanya R, Maeyer PD, Dapper MD. An automated satellite image classification design using object-oriented segmentation algorithms: a move towards standardization. Expert Syst Appl. 2007;32(2):616–24.

    Article  Google Scholar 

  62. Gao Z, Zhang C. MCIR: a multi-modal image registration algorithm based on membrane computing. In: 2017 international conference on computing intelligence and information system (CIIS); 2017. p. 263–69.

  63. García-Quismondo M, Macías-Ramos LF, Păun G, Valencia-Cabrera L, editors. Tenth brainstorming week on membrane computing, vol. II. Sevilla: Fénix Editora; 2012.

    Google Scholar 

  64. Georgiou A, Gheorghe M. Generative devices used in graphics. In: Alhazov A, Martín-Vide C, Păun G, editors. Preproceedings of the workshop on membrane computing. Technical Report; 28/03, . Research Group on Mathematical Linguistics, Universitat Rovira i Virgili, Tarragona, Spain; 2003. p. 266–72.

  65. Georgiou A, Gheorghe M, Bernardini F. Membrane-based devices used in computer graphics. In: Ciobanu G, Păun G, Pérez-Jiménez MJ, editors. Applications of membrane computing, natural computing series. Berlin: Springer; 2006. p. 253–81.

    Google Scholar 

  66. Giavitto JL, Michel O. The topological structures of membrane computing. Fundamenta Informaticae. 2002;49(1–3):123–45.

    MathSciNet  MATH  Google Scholar 

  67. Gil Montoya M, Garcia I. Implementation of parallel thinning algorithms on multicomputers: analysis of the work load balance. In: Proceedings of the sixth Euromicro workshop on parallel and distributed processing, PDP ’98; 1998. p. 257–63.

  68. Gimel’farb G, Nicolescu R, Ragavan S. P systems in stereo matching. In: Real P, Díaz-Pernil D, Molina-Abril H, Berciano A, Kropatsch W, editors. Computer analysis of images and patterns. Lecture notes in computer science, vol. 6855. Berlin: Springer; 2011. p. 285–92.

  69. Gimel’farb GL. Probabilistic regularisation and symmetry in binocular dynamic programming stereo. Pattern Recognit Lett. 2002;23(4):431–42.

    Article  MATH  Google Scholar 

  70. Gimel’farb GL, Nicolescu R, Ragavan S. P system implementation of dynamic programming stereo. J Math Imaging Vis. 2013;47(1–2):13–26.

    Article  MATH  Google Scholar 

  71. González RC, Woods RE. Digital image processing. Upper Saddle River: Pearson/Prentice Hall; 2008.

    Google Scholar 

  72. González-Díaz R, Jiménez MJ, Medrano B, Molina-Abril H, Real P. Integral operators for computing homology generators at any dimension. In: Ruiz-Shulcloper J, Kropatsch WG, editors. CIARP. Lecture notes in computer science, vol. 5197. Berlin Heidelberg: Springer; 2008. p. 356–63.

  73. González-Díaz R, Jiménez MJ, Medrano B, Real P. Chain homotopies for object topological representations. Discret Appl Math. 2009;157(3):490–9.

    Article  MathSciNet  MATH  Google Scholar 

  74. González-Díaz R, Real P. On the cohomology of 3D digital images. Discret Appl Math. 2005;147(2–3):245–63.

    Article  MathSciNet  MATH  Google Scholar 

  75. Goodfellow I, Bengio Y, Courville A. Deep learning. Cambridge: MIT Press; 2016.

    MATH  Google Scholar 

  76. Graciani C, Păun G, Romero-Jiménez A, Sancho-Caparrini F, editors. Fourth brainstorming week on membrane computing, vol. II. Sevilla: Fénix Editora; 2006.

    Google Scholar 

  77. Guo Z, Hall RW. Parallel thinning with two-subiteration algorithms. Commun ACM. 1989;32:359–73.

    Article  MathSciNet  Google Scholar 

  78. Guo Z, Hall RW. Fast fully parallel thinning algorithms. CVGIP Image Underst. 1992;55:317–28.

    Article  MATH  Google Scholar 

  79. Gutiérrez-Naranjo MA, Pérez-Jiménez, MJ. Fractals and P systems. In: Graciani et al. [76]; 2006. p. 65–86.

  80. Gutiérrez-Naranjo MA, Pérez-Jiménez MJ, Riscos-Núñez A, Romero-Campero FJ. How to express tumours using membrane systems. Prog Nat Sci. 2007;17(4):449–57.

    Article  MathSciNet  MATH  Google Scholar 

  81. Hamadani, N. Automatic target cueing in IR imagery. Master’s thesis, Air Force Institute of Technology, WAFP; 1981.

  82. Heydorn S, Weidner P. Optimization and performance analysis of thinning algorithms on parallel computers. Parallel Comput. 1991;17(1):17–27.

    Article  MATH  Google Scholar 

  83. Holt C, Stewart A. A parallel thinning algorithm with fine grain subtasking. Parallel Comput. 1989;10(3):329–34.

    Article  MATH  Google Scholar 

  84. Hongbin P, Junali C, Yashe Z. Fingerprint thinning algorithm based on mathematical morphology. In: 8th international conference on electronic measurement and instruments. ICEMI ’07; 2007. p. 618–21.

  85. Hough PVC. Machine analysis of bubble chamber pictures. In: International conference on high energy accelerators and instrumentation. CERN; 1959. p. 554–58.

  86. Isawasan P, Muniyandi RC, Venkat I, Subramanian KG. Array-rewriting P systems with basic puzzle grammar rules and permitting features. In: Leporati A, Rozenberg G, Salomaa A, Zandron C, editors. Membrane computing—17th international conference, CMC 2016, Milan, Italy, July 25–29, 2016, revised selected papers. Lecture notes in computer science, vol. 10105. Springer; 2016. p. 272–85.

  87. Isawasan P, Venkat I, Muniyandi RC, Subramanian, KG. A membrane computing model for generation of picture arrays. In: Zaman HB, Robinson P, Smeaton AF, Shih TK, Velastin SA, Jaafar A, Ali NM, editors. Proceedings of advances in visual informatics—4th international visual informatics conference, IVIC 2015, Bangi, Malaysia, November 17–19. Lecture notes in computer science, vol. 9429. Springer; 2015. p. 155–65.

  88. Isawasan P, Venkat I, Subramanian KG, Khader AT, Osman O, Christinal HA. Region-based segmentation of hexagonal digital images using membrane computing. In: IEEE 2014 Asian conference on membrane computing (ACMC); 2014. p. 1–4.

  89. Ivchenko GI, Honov SA. On the Jaccard similarity test. J Math Sci. 1998;88(6):789–94.

    Article  MathSciNet  MATH  Google Scholar 

  90. Jaccard P. Nouvelles recherches sur la distribution florale. Bulletin de la Sociète Vaudense des Sciences Naturelles. 1908;44:223–70.

    Google Scholar 

  91. Kauppi T, Kalesnykiene V, Kamarainen JK, Lensu L, Sorri I, Raninen A, Voutilainen R, Uusitalo H, Kälviäinen H, Pietilä J. The diaretdb1 diabetic retinopathy database and evaluation protocol. In: Proceedings of the British machine vision conference 2007, University of Warwick, UK, September 10–13. British Machine Vision Association; 2007. p. 252–61.

  92. Kenmochi Y, Imiya A, Ichikawa A. Discrete combinatorial geometry. Pattern Recognit. 1997;30(10):1719–28.

    Article  MATH  Google Scholar 

  93. Kenmochi Y, Imiya A, Ichikawa A. Boundary extraction of discrete objects. Comput Vis Image Underst. 1998;71(3):281–93.

    Article  Google Scholar 

  94. Khalid NEA, Ahmad SA, Noor NM, Fadzil AFA, Taib MN. Analysis of parallel multicore performance on Sobel edge detector. In: Proceedings of the 15th WSEAS international conference on computers. World Scientific and Engineering Academy and Society (WSEAS), Stevens Point, Wisconsin, USA; 2011. p. 313–18.

  95. Khalid NEA, Ahmad SA, Noor NM, Fadzil AFA, Taib MN. Parallel approach of Sobel edge detector on multicore platform. Int J Comput Commun. 2011;5:236–44.

    Google Scholar 

  96. Kim SH, Kim HG, Tchah KH. Object oriented face detection using colour transformation and range segmentation. IEEE Electron Lett. 1998;34:979–80.

    Article  Google Scholar 

  97. Krishna SN, Rama R, Krithivasan K. P systems with picture objects. Acta Cybernetica. 2001;15(1):53–74.

    MathSciNet  MATH  Google Scholar 

  98. Lee KH, Cho SB, Choy YC. Automated vectorization of cartographic maps by a knowledge-based system. Eng Appl Artif Intell. 2000;13(2):165–78.

    Article  Google Scholar 

  99. Lefticaru R, Bakir ME, Konur S, Stannett M, Ipate F. Modelling and validating an engineering application in kernel P systems. In: Gheorghe M, Rozenberg G, Salomaa A, Zandron C, editors. Membrane computing—18th international conference, CMC 2017, Bradford, UK, July 25–28, 2017, revised selected papers. Lecture notes in computer science, vol. 10725. Springer; 2017. p. 183–95.

  100. Li X, Zhang T, Qu Z. Image segmentation using fuzzy clustering with spatial constraints based on Markov random field via bayesian theory. IEICE Trans Fundam Electron Commun Comput Sci. 2008;91–A(3):723–9.

    Article  Google Scholar 

  101. Lindenmayer A. Mathematical models for cellular interaction in development: parts I and II. J Theor Biol. 1968;18:280–315.

    Article  Google Scholar 

  102. Lindenmayer A. Developmental systems without cellular interactions, their languages and grammars. J Theor Biol. 1971;30(3):455–84.

    Article  Google Scholar 

  103. Litjens GJS, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, van Ginneken B, Sánchez CI. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60–88.

    Article  Google Scholar 

  104. Liu D, Jiang Z, Feng H. A novel fuzzy classification entropy approach to image thresholding. Pattern Recognit Lett. 2006;27(16):1968–75.

    Article  Google Scholar 

  105. Lü HE, Wang PSP. A comment on a fast parallel algorithm for thinning digital patterns. Commun ACM. 1986;29(3):239–42.

    Article  Google Scholar 

  106. Mandelbrot BB. The fractal geometry of nature. New York: W. H. Freedman and Co.; 1983.

    Book  Google Scholar 

  107. Martín-Vide C, Mauri G, Păun G, Rozenberg G, Salomaa A, editors. Membrane computing, international workshop, WMC 2003, Tarragona, Spain, July 17–22, 2003, revised papers. Lecture notes in computer science, vol. 2933. Berlin: Springer; 2004.

  108. Molina-Abril H, Real P. Advanced homology computation of digital volumes via cell complexes. In: da Vitoria Lobo N, Kasparis T, Roli F, Kwok JTY, Georgiopoulos M, Anagnostopoulos GC, Loog M, editors. SSPR/SPR. Lecture notes in computer science, vol. 5342. Berlin: Springer; 2008. p. 361–71.

  109. Moulik S, Boonn WW. The role of GPU computing in medical image analysis and visualization. In: Boonn WW, Liu BJ, editors. Medical imaging 2011: advanced PACS-based imaging informatics and therapeutic applications, vol. 7967. Proceedings of the SPIE; 2011. p. 79670L.

  110. Mutyam M, Krithivasan K. P systems with membrane creation: universality and efficiency. In: Margenstern M, Rogozhin Y, editors. MCU, lecture notes in computer science, vol. 2055. Springer; 2001. p. 276–87.

  111. Nicolescu, R.: Parallel thinning with complex objects and actors. In: Gheorghe M, Rozenberg G, Salomaa A, Sosík P, Zandron C, editors. Membrane computing—15th international conference, CMC 2014, Prague, Czech Republic, August 20–22, 2014, revised selected papers, lecture notes in computer science, vol. 8961. Springer; 2014. p. 330–54.

  112. Ogawa K, Ito Y, Nakano K. Efficient canny edge detection using a GPU. In: Proceedings of the 2010 first international conference on networking and computing, ICNC ’10. IEEE Computer Society, Washington, DC, USA; 2010. p. 279–80.

  113. Osareh A, Mirmehdi M, Thomas B, Markham R. Automated identification of diabetic retinal exudates in digital colour images. Br J Ophthalmol. 2003;87(10):1220–3.

    Article  Google Scholar 

  114. Owens JD, Houston M, Luebke D, Green S, Stone JE, Phillips JC. GPU computing. Proc IEEE. 2008;96(5):879–99.

    Article  Google Scholar 

  115. Pal NR, Pal SK. A review on image segmentation techniques. Pattern Recognit. 1993;26(9):1277–94.

    Article  Google Scholar 

  116. Parker J. Algorithms for image processing and computer vision. New York: Wiley; 2010.

    Google Scholar 

  117. Peña-Cantillana F, Díaz-Pernil D, Berciano A, Gutiérrez-Naranjo MA. A parallel implementation of the thresholding problem by using tissue-like P systems. In: Real P, Díaz-Pernil D, Molina-Abril H, Berciano A, Kropatsch WG, editors. Computer analysis of images and patterns—14th international conference, CAIP 2011, Seville, Spain, August 29–31, 2011, proceedings, part II. Lecture notes in computer science, vol. 6855. Springer; 2011. p. 277–84.

  118. Peña-Cantillana F, Díaz-Pernil D, Christinal HA, Gutiérrez-Naranjo MA. Implementation on CUDA of the smoothing problem with tissue-like P systems. Int J Nat Comput Res. 2011;2(3):25–34.

    Article  Google Scholar 

  119. Peng H, Shao J, Li B, Wang J, Pérez-Jiménez MJ, Jiang Y, Yang Y. Image thresholding with cell-like P systems. In: García-Quismondo et al. [63]; 2012. p. 75–88.

  120. Peng H, Wang J, Ming J, Shi P, Pérez-Jiménez MJ, Yu W, Tao C. Fault diagnosis of power systems using intuitionistic fuzzy spiking neural P systems. IEEE Trans Smart Grid. 2018;9(5):4777–84.

    Article  Google Scholar 

  121. Peng H, Wang J, Pérez-Jiménez MJ. Optimal multi-level thresholding with membrane computing. Digit Signal Process. 2015;37:53–64.

    Article  Google Scholar 

  122. Peng H, Wang J, Pérez-Jiménez MJ, Shi P. A novel image thresholding method based on membrane computing and fuzzy entropy. J Intell Fuzzy Syst. 2013;24(2):229–37.

    Google Scholar 

  123. Peng H, Yang Y, Zhang J, Huang X, Wang J. A region-based color image segmentation method based on P systems. Rom J Inf Sci Technol. 2014;17(1):63–75.

    Google Scholar 

  124. Pérez-Jiménez M.J, Riscos-Núñez A, Romero-Jiménez A, Woods D. Complexity—membrane division, membrane creation. In: Păun et al. [129]; 2010. p. 302–36.

  125. Păun G. Membrane computing: an introduction. Berlin: Springer; 2002.

    Book  MATH  Google Scholar 

  126. Păun G. Computing with membranes. Tech. Rep. 208, Turku Centre for Computer Science, Turku, Finland; 1998.

  127. Păun G. Computing with membranes. J Comput Syst Sci. 2000;61(1):108–43 (See also [126]).

    Article  MathSciNet  MATH  Google Scholar 

  128. Păun G. Grammar systems vs. membrane computing: a preliminary approach. In: Pre-proceedings of the workshop on grammar systems, MTA SZTAKI Budapest; 2004. p. 225–45.

  129. Păun G, Rozenberg G, Salomaa A, editors. The Oxford handbook of membrane computing. Oxford: Oxford University Press; 2010.

    MATH  Google Scholar 

  130. Rawat W, Wang Z. Deep convolutional neural networks for image classification: a comprehensive review. Neural Comput. 2017;29(9):2352–449.

    Article  MathSciNet  MATH  Google Scholar 

  131. Real P. Homological perturbation theory and associativity. Homol Homotopy Appl. 2000;2(5):51–88.

    Article  MathSciNet  MATH  Google Scholar 

  132. Real P, Molina-Abril H. Cell at-models for digital volumes. In: Torsello A, Escolano F, Brun L, editors. GbRPR, vol. 5534., Lecture notes in computer scienceBerlin: Springer; 2009. p. 314–23.

    Google Scholar 

  133. Real P, Molina-Abril H, Kropatsch WG. Homological tree-based strategies for image analysis. In: Jiang X, Petkov N, editors. CAIP, vol. 5702., Lecture notes in computer scienceBerlin: Springer; 2009. p. 326–33.

    Google Scholar 

  134. Reina-Molina R, Carnero Iglesias J, Díaz-Pernil D. Image segmentation using tissue-like P systems with multiple auxiliary cells. Image A Appl Math Image Eng. 2011;2(4):25–8.

    Google Scholar 

  135. Reina-Molina R, Díaz-Pernil D. Bioinspired parallel 2D or 3D skeletonization. Image A Appl Math Image Eng. 2013;3(6):41–4.

    Google Scholar 

  136. Reina-Molina R, Díaz-Pernil D, Gutiérrez-Naranjo MA. Cell complexes and membrane computing for thinning 2D and 3D images. In: García-Quismondo et al. [63]. p. 167–86.

  137. Reina-Molina R, Díaz-Pernil D, Real P, Berciano A. Membrane parallelism for discrete Morse theory applied to digital images. Appl Algebra Eng Commun Comput. 2015;26(1–2):49–71.

    Article  MathSciNet  MATH  Google Scholar 

  138. Reina-Molina R, Díaz-Pernil D, Real P, Berciano A. Effective homology of k-d digital objects (partially) calculated in parallel. Pattern Recognit Lett. 2016;83:59–66.

    Article  Google Scholar 

  139. Rivero-Gil E, Gutiérrez-Naranjo MA, Pérez-Jiménez MJ. Graphics and P systems: experiments with JPLANT. In: Díaz-Pernil D, Graciani C, Gutiérrez-Naranjo MA, Păun G, Pérez-Hurtado I, Riscos-Núñez A, editors. Sixth brainstorming week on membrane computing. Sevilla: Fénix Editora; 2008. p. 241–53.

    Google Scholar 

  140. Rivero-Gil E, Gutiérrez-Naranjo MA, Romero Jiménez Á, Riscos-Núñez A. A software tool for generating graphics by means of P systems. Nat Comput. 2011;10(2):879–90.

    Article  MathSciNet  MATH  Google Scholar 

  141. Romero A, Rubio J, Sergeraert F. Effective homology of filtered digital images. Pattern Recognit Lett. 2016;83:23–31.

    Article  Google Scholar 

  142. Romero-Jiménez Á, Gutiérrez-Naranjo MA, Pérez-Jiménez MJ. Graphical modeling of higher plants using P systems. In: Hoogeboom HJ, Păun G, Rozenberg G, Salomaa A, editors. Workshop on membrane computing. Lecture notes in computer science, vol. 4361. Berlin: Springer; 2006. p. 496–506.

  143. Romero-Jiménez A, Gutiérrez-Naranjo MA, Pérez-Jiménez MJ. The growth of branching structures with P systems. In: Graciani et al. [76]. p. 253–65.

  144. Rosenfeld A. Picture languages. Reading: Academic Press; 1979.

    MATH  Google Scholar 

  145. Rosin PL. Training cellular automata for image processing. IEEE Trans Image Process. 2006;15(7):2076–87.

    Article  Google Scholar 

  146. Rozenberg G, Salomaa A. The mathematical theory of L systems. Pure and applied mathematics. New York: Elsevier Science; 1980.

    MATH  Google Scholar 

  147. Saeed K, Tabedzki M, Rybnik M, Adamski M. K3M: a universal algorithm for image skeletonization and a review of thinning techniques. Appl Math Comput Sci. 2010;20(2):317–35.

    MATH  Google Scholar 

  148. Sahoo P, Soltani S, Wong A. A survey of thresholding techniques. Comput Vis Graph Image Process. 1988;41(2):233–60.

    Article  Google Scholar 

  149. Sanduja V, Patial R. Sobel edge detection using parallel architecture based on FPGA. Int J Appl Inf Syst. 2012;3(4):20–4.

    Google Scholar 

  150. Sekhar S, Al-Nuaimy W, Nandi A.K. Automated localisation of retinal optic disk using Hough transform. In: IEEE 5th international symposium on biomedical imaging: from nano to macro. ISBI; 2008, pp 1577–80.

  151. Selvapeter PJ, Hordijk W. Cellular automata for image noise filtering. In: IEEE world congress on nature and biologically inspired computing. NaBIC 2009IEEE; 2009. p. 193–7.

  152. Sergeraert F. The computability problem in algebraic topology. Adv Math. 1994;104:1–29.

    Article  MathSciNet  MATH  Google Scholar 

  153. Shapiro LG, Stockman GC. Computer vision. Upper Saddle River: Prentice Hall PTR; 2001.

    Google Scholar 

  154. Sharma O, Mioc D, Anton F. Polygon feature extraction from satellite imagery based on color image segmentation and medial axis. The international archives of the photogrammetry, remote sensing and spatial information sciences, XXXVII, Part B3a, Commission III; 2008. p. 235–40.

  155. Sheeba F, Thamburaj R, Nagar AK, Mammen JJ. Segmentation of peripheral blood smear images using tissue-like P systems. In: 2011 sixth international conference on bio-inspired computing: theories and applications (BIC-TA); 2011. p. 257–61.

  156. Smith SJ, Bourgoin MO, Sims K, Voorhees HL. Handwritten character classification using nearest neighbor in large databases. IEEE Trans Pattern Anal Mach Intell. 1994;16(9):915–9.

    Article  Google Scholar 

  157. Sobel IE. Camera models and machine perception. Ph.D. thesis, Dept. of Computer Sciences, Stanford, CA, USA. AAI7102831; 1970.

  158. Staal J, Abràmoff MD, Niemeijer M, Viergever MA, van Ginneken B. Ridge-based vessel segmentation in color images of the retina. IEEE Trans Med Imaging. 2004;23(4):501–9.

    Article  Google Scholar 

  159. Subramanian K, Saravanan R, Geethalakshmi M, Chandra PH, Margenstern M. P systems with array objects and array rewriting rules. In: Pan L, Păun G, editors. Proceedings of bio-inspired computing—theory and applications conference, BIC-TA 2006, Wuhan, China, September 2006, membrane computing section; 2006. p. 160–67.

  160. Subramanian KG. P systems and picture languages. In: Durand-Lose JO, Margenstern M, editors. MCU, vol. 4664., Lecture notes in computer scienceBerlin: Springer; 2007. p. 99–109.

    Google Scholar 

  161. Subramanian KG, Ali RM, Nagar AK, Margenstern M. Array P systems and t-communication. Fundamenta Informaticae. 2009;91(1):145–59.

    MathSciNet  MATH  Google Scholar 

  162. Subramanian KG, Isawasan P, Venkat I, Pan L, Nagar A. Array P systems with permitting features. J Comput Sci. 2014;5(2):243–50.

    Article  MathSciNet  Google Scholar 

  163. Subramanian KG, Pan L, Lee SK, Nagar AK. A P system model with pure context-free rules for picture array generation. Math Comput Model. 2010;52(11–12):1901–9.

    Article  MathSciNet  MATH  Google Scholar 

  164. Subramanian KG, Sriram S, Song B, Pan L. An overview of 2d picture array generating models based on membrane computing. In: Adamatzky A, editor. Reversibility and Universality, Essays Presented to Kenichi Morita on the Occasion of his 70th Birthday. Emergence, complexity and computation, vol. 30. Springer; 2018. p. 333–56.

  165. Suzuki S, Abe K. Binary picture thinning by an iterative parallel two-subcycle operation. Pattern Recognit. 1987;20(3):297–307.

    Article  Google Scholar 

  166. Snchez-Karhunen E, Valencia-Cabrera L. Membrane computing applications in computational economics. In: Graciani C, Păun G, Riscos-Núñez A, Valencia-Cabrera L, editors. Fifteenth brainstorming week on membrane computing. Sevilla: Fénix Editora; 2017. p. 189–214.

    Google Scholar 

  167. Tarabalka Y, Chanussot J, Benediktsson JA. Segmentation and classification of hyperspectral images using Watershed transformation. Pattern Recognit. 2010;43(7):2367–79.

    Article  MATH  Google Scholar 

  168. Tobias OJ, Seara R. Image segmentation by histogram thresholding using fuzzy sets. IEEE Trans Image Process. 2002;11(12):1457–65.

    Article  Google Scholar 

  169. Wang D, Lu H, Zhang J, Liang JZ. A knowledge-based fuzzy clustering method with adaptation penalty for bone segmentation of CT images. In: Proceedings of the 2005 IEEE engineering in medicine and biology 27th annual conference, vol. 6. 2005. p. 6488–91.

  170. Wang H, Peng H, Shao J, Wang T. A thresholding method based on P systems for image segmentation. ICIC Express Lett. 2012;6(1):221–7.

    Google Scholar 

  171. Wang PSP. Some new results on isotonic array grammars. Inf Process Lett. 1980;10(3):129–31.

    Article  MathSciNet  MATH  Google Scholar 

  172. Yahya RI, Hasan S, George LE, Alsalibi B. Membrane computing for 2D image segmentation. Int J Adv Soft Comput Appl. 2015;7(1):35–50.

    Google Scholar 

  173. Yahya RI, Shamsuddin SM, Hasan S, Yahya SI. Tissue-like P system for segmentation of 2D hexagonal images. ARO Sci J Koya Univ. 2016;IV(1):35–42.

    Google Scholar 

  174. Yahya RI, Shamsuddin SM, Yahya SI, Hasan S, Al-Salibi B, Al-Khafaji G. Image segmentation using membrane computing: A literature survey. In: Gong M, Pan L, Song T, Zhang G, editors. Bio-inspired computing: theories and applications—11th international conference, BIC-TA 2016, Xi’an, China, October 28–30, 2016, revised selected papers, part I, communications in computer and information science. Springer; 2016. p. 314–35.

  175. Yahya RI, Shamsuddin SM, Yahya SI, Hasan S, Alsalibi B. Automatic 2d image segmentation using tissue-like P system. Int J Adv Soft Comput Appl. 2018;10(1):36–54.

    Google Scholar 

  176. Yahya SI, Yahya RI III, Al-Salibi B, Al-Khafaji GK, Shamsuddin SM. Three-dimensional image segmentation using tissue-like P system. ARO Sci J Koya Univ. 2017;2:67–74.

    Google Scholar 

  177. Yang X. A new metaheuristic bat-inspired algorithm. In: González JR, Pelta DA, Cruz C, Terrazas G, Krasnogor N, editors. Nature inspired cooperative strategies for optimization, NICSO 2010, May 12–14, 2010, Granada, Spain, studies in computational intelligence, vol. 4. Springer; 2010. p. 65–74.

  178. Yang Y, Peng H, Jiang Y, Huang X, Zhang J. A region-based image segmentation method under P systems. J Inf Comput Sci. 2013;10(10):2943–50.

    Article  Google Scholar 

  179. Yazid H, Arof H. Image segmentation using watershed transformation for facial expression recognition. In: IFMBE proceedings, 4th Kuala Lumpur international conference on biomedical engineering; 2008. p. 575–78.

  180. Ye QZ, Danielsson PE. Inspection of printed circuit boards by connectivity preserving shrinking. IEEE Trans Pattern Anal Mach Intell. 1988;10(5):737–42.

    Article  Google Scholar 

  181. Yuan X, Situ N, Zouridakis G. A narrow band graph partitioning method for skin lesion segmentation. Pattern Recognit. 2009;42(6):1017–28.

    Article  MATH  Google Scholar 

  182. Zhang G, Gheorghe M, Pan L, Pérez-Jiménez MJ. Evolutionary membrane computing: a comprehensive survey and new results. Inf Sci. 2014;279:528–51.

    Article  Google Scholar 

  183. Zhang GX, Gheorghe M, Li Y. A membrane algorithm with quantum-inspired subalgorithms and its application to image processing. Nat Comput. 2012;11(4):701–17.

    Article  MathSciNet  MATH  Google Scholar 

  184. Zhang TY, Suen CY. A fast parallel algorithm for thinning digital patterns. Commun ACM. 1984;27(3):236–9.

    Article  Google Scholar 

  185. Zhang Z, Peng H. Object segmentation with membrane computing. J Inf Comput Sci. 2012;9(17):5417–24.

    Google Scholar 

  186. Zhao W, Chellappa R, Phillips PJ, Rosenfeld A. Face recognition: a literature survey. ACM Comput Surv. 2003;35(4):399–458.

    Article  Google Scholar 

  187. Zhou Y, Chellappa R. Artificial neural networks for computer vision. Research notes in neural computing. Berlin: Springer; 1992.

    Book  Google Scholar 

  188. Zitová B, Flusser J. Image registration methods: a survey. Image Vis Comput. 2003;21(11):977–1000.

    Article  Google Scholar 

  189. NVIDIA Corporation. NVIDIA CUDA Programming Guide. http://www.nvidia.com/ (2012).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Gutiérrez-Naranjo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díaz-Pernil, D., Gutiérrez-Naranjo, M.A. & Peng, H. Membrane computing and image processing: a short survey. J Membr Comput 1, 58–73 (2019). https://doi.org/10.1007/s41965-018-00002-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41965-018-00002-x

Keywords