
Linux Kernel GCOV - tool analysis

Nicholas Mc Guire

Distributed & Embedded Systems Lab
SISE,Lanzhou University, Lanzhou,P.R.China

mcguire@lzu.edu.cn, http://dslab.lzu.edu.cn

February 8, 2006

i

Contents

Contents

1. Kernel gcov support - tool analysis 1
1.1. Source . 1
1.2. patch file . 1
1.3. Patch analysis . 2
1.4. Architecture dependent changes . 2
1.5. Architecture support . 3
1.6. Basic technology . 4

1.6.1. -fprofile-arcs . 4
1.6.2. -ftest-coverage . 5

1.7. Building for 2.4.X . 5
1.7.1. patch the kernel . 6
1.7.2. patch the modultils . 7

1.8. building for 2.6.X . 7
1.8.1. Applying the Patch . 7

1.9. Configuration . 8
1.9.1. Update Lilo . 9
1.9.2. Update GRUB . 9

1.10. Runtime Configuration . 10
1.11. Data acquisition . 10

1.11.1. File content . 10
1.12. Extracting profiling data . 11
1.13. Checking Code Coverage . 13
1.14. Kernel Optimization . 13

1.14.1. X86 Note . 14
1.15. encountered problems . 14
1.16. Performance Impact . 16
1.17. RT-performance impact . 19
1.18. General Issues . 20

1.18.1. Authors . 20
1.18.2. License . 20
1.18.3. Patch status . 20
1.18.4. Related work . 20

1.19. Conclusion . 20

2. List of Acronyms 22

ii

Contents

Version Author Date Comment
1.0 Nicholas Mc

Guire
Jan 2005 First shot

1.1 Georg Schiesser 18 Jan 2005 converted to TEX
document

1.2 Nicholas Mc
Guire

Jan 2006 2.6 revision

This gcov intoduction/manual is released under FDL V1.2 [1]. All software used for this
session is available under GPL V2 license [2].

iii

1. Kernel gcov support - tool analysis

1. Kernel gcov support - tool analysis

In the framework of Work Package 5 - Boot-Time Optimization, of ”A Compara-
tive Study on Real-time enhanced Linux Variants” conducted for Siemens CT SE2,
Muenchen, research on existing tools to analize boot-times was performed. In this arti-
cle, derived from analysis notes, we describe the tools basics and usage. The intention of
this article is to provide practical guidance for engeneers using these tools and provide
concept basics so that thes free-software tools are no long black-boxes. For a general
introduction to runtime debugging in embedded systems we refere you to [6].

As one of the well known tools for user-space applications extending gcov into kernel
space seems like a quite natural thing to do. In this article we describe the tools analysis,
gcov usage, and data acquisition for the 2.4.25 and 2.6.14 kernel.

A brief introduction to the core technology concept and its application in user-space
process and libraries is given.

Feedback to mcguire@lzu.edu.cn is always appreciated. The latest version of this
document is available at http://dslab.lzu.edu.cn.

This manual assumes a default installation of Slackware [3] 10.0 or 10.1 - though it
should apply to more or less any current distribution.

1.1. Source

lcov-1.4.tar.gz (not strictly required) http://sourceforge.net/projects/ltp ->
gcov-2.6.X.patch.gz

note that some patches use the naming scheme linux-2.6.X-gcov.patch.gz.

dependencies: none

1.2. patch file

• /drivers/gcov/gcov-core.c:
The gcov core functions for initializing logging of code coverage data

• /drivers/gcov/gcov-proc.c:
The proc interface built under /proc/gcov

• /include/linux/gcov.h:
GCOV related macros and function prototypes, the struct bb is declared here -
highly gcc version dependent.

1

1. Kernel gcov support - tool analysis

Due to this being quite compiler dependent gcov-core.c is a bit of a mess, basically it is
the same function set for three different compiler versions, ifdef’ed .

Note that the actual instrumentation is done by gcc’s -fprofile-arcs and -ftest-coverage
flags, the kernel patch only needs to make the data accessible (you actually can com-
pile a kernel with CFLAGS KERNEL=-fprofile-arcs -ftest-coverage even without the
patch applied, it would only fail in the linking stage with an unresolved symbol to
bb init func - that is exactly what gcov-core provides.

1.3. Patch analysis

The gcov interface is cleanly encapsulated in /driver/gcov - this code is not really
architecture dependent. All gcov related parts are cleanly ifdef’ed in the code so turning
off gcov support leaves no side effects.

The main changes of the patch are in the configuration (Kconfig for 2.6.X) and in the
Makefiles - the patch is not very invasive at code level (though it does off course change
the runtime behavior of every function).

Fundamentally gcov-core.c is based on a doubly linked list of struct bb (basic blocks)
in which all data is collected - see include/linux/gcov.h for details on struct bb.
One such list is initialized for each module. This is also one source of the performance
penalty as these lists can become quite large and thus increase the cache misses.

1.4. Architecture dependent changes

The only really architecture specific issue is the sections added for the constructor and
destructor functions. Though this is not really that arch dependent, but can’t be placed
in any arch independent file.

/arch/i386/kernel/head.S

.section ".ctors","aw"

.globl __CTOR_LIST__

.type __CTOR_LIST__,@object
__CTOR_LIST__:
.section ".dtors","aw"
.globl __DTOR_LIST__
.type __DTOR_LIST__,@object
__DTOR_LIST__:

2

1. Kernel gcov support - tool analysis

Changes to the module interface

Every module has to know where it’t gcov related constructor and destructor functions are
located - so the struct module has two additional fields:

const char *ctors_start; /* Pointer to start of .ctors-section */
const char *ctors_end; /* Pointer to end of .ctors-section */

which are used in the load module, sys init module and free module function
(kernel/module.c) to initialize the gcov data acquisition:

• load module:

modindex = find_sec(hdr, sechdrs, secstrings, ".ctors");
mod->ctors_start = (char *)sechdrs[modindex].sh_addr;
mod->ctors_end = (char *)(mod->ctors_start +

sechdrs[modindex].sh_size);

• sys init module:

if (mod->ctors_start && mod->ctors_end) {
do_global_ctors(mod->ctors_start, mod->ctors_end, mod);

}

• free module:

if (mod->ctors_start && mod->ctors_end)
remove_bb_link(mod);

1.5. Architecture support

i386, ia64, ppc, ppc64, s390. Though it should not be too difficult to extend to further
architectures - none of the patch components are actually arch dependent

3

1. Kernel gcov support - tool analysis

1.6. Basic technology

gcov is a test coverage program. It operates in conjunction with GCC’s -fprofile-arcs
and -ftest-coverage. The main goals are code coverage and hot-spot location. With
some limits you can use gcov as a profiling tool to help discover where your optimization
efforts will best affect your code, the main limitation being the system load specific results
of gcov - thus optimization is for a specified load profile and generally implies decreasing
performance in other system load scenarios. The main questions kernel-gcov can answer are:

• how often each line of code executes

• what lines of code are actually executed

• how much computing time each section of code uses

The flags used to enable profiling have the following effects:

1.6.1. -fprofile-arcs

During execution the program records how many times each branch is executed and
how many times it is taken. This data is stored in the filename.da file in
/proc/gcov/PATH IN KERNEL TREE/ for every kernel file filename. This profiling data
is collected by instrumenting the functions. The results from -fprofile-arcs is what
later can be used to optimize the system by feeding basic-block information back with
-fbranch-probabilities (-ftest-coverage is not needed for this purpose). The in-
strumentation is not as simple as the one for KFI (Kernel Function Instrumentation) that
simply adds entry and exit code to every function (see -finstrument-functions in the
GCC manual and KFI [?]), -fprofile-arcs is more selective, and far more light-weight.

For each function GCC creates a program flow graph, then finds a spanning tree for the graph
(that is eliminating loops and redundant paths). Only arcs that are not on the spanning tree
have to be instrumented by adding code to count how often these arcs are executed. A arc
that is not on the spanning tree is an entry or exit point into the function in question. When
an arc is the only exit or only entrance to a block it is directly instrumented, if not, a new
basic block is created and instrumented.

Since spanning tree creation starts with block 0, low numbered arcs are more likely to end up
on the spanning tree than high numbered arcs. This causes most instrumented arcs to be at
the end, which implies a asymmetric distortion of the kernel code - thus timing information

4

1. Kernel gcov support - tool analysis

gained from gcov instrumented kernels are most likely not reliable. For details on this see
the file gcc/gcov.c in the gcc source tree.

The actual code change done in the files is to initialize an array the size of the arcs found
in the file and then to instrument them with a 64 bit counter for each arc (implemented as
two 32 bit values).

addl $1, .LPBX2+OFFSET
adcl $0, .LPBX2+OFFSET+4

The LPBX2 array (conforming to the gcov .da file format) can be quite large (i.e.
kernel/sched.c 13k , drivers/ide/ide-disk.c 11k), the overall kernel size is increased
by roughly 60%.

The overhead of the instrumentation code it self is thus not to wild - the cache side effects
are more dramatic (see section performance below).

1.6.2. -ftest-coverage

This flag to gcc tels it to dump the profiling data to files for the gcov code-coverage utility.
For an introduction to the gcov utility see the info pages to gcov info gcov. Note that
-ftest-coverage in user-space causes profiling data to be generated on program exit only,
which kernel gcov continuously updates the arc counters accessible via /proc/gcov/, this
has the side effect that you never get a consistent trace state if looking at multiple files. The
practical consequence of the non-synchronous file generation via the proc files is that you
can’t trace the effects of short running programs. To see this effect we cleared the counters
by writing to /proc/gcov/vmlinux and then imediately copied all the files - this copy
operation alone creates significant counts throughout the entire kernel tree - thus distorting
any application related counts. For long running applications the impact can be concidered
negligable, but for short running applications the file copy operation must be considered.

1.7. Building for 2.4.X

GCOV support in the 2.4.X kernel series is still a bit experimental - for the 2.6.X series it
looks like a solid tool (see the later section on 2.6.X kernel).

5

1. Kernel gcov support - tool analysis

1.7.1. patch the kernel

tar -xjf linux-2.4.25.tar.bz
cd linux-2.4.25
patch -p1 < ../linux-2.4.25-gcov.patch
make menuconfig

configure as you would usually for a non-gcov kernel and add:

GCOV coverage profiling --->
[*} GCOV Kernel
[*] Profile entire Kernel (New)
<*> Provide GCOV proc file system entry (New)

or directly modify the .config and enable the options as follows:

...
#
GCOV coverage profiling
#
CONFIG_GCOV_PROFILE=y
CONFIG_GCOV_ALL=y
CONFIG_GCOV_PROC=y

The kernel build procedure is the usual 2.4.X procedure

cp .config config_gcov
make dep
make modules
make modules_install
make bzImage

(note that you MUST recompile the modules as well if you enable profiling)

6

1. Kernel gcov support - tool analysis

1.7.2. patch the modultils

Note that this step of patching the modutils is only needed for the 2.4.X kernel series it is
not needed for the 2.6.X kernel releases.

tar -xjf modutils-2.4.25.tar.bz2
patch -p1 <../modutils-2.4.25-gcov.patch
cd modultils-2.4.25
./configure
make
make install

1.8. building for 2.6.X

Most of the 2.4 notes apply to the 2.6 as well, never the less it seems simpler to present a
clean 2.6.X shot rather than plastering the 2.4.X section with 2.6 notes...

1.8.1. Applying the Patch

root@rtl17:~# cd /usr/src
root@rtl17:/usr/src# tar -xjf linux-2.6.14.tar.bz2
root@rtl17:/usr/src# gunzip linux-2.6.14-gcov.patch.gz
root@rtl17:/usr/src# cd linux-2.6.14
root@rtl17:/usr/src/linux-2.6.14# patch -p1 --dry-run < \
../linux-2.6.14-gcov.patch
patching file arch/i386/boot/compressed/Makefile
patching file arch/i386/Kconfig
Hunk #1 succeeded at 1004 (offset 20 lines).
...
patching file scripts/Makefile.build
patching file scripts/Makefile.lib

Note that there are a few hunks when patching against vanilla linux that show offsets - but
no functional problems have been found with this, this is most likely due to the ”clean”-tree
not being quite unmodified on the patch authors system or due to the use of early kernel
versions. As most kernel patches patch clean, you can select a kernel that has no offsets if
unsure (i.e. systems that have validation demands should not use any patches that are not
clean).

As long as there are no failures we can continue to apply the patch - if offsets are large (as
above with 20 lines offset) it is advisable though to check where the patch was applied.

7

1. Kernel gcov support - tool analysis

root@rtl17:/usr/src/linux-2.6.14# patch -p1 < \
../linux-2.6.14-gcov.patch

Note that the patch naming is a bit inconstant as it is sometimes called
linux-2.6.X-gcov.patch.gz and sometimes gcov-2.6.X.patch.gz.

1.9. Configuration

We recommend doing a make distclean before configuration to ensure that all patch related
files are cleanly removed - otherwise they tend to clutter up the source management system
and nobody knows where they came from...

root@rtl17:/usr/src/linux-2.6.14# make distclean
root@rtl17:/usr/src/linux-2.6.14# make menuconfig

GCOV coverage profiling --->
[*] Include GCOV coverage profiling
[] Profile entire Kernel (NEW)
<*> Provide GCOV proc file system entry
[] Support for modified GCC version 3.3.x (hammer patch) (NEW)

These two are mandatory (proc filesystem support can be a module though). In case one
only want to profile specific code parts of the kernel one needs to add the following lines to
the respective Makefile

EXTRA_CFLAGS += $(GCOV_FLAGS)

where by $(GCOV FLAGS evaluates to the known -fprofile-arcs -ftest-coverage, al-
ternative one can simple check:

[*] Profile entire Kernel (NEW)

to profile the entire kernel. Note that we did not check/use the gcc-3.3.x extensions so
we simply don’t know if there are any open issues related to that extension.

The rest is to be configured as usual for the respective platform.

Regarding profiling together with gcov one should note that more or less any kernel debug
option will distort the gcov output - so if you do run gcov with oprofile or kernel hacking
options enabled you should rerun for the final production kernel settings and cross check. If
you locate ”hot-spots” in the gcov output the same holds true as well.

8

1. Kernel gcov support - tool analysis

root@rtl17:/usr/src/linux-2.6.14# cp .config config_gcov
root@rtl17:/usr/src/linux-2.6.14# make bzImage
root@rtl17:/usr/src/linux-2.6.14# make modules
root@rtl17:/usr/src/linux-2.6.14# make modules_install

1.9.1. Update Lilo

Add the following lines to /etc/lilo.conf - off course using your settings for root:

image = /boot/2614gcov
root = /dev/hda2
label = 2614gcov
read-only

and run lilo to update the MBR entries.

root@rtl17:/etc# lilo
Added Linux *
Added 2614gcov

To reboot into the new kernel you can select it at the Lilo prompt or use lilo’s one-time
selection like so:

root@rtl17:/etc# lilo -R 2614gcov
root@rtl17:/etc# reboot

1.9.2. Update GRUB

To boot into the new kernel with grub add the folowing line to your menu.lst on many
distributions it will be found in /boot/grub, though this is not mandatory, thus don’t be
supprised if you don’t find it there.

title 2614gcov
kernel (hd0,1)/boot/2614gcov root=/dev/hda2 read-only

Note that grub starts counting partitions at 0 thus /dev/hda2 maps to hd0,1. As grub
knows how to read filesystems you don’t need to reinstall grub, but simply reboot after
adding the above entry and select it at the boot-prompt - grub does not have a lilo -R
target alike command, once you find your nwe kenrel is ok you can set the default boot to
the target to boot, for details we refer you to the man pages of grub.

9

1. Kernel gcov support - tool analysis

1.10. Runtime Configuration

gcov’s instrumentation is statically compiled into the kernel, the following parameters
(either as kernel command-line parameters or as module parameters to gcov-proc) allow
some tuning of its behavior:

• gcov link=#
(0/1) default setting is 1. If set to 1, symbolic links to source and GCOV graph files
(.bbg) are created in /proc/gcov along with the data files (.da). This requires that
the source tree of the compiled kernel is available on the system (or all links will be
broken) - for embedded systems this is not really needed as the analysis is generally
done off-line any way. The symbolic link creation does not have any runtime impact
though so it is not critical if set or not.

• gcov persist=#
(0/1)(default setting is 0. If set to 1, GCOV data for dynamically loaded kernel modules
are kept after module unload, so that coverage measurements can be extended all the
way to module cleanup code. To clear persistent data, write to /proc/gcov/vmlinux
(i.e. echo 0 ¿ /proc/gcov/vmlinux should do).

1.11. Data acquisition

After the system reboot you should see a message in the kernel log messages.

root@rtl17:~ # dmesg | grep gcov
gcov-core: initializing core module: format=pre-gcc 3.4
gcov-core: init done
gcov-proc: initializing proc module: persist=0 link=1 format=gcc 3.3
gcov-proc: init done

If you don’t see this or a similar message then gcov is not properly patched or configured.

1.11.1. File content

For every source file in the kernel tree the following files are created in /proc/gcov:

10

1. Kernel gcov support - tool analysis

• sched.bb:
Symbolic link to the basic block file created during compilation, this profiles a mapping
from basic blocks to line numbers. When running gcov on a kernel file the content of
the .bb file is uses to reverse map the runtime recorded basic block execution counts
with line numbers.

• sched.bbg:
Symbolic link to the arc list of the program flow graph created during compilation.
gcov uses this to map arc execution counts back to basic blocks and reconstruct the
program flow graph from the runtime data.

• sched.c:
Symbolic link to the source file

• sched.da:
Proc pseudo file giving access to the runtime arc execution counts

For more details on this see info gcov or the source file for gcov in gcc-3.4.4/gcc/gcov.c.

1.12. Extracting profiling data

As with the 2.4 patches the code coverage data is accessible via /proc/gcov, To actually
use the data for code coverage analysis and compile time feedback optimization copy all the
data files (.da extension) to the kernel source tree with the most natural UNIX command
sequence:

root@rtl17:/etc # cd /proc/gcov
root@rtl17:/proc/gcov # for F in ‘find . -name *.da‘ ; do \
cp -p $F /usr/src/linux-2.6.14/$F ; done
root@rtl17:/proc/gcov # cd /usr/src/linux-2.6.14/
root@rtl17:/usr/src/linux-2.6.14 #

This now copied all the profiling data files to the kernel tree, note that this is only one
”snapshot” of the systems code coverage behavior - so you most likely want to run your
application/system specific load scenarios for considerable time to get reliable data. Now to
get the branch statistics for the scheduler do

root@rtl17:/usr/src/linux-2.6.14 # cd kernel
root@rtl17:/usr/src/linux-2.6.14/kernel # gcov -b -c sched.c | \
tee sched_branch_profile

11

1. Kernel gcov support - tool analysis

0.00% of 3 lines executed in file /usr/src/linux-2.6.14/include/asm/div64.h
No branches in file /usr/src/linux-2.6.14/include/asm/div64.h
No calls in file /usr/src/linux-2.6.14/include/asm/div64.h
Creating div64.h.gcov.
0.00% of 3 lines executed in file /usr/src/linux-2.6.14/include/linux/jiffies.h
...
54.55% of 1001 lines executed in file /usr/src/linux-2.6.14/kernel/sched.c
47.83% of 299 branches executed in file /usr/src/linux-2.6.14/kernel/sched.c
40.13% of 299 branches taken at least once in file /usr/src/linux-2.6.14/kernel/sched.c
31.11% of 135 calls executed in file /usr/src/linux-2.6.14/kernel/sched.c
Creating sched.c.gcov.
root@rtl17:/usr/src/linux-2.6.14/kernel #

As we tee’ed it into a file - the branch information is now available in sched branch profile -
note that this is the summary information staring from boot onward - so this does not reflect
a specific load profile.

The second method you can use is to directly run gcov in /proc/gcov/WHATEVER/ but the
problem with this is that every run will change the results so you don’t get a snapshot that
you can really analyze - it would be a cool feature to add to gcov for linux to allow to halt
gcov with some simple cat 0¿ /proc/something (unfortunately this would probably require
changing the now quite light weight instrumentation code - at least we could not think of a
simple way how to do this).

For completeness - to get the profiling data in the running system per file.

root@rtl17:~# cd /proc/gcov/kernel
root@rtl17:/proc/gcov/kernel# gcov sched.c
...
100.00% of 21 lines executed in file /usr/src/linux-2.6.14/include/asm/bitops.h
Could not open output file bitops.h.gcov.
90.48% of 21 lines executed in file /usr/src/linux-2.6.14/include/linux/list.h
Could not open output file list.h.gcov.
49.45% of 1001 lines executed in file kernel/sched.c
Could not open output file sched.c.gcov.

The message ”Could not open output file FILENAME.c.gcov” is due to /proc/gcov obvi-
ously not being writable - the output is correct though.

12

1. Kernel gcov support - tool analysis

1.13. Checking Code Coverage

Collecting code coverage for a given load profile requires to reset the data files first and then
rerun the copy operation for the file of interest.

root@rtl17:/proc/gcov/kernel # echo 0 > sched.da
root@rtl17:/proc/gcov/kernel # cd ..
root@rtl17:/proc/gcov # for F in ‘find . -name *.da‘ ; do \
cp -p $F /usr/src/linux-2.6.14/$F ; done

this resets the sched.c data file - we then rerun the cp operation, and rerun the gcov:

root@rtl17:/proc/gcov# cd /usr/src/linux-2.6.14/kernel/
root@rtl17:/usr/src/linux-2.6.14/kernel# gcov -b -c sched.c
...
33.37% of 1001 lines executed in file /usr/src/linux-2.6.14/kernel/sched.c
24.75% of 299 branches executed in file /usr/src/linux-2.6.14/kernel/sched.c
16.39% of 299 branches taken at least once in file /usr/src/linux-2.6.14/kernel/sched.c
11.85% of 135 calls executed in file /usr/src/linux-2.6.14/kernel/sched.c
Creating sched.c.gcov.

1.14. Kernel Optimization

Feedback of profile data to the kernel for optimization purposes is done by providing the code
coverage information at compile time, this allows gcc to improve branch prediction. Note also
that hard-coded builtin expect, known in the kernel sources as likely()/unlikely()
are overruled by the gcov data when feeding back profiling data to the compiler - we are
currently not aware of any compiler flag to reverse this behavior.

The procedure shown here is for 2.4.25 it applies to all gcov patched kernels without any
version specifics (if you do find any let us know). Note though that the exact location of
some variables (i.e. GCOV FLAGS) may be different but the settings shown are correct never
the less.

To now feedback profiling data to the kernel during recompilation you must clean the sources
(make clean/distclean does not matter), then copy the .da files to the kernel tree (see above)
and modify the makefile a bit

13

1. Kernel gcov support - tool analysis

#
when you got the profiling data - turn this on to optimize the hell
out of the kernel :)
CFLAGS_KERNEL = -fbranch-probabilities
#CFLAGS_KERNEL =
GCOV_FLAGS =
#GCOV_FLAGS = -fprofile-arcs -ftest-coverage

Note that you must rerun make menuconfig and disable GCOV this time. The
-fbranch-probabilities compiler flag is what tells gcc to read the .da files and use
this data to adjust placement of code (inline or at an appended tag), to set branches ac-
cording to the probabilities found. This obviously is load/profile dependent. Note this
included overriding the builtin expec() feature of gcc - which can be undesired if one wants
to optimize for a particular load profile but not modify some highly optimized code for the
general case - due to the structure of the Linux kernel source tree the GCOV FLAGS apply at
directory granularity only.

1.14.1. X86 Note

Due to a stupidity of the BTB design in X86 hardware feedback of the profiling data on x86
can worsen the systems behavior - in fact rerunning lmbench on x86 (ia32) with profiling
feedback showed a slight degradation of almost all benchmarks.

1.15. encountered problems

gcov kernel patch 0.5 (2.4.X kernel) usage problem description, note that these seem to be
eliminated in the recent gcov kernel patches. If you are using anything newer than 2.6.0,
this can be skipped.

oops when recompiling kernel with gcov disabled

copying all .da files into the kernel tree, recompiling results in compile problem, and finally
into a boot-time oops.

copied kernel/*.da to /usr/src/linux/kernel
touch all files in the kernel tree
reset compiler flags in top level makefile
turned off gcov in .config
make dep
make bzImage

14

1. Kernel gcov support - tool analysis

(no module rebuild !)
compile error in sched.c (no compile time error)
touch all c h and bb files

The problem is not module related (all drivers static in the kernel).

compile time error when building with:

CFLAGS_KERNEL = -fbranch-probabilities

init/version.c:0: warning: file init/version.da not found, execution counts assumed to be zero
sched.c: In function ‘schedule’:
sched.c:703: error: corrupted profile info: prob for 53--2 thought to be 11434
sched.c:703: error: corrupted profile info: prob for 53-54 thought to be -1433
make[2]: *** [sched.o] Error 1
make[1]: *** [first_rule] Error 2
make: *** [_dir_kernel] Error 2

looking at the lines that are listed as causing the problems, gcov produced the branch info
as expected and delivers no errors ?

kernel/sched.c.gcov:

...
-: 698:same_process:
-: 699: reacquire_kernel_lock(current);

16892: 700: if (current->need_resched)
-: 701: goto need_resched_back;
-: 702: return;
-: 703:}
...

removed data files that reported compiler errors (as seen above) - although all of them report
no error when gcov is directly run on the respective c file.

kernel/sched.da
kernel/modules.da
drivers/char/vt.da
mm/swapfile.da
fs/ext3/super.da
ipc/util.da

15

1. Kernel gcov support - tool analysis

the system boots and is operational with limitations, loopback working, filesystem read/write
ok - consoles ok - heavy load does not bring down the box - modules cause a kernel oops
though (in the module loading code the modules them selves are never touched).

for branch prediction we only need -fprofile-arcs -> removed test-coverage and rebuilt
from scratch with gcov enabled in the kernel config.

compiles cleanly without test-coverage turned on

boots ok - still a module problem

1.16. Performance Impact

Although one generally will not run a production system with gcov enabled, it is relevant to
know how much overhead it produces as this overhead is a distorting factor for any given
load-profile that one is trying to optimize for.

L M B E N C H 3 . 0 S U M M A R Y

(Alpha software, do not distribute)

Basic system parameters

OS Description Mhz tlb cache mem scal
pages line par load

bytes
------------- ----------------------- ---- ----- ----- ------ ----
Linux 2.6.14G i686-pc-linux-gnu 1599 32 64 2.7700 1
Linux 2.6.14G i686-pc-linux-gnu 1599 32 64 2.6600 1
Linux 2.6.14G i686-pc-linux-gnu 1599 32 64 2.7000 1
Linux 2.6.14S i686-pc-linux-gnu 1599 32 64 2.7700 1
Linux 2.6.14S i686-pc-linux-gnu 1599 32 64 2.7500 1
Linux 2.6.14S i686-pc-linux-gnu 1599 32 64 2.7000 1

Processor, Processes - times in microseconds - smaller is better

OS Mhz null null open slct sig sig fork exec sh
call I/O stat clos TCP inst hndl proc proc proc

------------- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

16

1. Kernel gcov support - tool analysis

Linux 2.6.14G 1599 0.18 0.35 3.60 5.15 27.9 0.50 1.89 188. 1224 9577
Linux 2.6.14G 1599 0.18 0.37 3.93 5.43 29.1 0.50 1.92 201. 1213 9587
Linux 2.6.14G 1599 0.18 0.57 4.01 5.53 28.1 0.50 1.86 186. 1208 9547
Linux 2.6.14S 1599 0.19 0.55 3.24 4.84 8.80 0.49 1.98 183. 1200 9523
Linux 2.6.14S 1599 0.19 0.47 3.18 4.80 22.1 0.49 2.04 174. 1106 9070
Linux 2.6.14S 1599 0.19 0.38 3.12 4.50 18.4 0.49 1.97 163. 1064 8972

Basic integer operations - times in nanoseconds - smaller is better

OS intgr intgr intgr intgr intgr
bit add mul div mod

------------- ------ ------ ------ ------ ------
Linux 2.6.14G 0.6300 0.6300 2.5000 25.7 26.9
Linux 2.6.14G 0.6300 0.6300 2.5100 25.7 26.9
Linux 2.6.14G 0.6300 0.6300 2.5000 25.7 26.9
Linux 2.6.14S 0.6300 0.6300 2.5100 25.7 26.9
Linux 2.6.14S 0.6300 0.6300 2.5000 25.7 26.9
Linux 2.6.14S 0.6300 0.6300 2.5100 25.7 26.9

Basic float operations - times in nanoseconds - smaller is better

OS float float float float
add mul div bogo

------------- ------ ------ ------ ------
Linux 2.6.14G 2.5000 2.5100 11.0 6.2800
Linux 2.6.14G 2.5100 2.5000 10.9 6.2800
Linux 2.6.14G 2.5000 2.5100 11.0 6.2800
Linux 2.6.14S 2.5000 2.5000 10.9 6.2800
Linux 2.6.14S 2.5000 2.5100 10.9 6.2800
Linux 2.6.14S 2.5100 2.5000 10.9 6.2800

Basic double operations - times in nanoseconds - smaller is better

OS double double double double
add mul div bogo

------------- ------ ------ ------ ------
Linux 2.6.14G 2.5000 2.5000 10.9 5.5700
Linux 2.6.14G 2.5100 2.5000 10.9 5.6100
Linux 2.6.14G 2.5000 2.5100 10.9 5.6000
Linux 2.6.14S 2.5000 2.5000 11.0 5.6600
Linux 2.6.14S 2.5000 2.5100 11.0 5.5900

17

1. Kernel gcov support - tool analysis

Linux 2.6.14S 2.5100 2.5000 10.9 5.5700

Context switching - times in microseconds - smaller is better

OS 2p/0K 2p/16K 2p/64K 8p/16K 8p/64K 16p/16K 16p/64K
ctxsw ctxsw ctxsw ctxsw ctxsw ctxsw ctxsw

------------- ------ ------ ------ ------ ------ ------- -------
Linux 2.6.14G 0.8800 1.1700 102.2 32.9 123.0 33.4 112.1
Linux 2.6.14G 0.8300 1.1700 102.2 33.2 123.1 33.3 111.6
Linux 2.6.14G 0.8000 0.8100 102.2 32.7 123.4 33.3 111.0
Linux 2.6.14S 0.5600 1.2100 88.0 32.8 123.5 33.7 111.0
Linux 2.6.14S 1.2400 0.6500 82.7 32.2 123.8 34.0 110.7
Linux 2.6.14S 0.6100 0.9300 89.4 33.6 122.8 33.9 111.2

Local Communication latencies in microseconds - smaller is better

OS 2p/0K Pipe AF UDP RPC/ TCP RPC/ TCP
ctxsw UNIX UDP TCP conn

------------- ----- ----- ---- ----- ----- ----- ----- ----
Linux 2.6.14G 0.880 5.775 9.76 22.5 44.7 34.0 64.7 271.
Linux 2.6.14G 0.830 6.358 9.55 22.6 38.8 35.4 71.5 279.
Linux 2.6.14G 0.800 6.979 9.68 21.8 44.6 31.0 66.2 280.
Linux 2.6.14S 0.560 5.768 9.00 17.8 38.5 25.2 51.6 100.
Linux 2.6.14S 1.240 6.114 10.4 18.2 38.4 27.9 54.3 101.
Linux 2.6.14S 0.610 5.789 9.29 18.1 34.7 26.5 58.0 108.

File & VM system latencies in microseconds - smaller is better

OS 0K File 10K File Mmap Prot Page 100fd
Create Delete Create Delete Latency Fault Fault selct

------------- ------ ------ ------ ------ ------- ----- ------- -----
Linux 2.6.14G 43.0 15.5 129.9 33.7 784.0 0.231 2.02500 6.867
Linux 2.6.14G 44.4 16.6 137.9 33.2 785.0 0.409 2.12990 6.556
Linux 2.6.14G 65.9 16.4 153.2 36.0 819.0 0.387 2.11730 14.1
Linux 2.6.14S 35.0 16.5 115.2 32.7 931.0 0.531 2.58240 13.3
Linux 2.6.14S 34.2 16.1 115.4 31.5 943.0 0.605 2.62850 5.605
Linux 2.6.14S 34.9 17.0 106.3 34.0 715.0 0.313 2.20530 5.854

Local Communication bandwidths in MB/s - bigger is better

OS Pipe AF TCP File Mmap Bcopy Bcopy Mem Mem

18

1. Kernel gcov support - tool analysis

UNIX reread reread (libc) (hand) read write
------------- ---- ---- ---- ------ ------ ------ ------ ---- -----
Linux 2.6.14G 150. 960. 95.3 389.2 696.1 287.4 282.9 608. 429.6
Linux 2.6.14G 147. 842. 94.5 391.4 696.0 286.6 286.8 608. 436.1
Linux 2.6.14G 156. 845. 94.6 390.3 696.0 284.9 285.8 608. 439.5
Linux 2.6.14S 160. 157. 102. 400.6 696.2 292.0 292.6 608. 425.4
Linux 2.6.14S 154. 161. 102. 398.6 696.3 290.4 289.2 608. 430.2
Linux 2.6.14S 158. 167. 101. 398.1 696.3 288.1 289.0 608. 432.7

Memory latencies in nanoseconds - smaller is better
(WARNING - may not be correct, check graphs)

--
OS Mhz L1 $ L2 $ Main mem Guesses

------------- --- ---- ---- -------- -------
Linux 2.6.14G 1599 1.8770 12.7 157.6
Linux 2.6.14G 1599 1.8780 12.7 157.6
Linux 2.6.14G 1599 1.8780 12.7 157.6
Linux 2.6.14S 1599 1.8780 12.8 157.5
Linux 2.6.14S 1599 1.8770 12.8 157.5
Linux 2.6.14S 1599 1.8780 12.8 157.5

Lines listing Linux 2.6.14S are standard (unpatched Linux), lines listing 2.6.14G are gcov
patched kernel runs. Note that there is very little overhead with the exception of TCP
connection times - which we believe is a result of the stack complexity and of TCP. So for
some classes of systems it might be realistic to actually use gcov in production systems. With
the 2.4.X patches we found larger overheads (we are not going to list them here as they are
no longer current), so for 2.4.X based systems gcov is most likely not usable in production
code.

Results are from three consecutive runs of lmbench-3.0-3a [4] with gcov enabled/disabled.

1.17. RT-performance impact

The overhead that is visible in scheduling jitter with gcov enabled in rtlinux patched kernel
(RTLinux/GPL Version 3.2-rc1 on 2.4.29 was used) is negligible. The worst case was de-facto
un-changed, the average slightly increased.

Note though that the rtlinux modules were not instrumented for gcov, so this is not too
surprising. The interesting part is that the jitter was increased after rebuilding the kernel
with profiling data feed back (using -fbranch-probabilities) - though again only the average
case went up not the worst case (see note on BTB design of x86).

19

1. Kernel gcov support - tool analysis

1.18. General Issues

1.18.1. Authors

Hubertus Franke <frankeh@us.ibm.como> Rajan Ravindran <rajancr@us.ibm.com>
Peter Oberparleiter <Peter.Oberparleiter@de.ibm.com>

(Pleas corect me if this information is incorrect or out dated)

1.18.2. License

Copyright (c) International Business Machines Corp., 2002-2003
Licensed under GPL V2

1.18.3. Patch status

Looks well maintained within the Linux Test Project (ltp on sourceforge) current gcov patches
are at 2.6.14. The problems noted for the 2.4.25 don’t seem to be around any more.

1.18.4. Related work

• KFI:
Kernel function instrumentation - instrumentation at the call level - with precise timings
but very large overhead and huge data volumes.

• Oprofile: Kernel level profiling in 2.6 (patches for 2.4.X available) statistic data of
low-level events (only for x86 ?)

• UML:
Older versions of UML supported gcov and gprof (as of 2.4.24 kernel gprof is broken
- in 2.6.X gcov is supported but it looks like gprof is out for good).

1.19. Conclusion

Obviously a must for any validation effort. Aside from that it is a good starting point for any
system level optimization effort - a fairly quick way to get a good picture of where hot-spots
are in the kernel (estimated effort ¡= one week for a 2.6.X kernel with default configuration).

Due to the overhead and the gcov inherent distortion one needs to run this in iterative stages

20

1. Kernel gcov support - tool analysis

• full kernel code coverage -> locate hot-spots

• gcov only turned on for the identified functions/subsystems -> reevaluate hot-spots.

Very usable, no special documentation needed, if you know how to use gcov then this will
work naturally - the only ”ugliness” is the need to copy the .da files to run gcov properly
(this could be nicely wrapped up in a make target in the top level kernel Makefile). A further
wish-list entry would be a way to start/stop data collection in a way that allows smaller
load windows (though this would require a massive change in the way the instrumentation
is implemented).

21

2. List of Acronyms

2. List of Acronyms

BTB - Branch Trace Buffer
CVS - Concurent Version Control
GNU - GNU Not UNIX (recursive acronym)
LKML - Linux Kernel Mailing List
KFI - Kernel Function Instrumentation
GCC - GNU C Compiler
MBR - Master Boot Record
LTT - Linux Trace Toolkit
TSC - Time Stamp Counter (x86)
X86 - Intel 80X86 Processor family

22

References

References

[1] Free Software Foundation, Free Documentation Li-
cense, as published by the Free Software Foundation,
http://www.gnu.org/copyleft/fdl.html,FSF,2004

[2] Free Software Foundation, General Public License, as published by the Free
Software Foundation, http://www.gnu.org/copyleft/gpl.html,FSF,2004

[3] Slackware Linux, Slackware 10.1, http://www.slackware.org/,Slackware
Linux Inc.,2005

[4] Larry McVoy and Carl Staelin, LMBench - Tools for Performance Analysis,
http://lmbench.sourceforge.net/,2005

[5] CE Linux Forum, Kernel Function Instrumentation,
http://tree.celinuxforum.org, (C) CE Linux Forum Member Compa-
nies, 2005.

[6] Nicholas Mc guire, Runtime Debuging in Embedded Systems - available tools
and usagehttp://DSLabs.lzu.edu.cn/Publications.htmlDSLabs, SISE,
University of Lanzhou,2006

[7] OpenTech EDV Research GmbH - OpenTech documents,
http://www.opentech.at/documents.html,OpenTech,2005

23

	Kernel gcov support - tool analysis
	Source
	patch file
	Patch analysis
	Architecture dependent changes
	Architecture support
	Basic technology
	-fprofile-arcs
	-ftest-coverage

	Building for 2.4.X
	patch the kernel
	patch the modultils

	building for 2.6.X
	Applying the Patch

	Configuration
	Update Lilo
	Update GRUB

	Runtime Configuration
	Data acquisition
	File content

	Extracting profiling data
	Checking Code Coverage
	Kernel Optimization
	X86 Note

	encountered problems
	Performance Impact
	RT-performance impact
	General Issues
	Authors
	License
	Patch status
	Related work

	Conclusion

	List of Acronyms

