
Learned surrogates and stochastic gradients

for accelerating numerical modeling,

simulation, and design

Alex Beatson

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Computer Science

Adviser: Ryan P. Adams

September 2021

c© Copyright by Alex Beatson, 2021.

All Rights Reserved

Abstract

Numerical methods, such as discretization-based methods for solving ODEs and PDEs, allow us

to model and design complex devices, structures, and systems. However, this is often very costly

in terms of both computation and the time of the expert who must specify the physical governing

equations, the discretization, the solver, and all other aspects of the numerical model. This thesis

presents work using deep learning and stochastic gradient estimation to speed up numerical modeling

procedures.

In the first chapter we provide a broad introduction to numerical modeling, discuss the motivation

for using machine learning (and other approximate methods) to speed it up, and discuss a few of

the many methods which have been developed to do so.

In chapter 2 we present composable energy surrogates, in which neural surrogates are trained

to model a potential energy in sub-components or sub-domains of a PDE, and then composed

together to solve a larger system by minimizing the sum of potentials across components. This

allows surrogate modeling without requiring the full system to be solved with an expensive ground-

truth finite element solver to generate training data. Instead, training data are generated cheaply

by performing finite element analysis with individual components. We show that these surrogates

can accelerate simulation of parametric meta-materials and produce accurate macroscopic behavior

when composed.

In chapter 3 we discuss randomized telescoping gradient estimators, which provide unbiased gra-

dient estimators for objectives which are the limit of a sequence of increasingly accurate, increasingly

costly approximations – as we often encounter in numerical modeling. These estimators represent

the limit as a telescoping sum and sample linear combinations of terms to provide cheap unbiased

estimates. We discuss conditions which permit finite variance and computation, optimality of cer-

tain estimators within this class, and application to problems in numerical modeling and machine

learning.

In chapter 4 we discuss meta-learned implicit PDE solvers, which allow a new API for surrogate

modeling. These models condition on a functional representation of a PDE and its domain by

directly taking as input the PDE constraint and a method which returns samples in the domain and

on the boundary. This avoids having to fix a parametric representation for PDEs within the class

for which we wish to fit a surrogate, and allows fitting surrogate models for PDEs with arbitrarily

varying geometry and governing equations.

In aggregate, the work in this thesis aims to take machine learning in numerical modeling beyond

iii

simple regression-based surrogate modeling, and instead tailor machine learning methods to exploit

and dovetail with the computational and physical structure of numerical models. This allows meth-

ods which are more computationally and data-efficient, and which have less-restrictive APIs, which

might better empower scientists and engineers.

iv

Acknowledgements

This PhD has been a wonderful journey, entirely due to the host of people whom I have had the

privilege of sharing it with.

For most of my PhD I have had the great fortune to be advised by Ryan Adams. Ryan has

taught me how to do research and perhaps more importantly how to be a researcher. As well as

being a technical encyclopedia and teaching me how to reason, work, write, and communicate, I

have learned much from him about collaboration and how to navigate the professional landscapes of

machine learning, tech, and academia. I fall short of Ryan’s example and work ethic, but it has been

an absolute privilege to work with him. Ryan also has a great ability to guide you and fully engage

with your work while also making you feel a full-fledged collaborator. The best gift a mentor can

give, to paraphrase David Whyte, is not any rewards that may have been earned, but the invitation

to be a full participant in the conversation, as we walk this road with all its difficulties and minor

triumphs, and the invitation to discover a sense of artistry and joy in the journey itself.

I’m incredibly grateful to the other collaborators I’ve worked with during this PhD, who have

made the work in this thesis possible and from whom I’ve learned so much, and to my colleagues

in LIPS, who have provided insightful discussions, banter, and camaraderie: Sachin Ravi, Tianju

Xue, Jordan Ash, Deniz Oktay, Ricky Chen, Ari Seff, Geoffrey Roeder, Yucen Luo, Nick McGreivy,

Sunny Qin, Josh Aduol, Daniel Suo, Zhaoran Wang, Diana Cai, Gregory Gundersen, Sulin Liu,

Jad Rahme, Yaniv Ovadia, Sam Barnett, and more. The times we spent at the whiteboard, pair

programming, discussing papers or ideas, or even on slack or zoom, have been the most enjoyable

and educational times of my PhD.

I’d also like to extend my gratitude to my initial mentor at Princeton, Barbara Engelhardt, and

her lab (the BEEhive). Even though genomics (her application area) was not my area of interest,

Barbara and her group provided an incredibly welcoming environment for someone who was new

to the USA and relatively new to machine learning. I owe a debt to her and to BEEhive members

Bianca, Allison, Greg, Li-Fang, Derek and Niranjani for helping me feel at home and for helping me

navigate my initial steps both in the field of machine learning and in Princeton and the Computer

Science department.

For the first two years of my PhD I worked with Han Liu. Han is a great teacher and font of

statistical knowledge. I will forever benefit from learning statistical ML and linear algebra from

him. I’m also indebted to his former student Zhaoran Wang, who took me under his wing in my

first year and helped me write my first NeurIPS paper. I had no idea what I was doing, but Zhaoran

v

handed me an idea and provided clear guidance and every resource each step of the way. The reality

distortion field of his enthusiasm, confidence and guidance tricked me into working step by step

until we had written a paper seemingly without encountering an obstacle. It wasn’t until later that I

understood providing this sort of "effortless" guidance to another is much more difficult than doing

something yourself.

I’m very grateful to my mentors from wonderful summers at Google: Pedro Moreno and Mohamed

Elfeky from Google NYC, who hosted me in 2016, and Olivier Teytaud, Sylvain Gelly, and Karol

Kurach from Google Brain Zurich, who hosted me in 2017. Both experiences taught me much about

how to code, do machine learning at scale, and navigate the world of industry.

My time at Princeton and in the USA has been a joy due to the many and hopefully lifelong

friends I’ve been lucky enough to spend it with. These have been some of the best years of my

life, and I hope to share many more adventures with you all. I am thankful for the CS lunch and

happy hour crews, officemates at Prospect Ave and on each floor of Olden St, the movie and book

clubs, my flatmates over the years, those who have joined in road trips, outdoor adventures, dinners,

and tennis, and especially to those who have been there for years of friendship, adventures, and

countless hours of great conversation - you know who you are. I’m also grateful to friends made in

Philadelphia when I escaped from the Princeton bubble for a year in the big city, those who made

me feel at home during summers in New York and Zurich, those who welcomed me into their lives

and gave me an instant social life when I fled Covid-19 to Auckland, and those who have hosted me

in Princeton and Philly during the nomadic period in which I have written up this thesis.

A few people from home should be mentioned. I am probably doing research today due to coffees

in college with Shaun and his excitement and clarity about his own work. Our bet, where the person

who showed up early to the lab the fewest times in a week had to pay for coffee, brought me the

closest I’ve ever been to a consistent work schedule. Appreciation also goes to Nick for showing

me by example that there is a whole world beyond NZ to explore, Andrew for showing how to be

ambitious while remaining grounded and focussed on what matters, and Timmy for providing a

welcoming home and tour guide every time I visited Auckland. Geoff Chase, my undergrad senior

year advisor, made this path possible with his mentorship and set me on it by insisting to write me

a recommendation letter for PhD programs rather than masters programs.

Finally, all of this has been made possible by my family. Thank you to Erin and Tane for your

empathy, insight into your own crafts and processes, and camaraderie as we go through life. Thank

you to my parents Meg and Rick for your unconditional and endless love and support, both during

these years and the decades prior, without which nothing I do would be possible.

vi

Contents

Abstract . iii

Acknowledgements . v

1 Introduction 1

1.1 Numerical methods: a vital engineering tool . 1

1.1.1 Numerical reasoning . 2

1.1.2 Elements of numerical modeling . 4

1.1.3 Examples of numerical modeling . 7

1.1.4 The costs of numerical modeling and design 11

1.2 Accelerating numerical modeling with machine learning 13

1.2.1 What can we hope to achieve? . 14

1.2.2 Extrapolation and sequence acceleration . 15

1.2.3 Surrogate modeling . 17

1.2.4 Model order reduction . 18

1.2.5 Randomized methods . 19

1.3 Research contributions in this thesis . 20

2 Learning composable energy surrogates for PDE order reduction 22

2.1 Abstract . 22

2.2 Introduction . 22

2.3 Learning to optimize in collapsed bases . 24

2.4 Mechanical meta-materials . 25

2.5 Composable energy surrogates . 27

2.6 Model architecture . 29

2.7 Data and training . 30

2.8 Software and hardware . 32

vii

2.9 Empirical evaluation . 33

2.10 Limitations and opportunities . 34

2.11 Conclusion . 35

3 Efficient optimization of loops and limits with randomized telescoping sums 36

3.1 Introduction . 37

3.2 Unbiased randomized truncation . 38

3.2.1 Randomized telescope estimators . 38

3.2.2 A brief history of unbiased randomized truncation 40

3.3 Optimizing loops and limits . 40

3.3.1 Randomized telescopes for optimization . 41

3.3.2 Related work in optimization . 41

3.4 Convergence rates with fixed RT estimators . 42

3.5 Adaptive RT estimators . 44

3.5.1 Choosing between unbiased estimators . 44

3.5.2 Optimal weighted sampling for RT estimators 46

3.5.3 Subsequence selection . 47

3.6 Practical implementation . 47

3.6.1 Tuning the estimator . 47

3.6.2 Controlling sequence length . 48

3.7 Experiments . 48

3.7.1 Lotka-Volterra ODE . 48

3.7.2 MNIST learning rate . 49

3.7.3 enwik8 LSTM . 50

3.8 Limitations and future work . 52

3.9 Conclusion . 53

4 Meta-PDE: Learning to solve PDEs quickly without a mesh 54

4.1 Abstract . 54

4.2 Introduction . 55

4.3 Finite element analysis . 56

4.4 Surrogate modeling . 57

4.5 Meta-learning mesh-free PDE operators . 59

4.6 Experiments . 61

viii

4.7 Conclusion . 64

5 Conclusion 65

A List of publications 77

A.0.1 Chapter 2 . 77

A.0.2 Chapter 3 . 77

A.0.3 Chapter 4 . 77

A.0.4 Not included in this thesis . 77

B Appendix for Chapter 2 79

B.1 Contents . 80

B.2 Data generation with Hamiltonian Monte Carlo . 81

B.3 Visualizing HMC data . 82

B.4 Visualizing DAgger data . 83

B.5 Neural network hyperparameters . 83

B.6 Surrogate design ablation study . 84

B.7 Finite element baselines . 85

B.8 Benchmark visualizations . 85

B.8.1 Compression . 86

B.8.2 Tension . 93

C Appendix for Chapter 3 100

C.1 Algorithm pseudocode . 101

C.2 Proofs . 105

C.2.1 Proofs for section 2 . 105

C.2.2 Proofs for section 4 . 105

C.2.3 Proofs for section 5 . 108

ix

Chapter 1

Introduction

Numerical methods, such as discretization-based methods for solving ODEs and PDEs, have for

centuries helped humanity achieve numerous feats of analysis and design. Just a few examples

include: using numerically-evaluated sequences and series to build early understanding of geometry;

predicting the motion of celestial bodies using ordinary differential equations (ODEs); modeling

massive structures under gravitational, wind and seismic loads using partial differential equations

(PDEs); optimizing the design of aircraft wings to maximize lift and structure and materials of fuselage

to achieve safety with low weight; and modeling electromagnetic and thermodynamic processes in

varied regimes such as the human cardiac system, the atmosphere, and the plasma in a fusion reactor.

Such numerical methods are costly in terms of both computation and the time of the expert who

must specify the physical model, the discretization, and the solution procedure. In this thesis I

present a number of methods which use tools from machine learning to accelerate numerical modeling,

simulation and design. Before the research contributions which form the bulk of the thesis, in this

introduction I give an overview of numerical modeling, motivate both its importance and the need

for machine learning techniques which can reduce its costs, and give a brief overview and history of

existing techniques which do so.

1.1 Numerical methods: a vital engineering tool

In this section I aim to give a broad perspective on why numerical methods and models are important,

but why they have some significant costs that we should wish to reduce with machine learning. It is

impossible to give a comprehensive overview of numerical methods in this brief introduction, as they

touch on many rich areas of applied mathematics. To the interested reader I strongly recommend

1

the Princeton Companion to Applied Mathematics (Higham et al., 2015), which has a great overview

of the foundational concepts which connect numerical methods to each other and to other areas of

applied mathematics, and a broad overview of important methods and application domains.

1.1.1 Numerical reasoning

Why are numerical methods important? They allow us to model systems governed by some mathe-

matically defined laws under simulation. Often, but not always, these are physical systems and the

laws are known laws of physics. Being able to model such systems allows us to reason about the

world around us without resorting to brute-force experimental trial and error. I will use numerical

modeling to refer to the actions the practitioner takes in modeling such systems, which include (i)

specifying a mathematical model and (ii) choosing and using appropriate numerical methods to

obtain an approximate solution.

Numerical modeling is used to solve several related problems. The three most important are

simulation, optimization, and system or parameter identification. Simulation is the most basic and

fundamental of these. Given some set of laws and parameters, to simulate the system is to predict or

understand how it behaves or evolves by modeling the system’s solution (whether steady-state or as

a function of a variable such as time).

The second is system optimization. Given some laws and an objective function which measures

the desirability of a solution – of the output of a simulation – what system parameters give rise to

the optimal solution? There are many approaches to and algorithms for optimization depending

on the specifics of the problem. However, in most cases simulation is a critical subroutine which

may be performed many times. We must be able to evaluate the solution resulting from some given

parameters in order to evaluate the objective function corresponding to those parameters.

The third is system identification. Given some observations about the world, coupled with some

known laws, can we identify the system parameters which gave rise to these observations? As with

optimization, this task has simulation as a critical subroutine – we need to simulate the system to know

what observations some given parameters could generate, and whether these observations are close to

the observations we made. Often, system ID reduces to an optimization problem. This reduction

holds when we seek parameters which minimize an error metric between the true observations and

the simulated observations, or equivalently, seek the maximum-likelihood parameters under some

observation noise model. SysID does not naively reduce to optimization in some cases, such as when

using Bayesian inference to sample from a posterior distribution over parameters. Such cases are

2

beyond the scope of this thesis, but almost always still have simulation as a critical subroutine.

The key thing to note is that numerical analysis or simulation allows us to do counterfactual

reasoning. Given a hypothetical set of laws and parameters, what happens? This counterfactual

reasoning allows both system optimization and system identification.

Such reasoning and such tasks do not necessarily require numerical analysis, which is one of three

options we have to evaluate outcomes. The other options are: to evaluate the outcome of a system

by building or testing the system in the real world, or to use an analytic mathematical model if one

is available. However, both options have severe limitations.

Alternative: analytic reasoning

Analytic solutions are often desirable when they are available. These permit system analysis/simulation,

optimization, and identification in the same way as numerical solutions. One begins with the laws

and parameters which specify a system, mathematically derives a solution, and potentially iter-

ates between updating parameters and deriving a solution as part of an optimization or inference

procedure.

The difference is that, as opposed to numerical solution, an analytic solution involves writing

an expression for the exact solution, which may be evaluated in closed form. This avoids the

computation/error trade-off which is central to numerical methods.

For example, analytic formulae exist for the roots of general polynomials up to degree 4. It is

usually better to use these formulae than to use a numerical method such as Newton’s method to

find the roots. For polynomials of degree greater than 4, the Abel-Ruffini theorem states that there is

no general analytic formula for their roots. Some special higher-order polynomials do permit analytic

solution if the mathematician reasons about the structure of that particular polynomial, but almost

all do not. If either the polynomial is one of the majority that do not – or if one wants to avoid the

mathematical labor of determining the analytic solution for one of the few polynomials that permit

it – then the only option is to resort to numerical methods.

Partial differential equations (PDEs), which we will discuss in depth later, exhibit a similar

pattern. Many simple linear PDEs, such as Poisson’s equation, permit analytic solutions when the

domain is simple (e.g. a disc or unit square) and the boundary conditions (BCs) and parameters

belong to a simple class of functions (e.g., constant or quadratic). However, it might be tedious to

derive analytic solutions for each given realization of the PDE consisting of a unique combination of

domain, BCs, and parameters. And most nonlinear PDEs, and linear PDEs with less simple domains,

BCs, or parameters, do not permit analytic solution.

3

Alternative: experimental reasoning

One might also perform system analysis, optimization or identification experimentally. In this case,

analysis involves observing the outcome of a real-world system: e.g., measuring the heat at some

point on an object or measuring the drag over an object in a wind tunnel instead of deriving analytic

or numerical solutions to the corresponding thermodynamic PDEs.

Counterfactual reasoning (for system optimization or identification) requires the ability to construct

and observe the system in the real world. This is fine when trials are cheap – e.g. when learning

how to throw a ball to maximize the distance, or learning how to imitate someone’s tennis serve, the

cost of evaluating the system (throwing or serving a ball) is negligible. It is also a necessary step

when faced by incredibly complex systems we are unable to model with sufficient accuracy, such as

in medicine, where even the best numerical models for predicting the effect of a drug on the human

body – or even the interaction of a drug molecule with one given protein – are far too simple and

inaccurate to completely remove the need for experimental trials. And in many cases, experimental

trial is an essential step in validating results obtained from a numerical or analytic model – e.g.,

testing a numerically-optimized aeroplane wing in a wind tunnel – as inaccuracies or approximations

in the mathematical system specification or in the solution procedure might cause error in the results.

However, for systems which can be modeled and which are expensive to build or have a high cost

of failure, we cannot fully rely on experimental trial. If we wish to optimize the design of a fusion

reactor, or make sure that a design for a skyscraper will not collapse, it is not feasible to iterate

blindly building a design and seeing what happens. We need to use an analytic or numerical model

to reason about the system before building the design in the real world.

1.1.2 Elements of numerical modeling

What is a numerical model? It is a mathematical model for a system or quantity of interest, coupled

with numerical methods used to solve the system and reveal the result of this model.

In the work in this thesis the mathematical model is often a differential equation such as an

ordinary differential equation (ODE) or partial differential equation (PDE), although naturally

there are many other possibilities. The scientist will often fix some structure of the model, while

allowing some structure or parameters to vary over the course of optimizing or fitting the model, or

of considering different scenarios. For example, we may know that a system should obey the PDE

given by Poisson’s equation, or the ODE for celestial motion given by coupling Newton’s laws of

motion with his law of gravity, but over the course of multiple analyses the domain, BCs or source

4

0.0 0.5 1.0 1.5 2.0
0.00

0.25

0.50

0.75

1.00

1.25

1.50

0.0 0.5 1.0 1.5 2.0
0.00

0.25

0.50

0.75

1.00

1.25

1.50
0.0 0.5 1.0 1.5 2.0

0.00

0.25

0.50

0.75

1.00

1.25

1.50

0.0 0.5 1.0 1.5 2.0
0.00

0.25

0.50

0.75

1.00

1.25

1.50
0.0 0.5 1.0 1.5 2.0

0.00

0.25

0.50

0.75

1.00

1.25

1.50

0.0 0.5 1.0 1.5 2.0
0.00

0.25

0.50

0.75

1.00

1.25

1.50
0.0 0.5 1.0 1.5 2.0

0.00

0.25

0.50

0.75

1.00

1.25

1.50

0.0 0.5 1.0 1.5 2.0
0.00

0.25

0.50

0.75

1.00

1.25

1.50

Figure 1.1: A finite element mesh modeling a rectangular body with an inverse circular fillet in one corner.
Top: the mesh. Bottom: a scalar field u approximated by a piecewise linear function on this mesh. Left to
right: the mesh is refined, leading to a better approximation of the geometry and the function u.

terms of Poisson’s equation may change, or the bodies considered in the n-body problem may change

in number, mass, or initial position and velocity.

Given this mathematical model, if an analytic solution is not available (and for all but the simplest

systems it usually is not), it must be solved numerically. There are a multitude of options, even when

considering a single mathematical system. However, most have some common elements, outlined

below.

– Representation. First, we need to choose a basis for the solution. The true solution will often

be a continuous field, but computers cannot work with fields directly. We need to represent the

solution with some finite data structure. Usually this means discretizing the solution: approximating

the solution with a representation in terms of a finite set of points or coefficients. For example,

in celestial mechanics, the solution might be a function y(t) : R1 → Rd, but we might be happy

to consider only the positions and velocities of the bodies at some finite set of time points: yt

for t = t0, t1, ..., T . For a Poisson problem the solution might be a field u(x, y) : R2 → R1, but

in order to solve it numerically with finite element analysis (FEA), we represent the continuous

solution field with a piecewise low-degree polynomial over the domain, which has some finite set of

coefficients or interpolation points. Usually there is some parameter which controls the fidelity of this

approximation: e.g., the number of steps used in solving an ODE or the fineness of a finite element

mesh. Figure 1.1 shows mesh refinement for a finite element model.

– Translated laws. Next, we must translate our mathematical model into a form which can be

applied to the chosen approximate representation. If the solution is discretized, the mathematical

model must be discretized, i.e. turned into an equation which the coefficients of the discretized

approximate solution should satisfy. The approximate solution given representation and translated

5

laws should converge as fast as possible to the true solution as the fidelity parameter is increased, so

that we may obtain an accurate solution without too much computation. For example, in finite element

analysis we first translate the PDE constraint (such as Poisson’s equation, δu(x) = f(x)∀x ∈ Omega)

to a variational form defining what constraints a candidate solution u ∈ U should satisfy with

respect to test functions v ∈ V. When U and V are sufficiently high-order Sobolev spaces consisting

of functions Ω → Rd, we recover the true solution of the PDE u∗, while if we let them be e.g.

piecewise polynomials on a finite element mesh, we retain convergence of the u ∈ U which satisfies

the variational form to the true solution as we increase the fineness of the mesh and the order of the

polynomials. In solving an ODE, we must choose how to go from the law ∂y(t)
∂t = f(t, y(t)) to a rule in

terms of the discrete solution, yt+1 = yt+g(t, yt). Common choices include the forward Euler method,

yt+1 = yt + δtf(t, yt+1), backward Euler, yt+1 = yt + δtf(t+ 1, yt+1) or Runge Kutta methods, which

take multiple trial Euler-like steps and combine the results to achieve faster convergence with the

step size δt (Süli and Mayers, 2003).

– Numerical solution. Finally, we must find the solution in the approximating basis which satisfies

the translated laws. Sometimes, as in the forward Euler method, this step is direct (just evaluate the

right hand side of yt+1 = yt + g(t, yt) given the current value of yt). Sometimes this step requires

a numerical subroutine such as an iterative method. Implicit ODE solvers require a root finding

method; e.g., to find the yt+1 which satisfies yt+1 = yt + g(t, yt) in the backward Euler method. In

solving PDEs with FEA, we assemble the variational form into a linear or nonlinear system in terms

of the coefficients of the approximate solution in the finite element basis. If the PDE is linear, we

solve the system with a direct or iterative method; if it is nonlinear, we use an iterative algorithm

such as Newton’s method or Picard iteration.

For some problems, some of the above steps are trivial, such as the numerical solution step for the

forward Euler method. In other cases, one or more of the steps may involve numerical subroutines

about which whole textbooks have been written, such as in FEA, where we must use specialized

algorithms to generate a good mesh to represent the solution, assemble the variational form into

a sparse (non)linear system, solve the nonlinear system with a Newton-like method, and solve the

linearized system at each step of root finding.

6

Figure 1.2: Areas of n sided polygons converge to the area of a circle in the limit n→∞.

1.1.3 Examples of numerical modeling

Modeling limits of sequences and series

One of the oldest examples of numerical modeling is the method of exhaustion, used in ancient Greece

and China to reason about areas and volumes. Archimedes used this method to estimate the value of

π, by estimating the area of a unit circle as the limit of a sequence of polygons.

The underlying mathematical law is the relationship A = πr2. However, the area of the circle

is not known, so π cannot be determined. We choose to represent A as the limit of areas An of a

sequence of regular polygons each with n sides. Whether the polygon is inscribed inside the circle

(A−n , where A−n < A) or outside the circle (A+
n , where A+

n > A), the difference in areas |An − A|

can be reduced by increasing n. The sequences A+
n and A−n provide upper and lower bounds on the

value of A. The discretized problem takes the form of a series, with the translated law An = π̂nr
2,

where r is the radius of the circle around which or within which the polygon is inscribed. To solve

the problem, one takes the An corresponding to the most many-sided polygon for which one can

compute the area (Archimedes used 96), and uses the corresponding π̂+
n and π̂−n as the upper and

lower bounds on π.

Modeling temporal processes with ODEs

Temporal processes often include a variable of interest y and a rate of change with respect to time, dydt ,

which is a function of time and the current state: dy
dt = f(y, t). An example is Newtonian mechanics,

such as those governing celestial motion. Here, y = [x, v], x, v ∈ Rn×3 is the positions and velocities

of the n bodies in space (R3). We have dy
dt = [dxdt ,

dv
dt] = [v, a], where a ∈ Rn×3 is the acceleration of

the bodies due to gravitational force from the other n bodies (which depends on x). While these

equations are easily understandable, there is no analytic solution when n ≥ 3: even for the three

body problem, it is very hard to reason by hand about all but very special scenarios.

For most n-body problems, as for many temporally evolving systems in general, numerical methods

are required. The relation dy
dt = f(y, t) specifies an ordinary differential equation or ODE. To solve

7

them, we usually search for a solution y(t) such that dy
dt = f(y, t) for all t in the considered time

range [t0, tf], given some initial conditions y0.

Usually, we represent a solution in terms of some set of yt, t = [t0, t1, ..., tN]: a series of state

values at particular points t. It remains to translate the law dy
dt = f(y, t) to the discretized system.

The easiest way to do this is to take the forwad Euler method: yt+1 = yt + f(yt, t), in which case

the "numerical solution" step simply involves evaluating each iterate in turn. However, much better

convergence of the approximate solution to the true solution can often be obtained. Replacing the

explicit forwad Euler with an implicit method such as the backward Euler, yt+1 = yt + f(yt+1, t+ 1),

which requires a root-finding algorithm such as Newton’s method to numerically solve for each

subsequent iterate yt+1, can greatly improve stability and convergence for ODEs which are "stiff"

(i.e., tend to be unstable with explicit solvers, unless extremely small step sizes are used, even though

the solution is smooth). Replacing the first-order Euler method (forward, backward, or other) with a

higher order method (such as Runge Kutta or linear multistep methods) can improve the rate of

convergence of the error from O(1/N), where N is the number of steps used, to O(1/Np), where p is

the order of the method. Runge Kutta methods can be interpreted as (possibly repeatedly) applying

Richardson extrapolation, a sequence acceleration method discussed later, to Euler’s method, to

develop faster-converging approximations.

Modeling spatial and spatiotemporal systems with PDEs

Spatial systems and spatiotemporal systems, or other processes which involve partial derivatives with

respect to multiple variables, can often be modeled by partial differential equations, or PDEs. The

solution to a PDE is a field u which maps from a coordinate x ∈ Ω, where usually Ω ⊂ Rd1 , to a value

u(x) ∈ Rd2 . The solution is described by a law F (u)(x) = 0, x ∈ Ω, where F is a linear or nonlinear

operator involving u and its partial derivatives. For example, in the Poisson equation (a steady-state

equation arising often in electrostatics and fluid mechanics) we have d2 = 1 (i.e. u is a scalar potential

on Ω) and F (u) = δu− f , where f is a (possibly spatially varying) source term and δ is the Laplace

operator; the trace of the Hessian, trace(∂
2u
∂x2). (In physics the Laplace operator is often written as

∇2u, however we avoid this notation as it might confuse a machine learning audience used to ∇2

describing a Hessian, not the trace of the Hessian.) Figure 1.3 shows an example mesh, source term,

and solution for the Poisson problem on a disc. In the heat equation we have F (u) = ∂u
∂t − δu. Both

of these are linear PDEs, i.e. the operator F is linear in u and/or its partial derivatives, however

many systems of interest are nonlinear PDEs. A simple example is a nonlinear Poisson problem,

varieties of which arise in many scenarios when simplifications used to obtain linearity do not hold.

8

For example, F (u) = div((1 + u2)∇u)− f , which is equivalent to the standard Poisson problem when

u ≈ 0. We usually also have some boundary conditions which constrain the value of u (a "Dirichlet

boundary condition") or the derivative of u (a "Neumann boundary condition") on some or all of the

boundary of the domain ∂Ω.

As with ODEs, the equations are simple, but analytic solutions are not available except for special

cases. This is very often true when F is linear but almost always so when it is nonlinear. In order

to solve PDEs numerically, as we cannot easily reason about arbitrary fields, we must introduce

some approximate family of functions with which to represent u. A common choice is finite elements,

employed in finite element analysis (FEA). The domain Ω is discretized using a mesh and the solution

is represented as a piecewise polynomial with the mesh defining the pieces.

To translate the law F (u)(x) = 0 ∈ Ω to this discretized space, FEA first introduces a variational

or weak form of the PDE,
∫

Ω
< F (u)(x), v(x) > dx = 0 ∀v ∈ V. Ignoring mathematical subtleties,

this weak form is equivalent to the original form if the family V is chosen to be the set of all

functions mapping from Ω to Rd2 . This variational form is amenable to discretization. Let the

family of piecewise polynomial functions representable in the finite element function space be denoted

Vp,n, where n is a measure of the number of mesh elements and p a measure of the polynomial

order of the space used, and consider an approximate solution up,n in this space. The translated

law is
∫

Ω
< F (up,n)(x), v(x) > dx = 0 ∀v ∈ Vp,n. To test this constraint it suffices to test the

integral is zero for a finite set of functions which form a basis for Vp,n. We assemble the integral∫
Ω
< F (up,n)(x), vi(x) > dx for each vi in this basis, and rewrite it as a function of ~u, the coefficients

of the function up,n in the piecewise polynomial basis. The result is a system of equations ~F (~u) = 0,

which ~u must satisfy in order to satisfy the discretized weak form of the PDE for all vi forming a

basis for Vp,n. We have translated the continuous law into a numerical system of equations. If the

PDE is linear, the system will also be linear and we can solve it with an appropriate method such as

QR decomposition or conjugate gradients. If the PDE is nonlinear, the system of equations will be

nonlinear and we will need to apply an iterative root finder such as Newton’s method (which will

usually call a linear solver at each root finding step). Importantly, as p and n increase and under

appropriate conditions, the solution up,n which satisfies this system of equations converges to the

true solution u to the PDE.

Statistical and optimization-based modeling

Modern machine learning is, naturally, also a form of numerical modeling, albeit one with a very

different flavor to more traditional approaches such as those for modeling systems with ODEs and

9

FEA mesh source (control parameter) solution (state variable)

Figure 1.3: The Poisson equation on a unit disc. Left: the finite element mesh. Center: the source term.
Right: the approximate finite element solution u, found with FEA. Figure: Xue et al. (2020a).

PDEs. We are often interested in a "ground truth" data generating or labeling process or function, or

interested in an optimal control policy or decision rule. The different flavor of machine learning arises

because the description of this function does not usually come in the form of physical constraints

it should obey, but in the form of some data (e.g., labeled training examples) or interaction (e.g.,

state-action sequences of a reinforcement learning agent and the associated rewards) coupled with

a loss function (which might include per-datum losses and regularization or a prior) we want our

function of interest to minimize. (Bayesian inference instead comes with an observation model, and

the goal is to characterize the posterior distribution over functions or parameters of interest).

Another difference is the function approximation typically employed – neural networks, kernel

methods, and linear models, as opposed to the highly structured piecewise polynomials and piecewise

linear functions often found in physical modeling. This is in part because the input and sometimes

output spaces in machine learning are usually much higher dimensional than in physical problems

where R2, R3, or in general d < 10 are the most common.

Nonetheless, there is much similarity. It is hard to reason analytically about the optimal learned

function. We thus restrict to some family of functions which can be represented numerically – e.g. by

the weights and biases in a neural network, or by the data itself (used for interpolation) for Gaussian

process regression or a kernel method. In the former case, we search for a good function within the

function class via (possibly stochastic) optimization, and query this on new inputs of interest by

passing the data through the neural network. In the latter case, finding the optimal representation

requires no work for an exact GP (just storage of the data points) but querying the "learned" function

on new data requires solving a large linear system. As with physical models, we also often wish

to place ML-style numerical modeling (whether with NNs, GPs, or many other methods) within

an optimization loop, to find the hyperparameters which give the best learning performance for a

particular task under the metric of interest (usually, generalization or test error).

10

Epochs

0 10 20 30 40 50 60
Ite

rat
ion

 Star
ted

0
20

40
60

80
100

120
140

Er
ro

r

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(a) (b)

Fig 4: A visualisation of the progression of the optimization curves throughout the optimization procedure on the
probabilistic matrix factorization problem. Figure 4a shows for each distinct hyperparameter setting

evaluated, the optimization curve run out by the procedure. The curves are ordered by the iteration in the
Bayesian optimization procedure that they were started and each epoch of each curve is colored by the

iteration of the Bayesian optimization that this section was evaluated. From the figure we can see that the
procedure frequently stops running training curves that are not promising and often returns to promising

training curves that were previously started. Figure 4b shows a two dimensional cross section of Figure 4a.

over all epochs. We report our results of the comparison in Figure 3, visualizing the problem specific loss as a
function of the total number of training epochs run throughout each of the Bayesian optimization procedures.
Each experiment was run five times and we report the mean loss. Both methods used input warping to model
non-stationarity. Specific details of our implementation are provided in the appendix.

Logistic Regression In the first experiment, we optimize five hyperparameters of a logistic regression
trained using stochastic gradient descent on the popular MNIST data set. The hyperparameters include a
norm constraint on the weights (from 0.1 to 20), an `2 regularization penalty (from 0 to 1), the training
minibatch size (from 20 to 2000), dropout regularization [21] on the training data (from 0 to 0.75) and the
learning rate (from 10�6 to 10�1).

Online LDA Next we optimize five hyperparameters of an online Latent Dirichlet Allocation (LDA) [22]
experiment on 250,000 documents from Wikipedia. We optimize the number of topics (from 2 to 100), two
Dirichlet distribution prior base measures (from 0 to 2), and two learning rate parameters (rate from 0.1 to
1, decay from 10�5 to 1). We used the implementation from [23] and report average perplexity on a held out
validation set of 10% of the data.

Probabilistic Matrix Factorization As a final experiment, we optimize three hyperparameters of a proba-
bilistic matrix factorization (PMF) [24] on 100,000 ratings from the MovieLens data set [25]. The hyper-
parameters include the rank (from 0 to 50), the learning rate (from 10�4 to 10�1) and an `2 regularization
penalty (from 0 to 1).

Results Figure 3 shows the results of the empirical analysis in terms of the problem specific loss as a
function of the total number of training epochs run out by each method. Clearly in each of the experiments,
our method significantly outperforms the state-of-the-art due to the advantage of being able to dynamically
stop and restart experiments. The difference is particularly prominent for the online LDA problem, where we
hypothesize that it is relatively easy to predict the shape of the optimization curves given only a small number
of observed epochs. We assume that the underlying models being optimized are sufficiently expensive that

8

Figure 1.4: Learning curves (performance vs epoch) at each iteration of optimizing the hyperparameters of
a neural network. The relative performance with a given hyperparameter setting at earlier epochs of training
is a useful but imperfect approximation of the performance at later epochs. Figure: Swersky et al. (2014).

1.1.4 The costs of numerical modeling and design

We have discussed why numerical modeling is important. Why should we seek to accelerate it with

machine learning? Numerical modeling procedures have significant nested computational and human

costs. These costs are compounded in numerical design and SysID. Consider using FEA to perform

design when the system will be governed by a nonlinear timestepping PDE:
Algorithm 1: Numerical design with FEA

for each qualitatively different candidate design or component do

Define a model (PDE, BCs, domain) and FEA approximation (mesh, element type, solver);

Define an objective for PDE-constrained optimization (a set of operating conditions, fitness

functions to measure the quality of the solution under each condition);

for each of G gradient steps optimizing the free system parameters do

for each of C operating conditions do

for each of T time steps in the simulation do

for each of N Newton steps solving the nonlinear PDE do
Solve a sparse linear system of size O(nd × nd), where we have n elements along

each of d spatial dimensions;

end

end

Use the adjoint method to compute the gradient of the objective;

end

end

end

11

The outer for loop contains the significant human costs of designing an appropriate model,

discretization, and objective. Often this process will need to be iterated until results of simulation

and optimization are satisfactory. Sometimes significant computation will also need to be spent here

(e.g. generating a mesh).

The inner for loops include significant computational expense from the many linear system solves

required. Unlike in many machine learning workloads, the cost of computing the gradient of the

objective is not significant next to the cost of running the simulation and computing the objective.

Given a solution and an objective function placed on that solution, the gradient with respect to the

PDE parameters can be taken with the adjoint method (Lions, 1971; Mitusch et al., 2019). Excluding

the cost of the adjoint method, we see G× C × T ×N calls to the linear system solver. Computing

the gradient with the adjoint method has approximately the same cost as solving a linearized form

of the PDE, i.e. a cost of O(G× C × T) solver calls. The cost of PDE-constrained optimization is

dominated by the cost of solving the PDE at each optimization step. The cost of each call to the

linear solver will depend on the chosen solver and on the structure of the finite element discretization.

For a regular grid on the 2d plane and using any direct linear solver, there is a lower bound of O(n3)

computation for n elements along each spatial dimension (i.e. n2 total elements). In some cases

indirect solvers may do better, and irregular grids may incur extra cost. However, we can naturally

never hope to do better than O(m) for m total elements or degrees of freedom (e.g., m = n2 for a

regular n× n grid in R2) (Hoffman et al., 1973).

How large can we expect this system to be? For small problems, dozens or hundreds of elements

might suffice. However, modeling complex systems like a rocket engine, a fusion reactor, or a large

mechanical structure might use as many as millions of elements. The engineer must spend significant

effort specifying both the design and numerical method, and may have to wait hours, days, or weeks

to see the outcome of a specific simulation, the results of which might then suggest the need to adjust

the design or method.

Of course, engineers make use of approximations to lessen this load. Such approximations might

take the form of splitting a design or system into components which are simulated separately;

introducing approximations into the mathematical model by e.g. simulating something in 2d instead

of 3d, considering steady-state instead of temporal simulations, or making assumptions about a

particular term in an equation; or simply using a coarser discretization than would be ideal. These

approximations both increase the human effort required and introduce a degree of error.

An important concept is the Pareto frontier of effort (computational or human) vs accuracy.

There will always be a need for new methods or approximations which improve this frontier. Such

12

new methods not only decrease the human and computer effort required to run existing workloads,

but can increase the accuracy of our numerical modeling (because we no longer have to cut the

corners we once did), and allow us to analyze, identify, and design systems too large or complex for

the previous state of the art. However, if we introduce a new method, it is important to measure it

against the Pareto frontier of an existing method – not a single point on said frontier.

Consider a situation where we introduce a method for using neural networks to predict the

solution to a PDE from some parameters, and show that this produces solutions which have only

a small amount of error when compared to a given finite element model, or only 10% higher error

when both methods are compared to some other known ground truth, while being many times as fast.

This information is not sufficient to say that the new method is useful. By changing the fidelity of

the finite element method (controlled by the density of the finite element mesh and the polynomial

order of the elements) we can also trade off accuracy for speed, and it might be the case that simply

decreasing the density of the mesh can create the same speed up with the same or less increase in

error. We must measure new methods against a Pareto frontier of the existing methods we compare

them to. Unfortunately, much work in the burgeoning area of machine learning for engineering does

not do this.

We now understand something of the cost of numerical modeling and design, and how methods

to reduce this cost should be evaluated. In the next section, we discuss how machine learning can be

and has been used to accelerate numerical modeling.

1.2 Accelerating numerical modeling with machine learning

Leveraging approximations to accelerate numerical modeling and design is not a new idea, and has

been an important topic in applied mathematics since at least the early 1900s. We will first outline a

general concept of what we might hope to achieve – how we might hope to leverage different sources

of information within a problem to better estimate some quantity without fully resolving it with our

numerical model. Then we will take a brief tour of prior work along these lines, both work focussing

on the general approximation of functions with resolution-speed trade offs, and work which leverages

specific physical or algorithmic structure of simulations. It is not possible for this section to be

exhaustive, and there will be much important work that we miss for the sake of brevity.

13

1.2.1 What can we hope to achieve?

Generally speaking, we can consider some baseline numerical model f which acts on some repre-

sentation of the scenario or design φ and returns a quantity of interest y = f(φ). We wish to

approximate y without running f (to avoid the expense involved), instead taking y ≈ f̂(φ), where f̂

is our approximate model.

Sources of information

If we are not to call f , then f̂ must use some information about f available from one or more other

sources in order to provide better-than-arbitrary estimates of y. What such sources of information

are available? Many methods will use more than one of the following, and we discuss examples of

each in both the overview of existing approaches and in the research contributions of the thesis.

• Results of cheaper or lower-fidelity simulations yi = fi(φ). In numerical modeling we often

have access to some sequence of approximations fi, where as i→∞, yi = fi(φ) converges to

the true quantity we are interested in, but so does the difficulty or cost of evaluating fi. If we

know something about the convergence properties of the sequence of models fi, this knowledge

might allow us to use evaluations of some of the models f1:i−1 to approximate the result of

fi as ŷi = f̂i(y1, y2, ...yi−1) without evaluating it. A quintessential example of this is sequence

acceleration (Osada, 1991), discussed in the next section.

• Results of simulation of similar problems, y′ = f(φ′). Given a training set consisting of

parameterizations of particular problems φi and the solutions to those problems yi, we may try

to learn an approximation f̂ to the function/model f which is cheaper to evaluate than f itself.

A quintessential example of this is surrogate modeling via simply regressing from the training

φi to the target solutions yi.

• Known computational or physical structure associated with the model f . This is a broad category.

In many cases, leveraging known computational structure in the numerical model f or known

physical or mathematical properties of the system f approximates will improve methods which

rely on generalization from lower-fidelity iterates f<i or from similar problems y′ = f(φ′).

However, leveraging this structure can also be used to design new numerical models y ≈ f̂(φ)

which can be used as simulators without requiring information from f for training or evaluation.

14

1.2.2 Extrapolation and sequence acceleration

One of the earliest examples of work with a similar flavor to that in this thesis is the subfield of

applied mathematics concerned with sequence acceleration or series acceleration. See Osada (1991)

for an excellent overview. Much of the key work in sequence acceleration was done in the early 20th

century, however some early transformations were known to Stirling, Euler, Maclaurin, and Seki

Kowa.

Given a sequence sn which converges to a limit, limn→∞ sn = s∗, sequence acceleration is

concerned with constructing a transformed sequence s′n which converges to the same limit but with a

faster rate of convergence. This can be restated as designing a transformation operator T , where

s′n = T (sn, sn−1, ..., s1). Formally, T accelerates the sequence if limn→∞
s′n−s

∗

sn−s∗ = 0. However, we are

often interested not in just whether T accelerates the sequence but in how fast the new convergence

of s′n to s∗ is: e.g. if the sequence is polynomially converging, |s′n − s∗| = O(1/np), we would like

p > 0 to be as high as possible, whereas it would be even better if it were geometrically converging,

|s′n−s∗| = O(1−p)n, where we would like 0 < p < 1 to be as large as possible. These are often called

logarithmic and linear convergence in cases where the studied quantity is not the big-O behavior of

|sn − s∗| but the limiting ratio of subsequent errors, limn→∞
|sn+1−s∗|
|sn−s∗| .

These methods can be used to accelerate numerical modeling when we have some parameter

which trades off computation or effort for fidelity: for example, the resolution of a finite element

mesh, or the number of steps or inverse step-size used to solve an ODE, or the number of iterations in

a Newton method or in an optimization procedure used to train a neural network. In such cases, we

are often interested in the limit of some quantity as we allow an unbounded amount of computation.

However, we only have a finite computational budget. Given this finite budget, we might hope that

by evaluating the quantity of interest at several different fidelities (s1...sn), we might be able to

extrapolate (s′n) to get a better estimate of the limit s∗ than using sn alone.

It is not possible to find an operator T which accelerates all sequences. Some assumptions must

be made about the original sequence, e.g. its original rate of convergence, and it is also useful to

know if the sequence is asymptotically alternating or monotonic.

Each sequence acceleration method has a class of sequences which it will accelerate. Two of the

most famous methods are Richardson extrapolation, for polynomially convergent sequences, and

Aitken’s delta-squared method, for geometrically convergent sequences.

Richardson extrapolation is designed for sequences which have an asymptotic expansion sn =

s∗ + C1/np +O(1/np+1). (Often, n is the inverse of the step-size of an ODE integrator). We choose

15

some factor τ > 1 and construct the extrapolation

R(n, τ) =
τpsn − sn/τ
τp − 1

We then have:

R(n, τ)(τn − 1) = τp(s∗ + C1/np +O(1/np+1))− (s∗ + C1/(n/τ)p +O(1/(n/τ)p+1))

=⇒ R(n, τ) = s∗ +O(1/np+1)

Thus, Richardson extrapolation eliminates the C1/np term in the asymptotic expansion of sn, giving

a higher order / faster converging error O(1/np+1.

Aitken’s delta-squared process is the transformation:

s′n =
snsn−2 − sn+1

sn + sn−2 − 2 ∗ sn−1
,

or equivalently,

s′n = sn −
(sn − sn−1)2

sn − 2sn−1 + sn−2

Aitken’s delta-squared process accelerates any geometrically (or linearly) convergent sequence. As

opposed to Richardson extrapolation, which eliminates the slowest polynomial error term, Aitken’s

delta-squared process can be thought of as eliminating the slowest geometric error term. If the series

has an asymptotic expansion sn = s∗+ an with 0 < a < 1, then the transformation is exact (s′n = s∗)

for all n. If the series has an asymptotic expansion sn = s∗ + an +O(bn) where 0 < b < a < 1, then

the transformed series has the asymptotic expansion s′n = s∗ +O(bn), i.e. eliminating the slower an

term.

Sequence acceleration methods are not today very commonly used by practitioners. However,

as well as being of historical and intellectual interest, they underpin a number of fast-converging

numerical methods for various applications, which can be derived by application of one of these

sequence acceleration methods to a "base" numerical method. For example, higher-order Runge-

Kutta methods for ODE integration can be derived from first-order Euler methods by repeatedly

applying Richardson extrapolation p − 1 times to achieve a method with convergence of order p.

(Runge-Kutta methods slightly predate Richardson’s introduction of his general extrapolation scheme,

but their motivation, method and analysis is an exact application of the extrapolation). Richardson

extrapolation is also used to derive Romberg’s method for integration by repeated application to the

16

trapezium rule. Aitken’s delta-squared process can be applied to a fixed point iteration to derive

Steffenson’s method, which has quadratic convergence (a la Newton’s method) while not requiring

derivatives. Historically, sequence acceleration methods have been applied to one-dimensional

sequences, and they can sometimes be lacking when applied naively to higher-dimensional problems

(e.g., Steffenson’s method runs into a "curse of dimensionality" with high-dimensional root-finding

problems). Much of the work on sequence acceleration in recent decades has been on extending or

developing methods for vector sequences (Osada, 1991).

1.2.3 Surrogate modeling

A natural approach to accelerating numerical modeling is to regress from a parameter of the design

or factor of variation of the numerical model on to the solution (or a quantity of interest associated

with the solution). This regression model provides a surrogate model for the base simulator. If the

surrogate model is accurate, it can be queried in place of the simulator to do analysis, optimization

or system ID – i.e., to answer questions about the system’s behavior in particular scenarios, the

optimality of designs, or the likelihood of system parameters given observations.

Any and every regression method can and has been used for such tasks – linear regression,

polynomial regression, kernel methods, neural networks, and more. For overviews of the broad

volume of work in this area, see Simpson et al. (2001); Martin and Simpson (2005); Queipo et al.

(2005); Koziel and Leifsson (2013); Willard et al. (2020). A distinction beyond the regressor is what

is predicted. One route is to directly predict the solution y to a numerical model f with parameters φ,

y = f(φ), using the learned regressor: y ≈ f̂(φ). This lets one use the surrogate to answer whatever

questions one wishes about the solution y. However, y might be indexed by a high-dimensional

vector of coefficients, and the learning task of predicting y from φ might be very hard. Worse, the

way in which y is represented (e.g., the size and meaning of the vector of coefficients) might change

depending on φ: e.g. if changing φ means a problem domain is larger or smaller, or has different

geometry. This will break many regression models. As such, it is sometimes more useful to choose an

alternate quantity to predict. If one is interested in the performance of a design, measured by an

objective function, then one can predict that scalar objective value directly from φ without modeling

the solution. This could be an easier learning problem if, for example, there are ranges of φ which

cause large, unstable variations of the solution but which all have a poor objective value.

Another choice is possible when simulation can be framed as a bi-level problem. In this scenario,

the solution to one or more "inner" problems z = g(γ) is used when solving the "outer" problem

17

y = f(φ), and where g is the solution procedure for the inner problem; γ are the parameters, and

z is the output of the inner problem. The inner problem(s) might have more regularity than the

outer problem – i.e., the mapping z = g(γ) may be easier to learn, or the outer problem solution

representation y may change significantly with φ while the inner solution representation z does not

– often this occurs when g may be called multiple times, varying with φ, to compute z1..l which

are used in computing y. If a surrogate model for g would significantly reduce the cost of one full

solution, training a surrogate z ≈ ĝ(γ) and using this as a component in the numerical model for y

may be an effective strategy. For example, Tompson et al. (2017) accelerate solving linear systems

which are the computational bottleneck for Eulerian simulation of the Navier-Stokes equations, while

in Beatson et al. (2020) we accelerate computing strain energies and strain energy gradients which

must be computed at each Newton iteration of solving a continuum mechanics PDE.

One other factor of interest for surrogate models is the training method. Naively applying

regression requires one to solve many "full" simulations to generate training data, and is thus only

useful if one would otherwise need to query the simulator many more times than the number of

training points required (which might be thousands). Instead training a model to predict the solution

of some sub-problem can allow training data to be generated much more cheaply (Tompson et al.,

2017; Beatson et al., 2020). Another avenue is to exploit the particular structure of the numerical

model to avoid the need to call the original simulator entirely, e.g. by learning a model y ≈ f̂(φ) by

minimizing some physically-motivated loss L(y, φ) which is also minimized by the solution to the

original numerical model f (Xue et al., 2020a).

1.2.4 Model order reduction

Rather than predicting the outcome of a simulation or of one of the subroutines in the simulation,

model order reduction methods learn a solution basis which allows for more efficient simulation. Most

of them rely on a projection operator to project the solution to a lower-dimensional latent space (or

return it from this to the full solution space). The laws governing the numerical model must then be

approximated by some laws in the latent space which give rise to a similar result.

The most well known method is the proper orthogonal decomposition (POD) (Chatterjee, 2000),

used to reduce the complexity of finite element simulations. POD involves performing principal

component analysis on some set of observations, called snapshots, of y, where the solution y to the

numerical model is a field of interest such as the velocity, density and pressure fields in a Navier-Stokes

simulation. We represent yi(x) =
∑K
k=1 αi,kηk(x), where ηk are the principal components, yi are

18

the solutions at different times or for different systems or designs, αi,k are the weights, and x

is a coordinate in the domain Ω. As with PCA in machine learning, the POD is often used for

understanding and visualizing data, which in the POD’s case arises from real-world experiments or

from simulation. However, the POD is also used as a tool to accelerate simulation, by projection

of the linear system governing the finite element model, A~y = b, into a lower dimensional space,

A′~α = b′.

Another dimension reduction method related to the work in this thesis is static condensation, or

Guyan reduction (Guyan, 1965). In finite element analysis it is often the case that only some degrees

of freedom (often those on the boundary) may be "loaded" (have values constrained via Dirichlet

boundary conditions or external forces imposed via Neumann boundary conditions) while the others

are "unloaded" and will always be governed by the same physical laws, regardless of the loading

scenario. Static condensation provides a way to develop an exact reduced-order model when the

only factor of variation is the load or boundary conditions imposed and when the underlying PDE is

linear. Using finite element analysis, we write the coefficients of the solution in the finite element

basis in terms of a linear system A~y = b. This can be partitioned in terms of the free and loaded

degrees of freedom as: Al,l Al,f

Af,l Af,f


~yl~yf

 =

b0


This linear system is rearranged to eliminate ~yf , and be written in terms of ~yl alone. This might be

useful when, for example, we are modeling a system formed of multiple components and for many

of the components we are not interested in the internal degrees of freedom – only in how those

components interact with others via the boundary.

The above methods are linear, and typically are restricted to linear or approximately linear

PDEs. Developing model order reduction methods for nonlinear PDEs is an exciting area for machine

learning (which has seen a lot of recent work on learning nonlinear schemes for compressing data to

latent representations with neural networks). We present some work along this line in the thesis.

Other interesting recent work in the same theme includes Bar-Sinai et al. (2019), Maulik et al. (2021),

and many more.

1.2.5 Randomized methods

A concept and approach somewhat orthogonal to the aforementinoed methods is to reduce computation

via randomization. Often, this involves using randomization as an important tool within e.g.

19

projection-based model order reduction methods. Random snapshot selection can, given a suitable

distribution over snapshots, quickly converge to a basis which can represent the solution with

smaller error. In other cases, this involves using randomization to speed up a core subroutine of

the numerical solution procedure. For example, randomized algorithms can be used to provide fast

approixmations to the matrix SVD or to the solution of linear systems (Drineas et al., 2006; Drineas

and Mahoney, 2016), by projecting the system with a random matrix (often of i.i.d. Gaussian vectors)

to a lower-dimensional subspace.

Possibly the most well-known use of randomness to accelerate computation is the use of stochastic

gradient descent in machine learning (Robbins and Monro, 1951; Bottou, 2010). Given a large dataset,

it is computationally prohibitive to estimate the gradient of a model’s loss averaged over all examples

in the dataset. However, if we randomly choose a batch of examples on which to compute and

average the loss, the gradient of this loss is a random but unbiased estimator of the full gradient, with

variance depending on the size of the batch. Using this gradient estimator for first-order optimization

can lead to much faster optimization (in terms of reduction of the loss as a function of computational

effort) than the full-batch gradient, especially as the size of a dataset increases, and particularly

as most datasets have some covariance between per-example gradients (i.e. many examples in the

dataset may have similar loss and gradient functions). In (Beatson and Adams, 2019), included

in this thesis, we show how to build a cheap stochastic gradient estimator for objectives involving

discretization-based numerical models.

1.3 Research contributions in this thesis

In this thesis we present some recently developed methods for accelerating numerical modeling,

simulation, and design. This work has been been the fruit of collaboration with a number of wonderful

colleagues, without whom it the work would not have been possible, and without whom I would have

learned far less and had infinitely less fun. Code is available at https://github.com/PrincetonLIPS.

In Chapter 2 we present composable energy surrogates (Beatson et al., 2020); a method which

leverages modular structure to learn component-level surrogates for modular PDEs; specifically those

governing mechanical meta-material deformation. These mix attributes of surrogate modeling and

model order reduction, and allow learning of fast approximate solvers while only using supervision

from data collected by solving cheap PDEs governing component subregions, rather than requiring

data collected by solving the PDEs governing the full system we wish to solve in deployment. This

work was presented at NeurIPS 2020 and was carried out in collaboration with Jordan T. Ash,

20

Geoffrey Roeder, Tianju Xue, and Ryan P. Adams.

In Chapter 3 we present randomized telescoping gradient estimators (Beatson and Adams,

2019), which are randomized gradient estimators for objectives which are the limit of a sequence of

approximations (as when performing optimization or design with numerical models). By randomizing

the fidelity of the approximation, we obtain unbiased gradient estimators which trade computation

for variance. We provide recipes for choosing within the family of such estimators and demonstrate

their effectiveness in system identification and machine learning hyperparameter optimization. This

work was presented at ICML 2019 and was carried out in collaboration with Ryan P. Adams.

In Chapter 3, we present meta-learned implicit PDE solvers (Meta-PDE), which are neural

networks representing PDE solution fields, which have initializations meta-learned across a family or

distribution of PDEs such that they converge quickly to represent the solution of a given PDE in a

few gradient steps of minimizing that PDE’s variational energy. This provides a surrogate modeling

method which is agnostic to geometry and is mesh-free: while many other surrogate modeling

techniques require a geometry and mesh to be fixed across the family of problems they amortize, this

method only requires the user to supply a sampler for the variational energy of (or a sampler for the

geometric domain of) each problem within the family to be amortized – usually a much easier task.

This work is in preparation for publication, and has been carried out in collaboration with Sunny T

Qin, Nick McGreivy, and Ryan P. Adams.

Beyond the work presented in the thesis, these themes and ideas have been both cultivated by

and continued in papers led by other phenomenal researchers with whom I’ve had the pleasure of

collaborating. "SUMO: Unbiased Estimation of Log Marginal Probability for Latent Variable Models"

(Luo et al., 2019a), led by Yucen Luo and Ricky Chen, demonstrates an important application of

randomized telescope-like estimators to variational inference. "Randomized Automatic Differentiation"

(Oktay et al., 2021), led by Deniz Oktay, uses similar philosophy to randomized telescopes to develop

a stochastic gradient method for a regime beyond the usual one of a separable dataset, but in this

case for the general setting of linearizable computational graphs. In (Ravi and Beatson, 2018), led by

Sachin Ravi, Sachin and I realized the potential of meta-learning as a tool for amortizing optimization

and computation (rather than "just" being a tool for few-shot generalization), which is a crucial

principle for Meta-PDE; our time thinking hard about bi-level optimization also helped ferment

the other two chapters. Finally, "Amortized Finite Element Analysis for Fast PDE-Constrained

Optimization" (Xue et al., 2020a), led by Tianju Xue, laid the foundation for the Meta-PDE project

by establishing the principle of using a neural network to minimize a variational energy rather than

a supervised loss, avoiding expensive training data generation for surrogate modeling.

21

Chapter 2

Learning composable energy

surrogates for PDE order reduction

2.1 Abstract

Meta-materials are an important emerging class of engineered materials in which complex macro-

scopic behaviour–whether electromagnetic, thermal, or mechanical–arises from modular substructure.

Simulation and optimization of these materials are computationally challenging, as rich substructures

necessitate high-fidelity finite element meshes to solve the governing PDEs. To address this, we lever-

age parametric modular structure to learn component-level surrogates, enabling cheaper high-fidelity

simulation. We use a neural network to model the stored potential energy in a component given

boundary conditions. This yields a structured prediction task: macroscopic behavior is determined

by the minimizer of the system’s total potential energy, which can be approximated by composing

these surrogate models. Composable energy surrogates thus permit simulation in the reduced basis

of component boundaries. Costly ground-truth simulation of the full structure is avoided, as training

data are generated by performing finite element analysis of individual components. Using dataset

aggregation to choose training data allows us to learn energy surrogates which produce accurate

macroscopic behavior when composed, accelerating simulation of parametric meta-materials.

2.2 Introduction

Many physical, biological, and mathematical systems can be modeled by partial differential equations

(PDEs). Analytic solutions are rarely available for PDEs of practical importance; thus, computational

22

methods to approximate PDE solutions are critical for many problems in science and engineering.

Finite element analysis (FEA) is one of the most widely used techniques for solving PDEs on spatial

domains; the continuous problem is discretized and replaced by basis functions on a mesh.

The accuracy of FEA and related methods requires a sufficiently fine discrete approximation,

i.e., finite element mesh. Complicated domains can require fine meshes that make it prohibitively

expensive to solve the PDE. This problem is compounded for parameter identification or design

optimization, where the PDE must be repeatedly solved in the inner loop of a bi-level optimization

problem.

An important domain where this challenge is particularly relevant is in modeling mechanical

meta-materials. Meta-materials are solids in which microstructure leads to rich spaces of macroscopic

behavior, which can achieve electromagnetic and/or mechanical properties that are impossible with

homogenous materials and traditional design approaches (Poddubny et al., 2013; Cai and Shalaev,

2010; Bertoldi et al., 2017). We focus on the cellular mechanical meta-materials proposed by Overvelde

and Bertoldi (2014), which promise new high-performance materials for soft robotics and other

domains (see Sec 3). Simulation of these meta-materials is challenging due to the need to accurately

capture microstructure and small-scale nonlinear elastic behavior. Finite element methods have

limited ability to scale to these problems, and automated meta-material design demands accurate,

efficient approximate solutions to the associated PDE.

We develop a framework which exploits spatially local structure in large-scale optimization

problems—here the minimization of energy as a function of meta-material displacements. Only a

small subset of material displacements are of interest, so we “collapse out” the remainder using a

learned surrogate. Given a component with substructure defined by local parameters, the surrogate

produces an accurate proxy energy in terms of the displacement of the component boundary. A

single surrogate can be trained then used to predict energy in a larger solid by summing energies

of sub-components. This allows solving the PDE in a reduced basis of component boundaries by

minimizing this sum.

Other methods exist for reducing the solution cost of large PDEs. One such is the boundary

element method (Aliabadi, 2002), which as with our method "collapses out" the internal degrees of

freedom in a PDE leaving a problem in terms of the solution on the boundary. Unlike our method,

this is performed analytically and is typically only valid for linear PDEs. Our method might be seen

as a learned boundary element method for a particular parametric class of nonlinear PDEs. Another

related line of work is homogenization. Whether micro-scale effects are modeled with fine-resolution

FEM (Schröder, 2014) or a neural network (Xue et al., 2020b), homogenized models require a PDE

23

formed of homogenous representative volume elements (RVEs), and are accurate only as the ratio

between the size of the RVE and the size of the macro-scale problem tends to zero.

Some approaches amortize PDE solving more directly, using neural networks to map from PDE

parameters to solutions (Zhu et al., 2019; Nie et al., 2020) or constructing reduced bases via solving

eigenvalue problems or interpolating between snapshots (Berkooz et al., 1993; Chatterjee, 2000).

These approaches typically require solving full systems to produce training data. Our framework

uses the modular decomposition of energy to train surrogate models on data generated by querying

the finite element "expert" on the energy in small components, avoiding performing FEA on large

systems which are expensive to solve.

2.3 Learning to optimize in collapsed bases

Solving PDEs like those that govern meta-material behavior involves finding a solution u which

minimizes an energy E(u) subject to constraints. For mechanical meta-materials, E(u) is the stored

elastic potential energy in the material. We propose a framework for amortizing high-dimensional

optimization problems where the objective has special conditional independence structure, such as

that found in solving these PDEs. Consider the general problem of solving

u∗ = arg minE(u) . (2.1)

u may be a vector in Rd or may belong to a richer space of functions. Often we are interested in a

subset of the vector u∗, or the values the function u∗ takes on a small subdomain. To reflect this,

view the solution space as the Cartesian product of a space of primary interest and a “nuisance”

space. Denote the solutions as concatenations u = [x, y] where y is the object of interest, and x is

the object whose value is not of interest to an application. x is roughly similar to auxiliary variables

that appear in probabilistic models, but are marginalized away or discarded from the simulation. We

use this decomposition to frame Eq. 2.1 as a bi-level optimization problem:

y∗ = arg min
y

min
x
E(x, y) . (2.2)

Consider the collapsed objective, Ẽ(y) = minxE(x, y). If Ẽ(y) can be queried without representing x,

we may perform collapsed optimization in the reduced basis of y, avoiding optimization in the larger

basis of u (Eq. 2.1), or performing bi-level optimization (Eq. 2.2). However, Ẽ is not usually

available in closed form. We consider approximating Ẽ(y) via supervised learning. In general, this

would require solving Ẽ = minxE(x, y) for each example y we wish to include in our training set.

24

This is the procedure used by many surrogate-based optimization techniques (Queipo et al., 2005;

Forrester and Keane, 2009; Shahriari et al., 2015). The high cost of gathering each training example

makes this prohibitive when x is high dimensional (and minimization is difficult) or when y is high

dimensional (and supervised learning requires many examples). Compositional structure in E may

assist us with approximating Ẽ. Many objectives may be represented as a sum:

E(x, y) =
∑
i

Ei(xi, y) . (2.3)

Given this decomposition, xi and xj are conditionally independent given y; i.e., if we constrain xi

and y to take some values and perform minimization, the resulting xj or Ej(xj , y) do not vary with

the value chosen for xi. This follows from the partial derivative structure ∂Ei
∂xj

= 0 for i 6= j.

We propose to learn a collapsed objective Ẽ, which exploits conditional independence structure

by representing Ẽ(y) =
∑
i Ẽi(y). This representation as a sum allows us to use minxi Ei(xi, y) as

targets for supervision, which may be found more cheaply than performing a full minimization. The

learned approximations to Ẽi may be composed to form an energy function with larger domain.

The language we use to describe this decomposition is chosen to reflect the conceptual similarity

of our framework to collapsed variational inference (Teh et al., 2007) and collapsed Gibbs sampling

(Geman and Geman, 1984; Liu, 1994), in which conditional independence allows optimization or

sampling to proceed in a collapsed space where nuisance random variables are marginalized out of the

relevant densities. We exploit similar structure to these techniques, albeit in a deterministic setting.

Other approaches to accelerating Eq. 2.2 which do not exploit (2.3) or directly model Ẽ(y) include

amortizing the inner optimization by predicting x∗(y) = arg minxE(x, y) (Kingma and Welling, 2014;

Brock et al., 2017), or truncation of the inner loop, either deterministic (Wu et al., 2018; Shaban

et al., 2018) or randomized to reduce bias (Tallec and Ollivier, 2017; Beatson and Adams, 2019).

The optimization procedure we accelerate is the simulation of mechanical materials, where the

objective corresponds to a physically meaningful energy, and the conditional independence structure

arises from spatial decomposition of the domain and spatial locality of the energy density. We believe

this spatial decomposition of domain and energy could be generalized to learn collapsed energies for

solving many other PDEs in reduced bases. This collapsed-basis approach may also be applicable to

other bi-level optimization problems where the objective decomposes as a sum of local terms.

2.4 Mechanical meta-materials

Meta-materials are engineered materials with microstructure which results in macroscopic behav-

ior not found in nature. The most popularly known are electromagnetic meta-materials such

25

as negative refraction index solids and “invisibility cloaks” which conceal an object through en-

gineered distortion of electromagnetic fields (Poddubny et al., 2013; Cai and Shalaev, 2010).

However, they also hold great promise in other domains: mechanical meta-materials use sub-

structure to achieve unusual macroscopic behavior such as negative Poisson’s ratio and nonlin-

ear elastic responses; pores and lattices undergo reversible collapse under large deformation, en-

abling the engineering of complex physical affordances in soft robotics (Bertoldi et al., 2017).

Figure 2.1: Cellular meta-materials. Top:
at rest. Bottom: under compression, ex-
hibiting periodic instability varying with
pore shape. The left two structures exhibit
negative Poisson’s ratio, which does not oc-
cur in nature.

Meta-materials hold promise for modern engineering de-

sign but are challenging to simulate as the microstructure

necessitates a very fine finite element mesh, and as the non-

linear response makes them difficult to approximate with a

macroscopic material model. Most work on meta-materials

has relied on engineers and scientists to hand-design ma-

terials, rather than numerically optimizing substructure

to maximize some objective (Ion et al., 2016).

We focus on building surrogate models for the two-dimensional cellular solids investigated in

Overvelde and Bertoldi (2014). These meta-materials consist of square “cells” of elastomer, each of

which has a pore in its center. The pore shapes are defined by parameters α and β which characterize

the pore shape in polar coordinates: r(θ) = r0[1 + α cos(4θ) + β cos(8θ)]. The parameter r0 is chosen

such that the pore covers half the cell’s volume: r0 = L0/
√
π(2+α2+β2. Constraints are placed on α

and β to enforce a minimum material thicknesses and ensure that minθ r(θ) > 0 as in Overvelde and

Bertoldi (2014).

These pore shapes give rise to complicated nonlinear elastic behavior, including negative Poisson’s

ratio and double energy wells (i.e., stored elastic energy which does not increase monotonically

with strain). Realizations of this class of materials are shown under axial strain in Figure 2.1. The

continuum mechanics behavior of these elastomer meta-materials can be captured by a neo-Hookean

energy model (Ogden, 1997). Let X ∈ Rd, where d ≤ 3 in physical problems, be a point in the

resting undeformed material reference configuration, and u(X) be the displacement of this point

from reference configuration. The stored energy in a neo-Hookean solid is E =
∫

Ω
W (u)dX , where

W (u) is a scalar energy density over Ω, defined for bulk and shear moduli µ and κ as:

W =
µ

2

(
(detF)−2/dtr(FFT)− d

)
+
κ

2
(detF − 1)2 (2.4)

where F is the deformation gradient, F (X) = ∂u(X)
∂X + I . Pores influence the structure of these

26

equations by changing the material domain Ω. These solids can be simulated by solving:

Div S = 0 X ∈ Ω (2.5)

G(u) = 0 X ∈ ∂Ω (2.6)

where S = ∂W
∂F is known as the first Piola-Kirchoff stress, and where Eq. 2.6 defines a boundary

condition. E.g. G(u) = u− ub is a Dirichlet boundary condition; in our case, an externally imposed

displacement. G(u) = ∂W
∂u − fb corresponds to an external force exerting a pressure on the boundary.

To simulate these meta-materials, Eq. 2.5 is typically solved via finite element analysis. Solving

with large meta-material structures is computationally challenging due to fine mesh needed to capture

pore geometry and due to the nonlinear response induced by buckling under large displacements.

Solving the PDE in Eq. 2.5 corresponds to finding the u which minimizes the stored energy in the

material subject to boundary conditions. That is, Eqs. 2.5 and 2.6 may be equivalently be expressed

in an energy minimization form:

u = arg min

∫
X∈Ω

W (u)dX subject to G(u) = 0 ∈ ∂Ω (2.7)

We use this form to learn surrogates which solve the PDE in a reduced basis of cell boundaries.

2.5 Composable energy surrogates

Figure 2.2: Meta-material do-
main Ω, partitioned into Ω1

to Ω16. Black lines show B.
Blue points are control points
of splines used to represent ũ.

We apply the idea of learning collapsed objectives to the problem of

simulating two-dimensional cellular mechanical meta-material behavior.

The material response is determined by the displacement field u which

minimizes the energy
∫

Ω
WdX, subject to boundary conditions. We

divide Ω into regular square subregions Ωi, which we choose to be cells

with 2× 2 arrays of pores, and denote the intersection of the subregion

boundaries with B = ∂Ω1 ∪ ∂Ω2∪ . . . We let ui be the restriction of u

to Ωi. We take the quantity of interest to be uB, the restriction of u to B, and the nuisance variables

to be the restriction of u to Ω\ B. The partitioning of Ω is shown in Figure 2.2.

The total energy decomposes as a sum over regions:

E(u) =

∫
X∈Ω

W (u)dX =
∑
i

∫
X∈Ωi

W (ui)dX :=
∑
i

E(ui)

Let ũi be the restriction of u to ∂Ωi. Note ∂Ωi = B ∩ Ωi. Let the collapsed component energy be:

27

Ẽi(ũi) := min
ui

E(ui) subject to ui(X) = ũi(X) X ∈ ∂Ωi .

This quantity is the lowest energy achievable by displacements of the interior of the cell Ωi, given

the boundary conditions specified by ũi on ∂Ωi. Ẽi(ũi) depends on the shape of the region Ωi, i.e.,

on the geometry of the pores. Rather than each possible pore shape having a unique collapsed

energy function, we introduce the pore shape parameter ξ = (α, β) as an argument, replacing Ẽi(ũi)

with Ẽ(ũi, ξi). The macroscopic behavior of the material is fully determined by this single collapsed

energy function Ẽ(ũi, ξi). Given the true collapsed energy functions, we could accurately simulate

material behavior in the reduced basis of the boundaries between each component Ωi.1

We learn to approximate this collapsed energy function from data. This function may be duplicated

and composed to simulate the material in the reduced basis B, an approach we term composable

energy surrogates (CESs). A single CES is trained to approximate the function Ẽ by fitting to

supervised data (ũi, ξi, Ẽ(ũi, ξi)), where ξi and ũi may be drawn from any distribution corresponding

to anticipated pore shapes and displacements, and the targets Ẽ(ũi, ξi) are generated by solving the

PDE in a small region Ωi with geometry defined by ξi and with ũi imposed as a boundary condition.

This CES may be used to approximate the energy in multiple spatial locations: it may be "composed"

to approximate the total energy of larger cellular meta-materials.

To efficiently solve for a reduced-basis displacement uB on B, we minimize the composed surrogate

energy, Ê(uB) =
∑
i Ê(ũi, ξi), where Ê(ũi, ξi) is the model’s prediction of Ẽ(ũi, ξi), the collapsed

energy of one component. Training CES which produce accurate reduced-basis solutions may be

thought of as a highly-structured imitation learning problem. A sufficient condition for finding the

correct minimum is for the "action" taken by the surrogate—the derivative of the energy approxima-

tion ∇uBÊ—to match the "action" taken by an expert—the total derivative, ∇uB minu/∈B E(u)—along

the optimization trajectory. If so, the surrogate will follow the trajectory of a valid, if non-standard,

bilevel gradient-based procedure for minimizing the energy, corresponding to (2.2). Given an imperfect

surrogate, the error in the final solution will depend on the error in approximating ∇uB minu/∈B E(u)

with ∇uBÊ along the trajectory. This observation informs our model, training, and data collection

procedures, described in the following sections.
1So long as forces and constraints are only applied on B.

28

2.6 Model architecture

Our CESs take the form of a neural architecture, designed to respect known properties of the true

potential energy and to maximize usefulness as surrogate energy to be minimized via a gradient-based

procedure. The effects of these design choices are quantified via an ablation study in the appendix.

Reduced-basis parameterization. We use one cubic spline for each horizontal and vertical

displacement function along each face of the square, with evenly spaced control points and “not-a-knot”

boundary conditions. Our vector representation of ũ is u ∈ R2n, formed from the horizontal and

the vertical displacement values at each of the n control points. Splines on adjacent faces share a

control point at the corner. Using N control points to parameterize the function along each face

requires n = 4 ∗ (N − 1) control points to parameterize a 1d function around a single cell. For all

experiments we use N = 10 control points along each edge, resulting in u ∈ R72.

Model structure and loss. Our model structure and losses are shown below. In the energy

model Ê, fφ is a neural network with parameters φ and R removes rigid-body rotation and translation.

Our loss function is L = L0 + L1 + L2 , which is a weighted sum of losses on the 0th, 1st and 2nd

energy derivatives. ∇u and ∇2
u are the gradient and Hessian of the surrogate energy Ê or the

ground-truth energy Ẽ with respect to u, and v is sampled independently for each training example

in a batch.

Ê(u, ξ) = ||R(u)||22︸ ︷︷ ︸
Linear elastic component

exp{fφ
(
R(u), ξ

)
}︸ ︷︷ ︸

Stiffness

, L0 =

∥∥∥∥fφ(R(u), ξ
)
− log

Ẽ(ũ)

||R(u)||22

∥∥∥∥2

2︸ ︷︷ ︸
Log-stiffness loss

,

L1 = 1− 〈∇uÊ,∇uẼ〉
||∇uÊ||||∇uẼ||︸ ︷︷ ︸

Cosine distance between gradients

, L2 = 1− 〈∇2
uÊv,∇2

uẼv〉
||∇2

uÊv||||∇2
uẼv||︸ ︷︷ ︸

Cosine distance between
Hessian-vector products

v ∼ N (0, I2n)︸ ︷︷ ︸
Projection vector for Hessian

.

Invariance to rigid body transforms. The true elastic energy is invariant to rigid body transforms

of a solid. This invariance may be hard to learn exactly from data. We use a module R which applies

Procrustes analysis, i.e. finds and applies the rigid body transform which minimizes the Euclidean

distance to a reference (we use the rest configuration). This is differentiable and closed-form.

Encoding a linear elastic bias. The energy is approximated well by a linear elastic model

when at rest: Ẽi(ũi) ≈ R(ui)
TAiR(ui) for a stiffness matrix Ai depending on ξi. We scale our net’s

outputs by ||R(ui)||22 so that it needs only capture a “scalar stiffness” E/||R(ui)||22 accounting for the

geometry of Ai given ξi and for deviation from the linear elastic model.

Parameterizing the log-stiffness. The energy of a component Ẽi(u0,i) is nonnegative, and

the ratio of energy to a linear elastic approximation varies over many orders of magnitude. We

29

parameterize the log of the scalar stiffness with our neural network fφ rather than the stiffness.

Log-stiffness loss. We wish to find neural network parameters φ which lead to accurate energy

predictions for many different orders of magnitude of energy and displacement. Minimizing the `2

loss between predicted and true energies penalizes errors in predicting large energies more than

proportional errors predicting small energies. Instead, we take the `2 loss between the predicted

log-stiffness fφ(R(u), ξ) and the effective ground-truth log-stiffness, log Ẽ(ũ)/||R(u)||22.

Sobolev training with gradients and Hessian-vector products. "Sobolev training" on

derivatives of a target function can aid generalization (Czarnecki et al., 2017). Accuracy of CES’

derivatives is crucial, so we Sobolev train on energy gradients and Hessians. We obtain ground-truth

gradients cheaply via the adjoint method (Lions, 1971). Given a solution ui to the PDE in Ωi with

boundary conditions ũi, the gradient ∇ũiẼi(ũi) requires solving a linear system with the same cost as

one Newton step of solving the PDE (Mitusch et al., 2019). The spline is a linear mapM from ui to

ũi in the finite element basis, so ∇uiẼi(ũi) =MT∇ũiẼi(ũi). The surrogate gradient, ∇uiÊφ(ui, ξi),

is computed with one backward pass. Given solution and gradient, we compute ∇2
uẼ with one

linear solve per entry of u. As u ∈ R72 and many more than 72 Newton steps are usually needed

to solve the PDE, this does not dominate the cost of data collection. Computing the full Hessian

of the surrogate energy, ∇2
uiÊφ(ui, ξi), would require 2n backward passes. Instead we train on

Hessian-vector products, which require only one additional backward pass.

Cosine distance loss for Sobolev training. Energy gradient and Hessian values vary over

many orders of magnitude, with higher energies leading to larger derivatives. We wish our model to

be accurate across a range of operating conditions. Rather than placing an `2 loss on the gradient

and Hessian-vector products as in Czarnecki et al. (2017), we minimize the cosine distance between

ground truth and approximate gradients and Hessians, which is naturally bounded in [0, 1].

2.7 Data and training

Data collection has two phases. First, we collect training and validation datasets using Hamiltonian

Monte Carlo (Duane et al., 1987) to preferentially sample displacements which correspond to lower

energy modes. Next, we perform dataset aggregation (Ross et al., 2011) to augment the dataset so

that the surrogate will be accurate on states encountered when deployed. We provide details of the

hardware and the software packages used in the appendix.

Solving the PDE. To collect training data, we use the reduced-basis displacement ũ correspond-

ing to a vector of spline coefficients u as the boundary condition around a domain Ω representing a

30

2×2-pore subdomain, and solve the PDE using a load-stepped relaxed Newton’s method (Sheng et al.,

2002). The relaxed Newton’s method takes the iteration ~u← ~u− λ(∂
2E
∂~u2)−1 ∂E

∂~u . Here, 0 < λ < 1 is

the relaxation parameter (analogous to a step size), and ~u is the vector of coefficients defining u

in the FEA basis. Newton’s method requires an initial guess which is sufficiently close to the true

solution (Kythe et al., 2004). Smaller relaxation parameters yield a greater radius of convergence

but necessitate more steps to solve the PDE.

The radius of convergence can also be aided by load-stepping: solving the PDE for a sequence of

boundary conditions, annealing from an initial boundary condition for which we have a good initial

guess (e.g., the rest configuration) to a final boundary condition ũ, using the solution to the previous

problem as an initial guess for Newton’s method for the next problem. We find that combining load

stepping with a relaxed Newton’s method is more efficient than using either alone. Except where

specified, we linearly anneal from rest to ũ over 10 load steps and use a relaxation parameter λ = 0.1.

Initial dataset collection. We wish to train on varied displacement boundary conditions. As

solution procedures minimize energy, lower energy modes will be encountered in the solve. We

choose a distribution with density the product of a Boltzmann density exp{Ẽ}/Z and a Gaussian

density N (x̄(u); µ̄,Σ), where x̄(u) ∈ R2×2 is a macroscopic strain tensor2 corresponding to u, µ̄ is a

target strain drawn from an i.i.d. Gaussian with standard deviation 0.15, and Σ is set to (µ̄ ◦ µ̄)−1.

Given a solution to the PDE, the log-density and its displacement may be cheaply computed

(the latter via the adjoint method). Making use of these gradients, we sample data points with

Hamiltonian Monte Carlo (HMC). After sampling a data point, we compute the corresponding

Hessian and save the tuple (u, ξ, Ẽ,∇uẼ,∇2
uẼ) as a data point.

We initialize each HMC data collector by sampling a macroscopic displacement target and a

random pore shape. We do not use load-stepping, instead using the solution for the u used in

the previous iteration of HMC’s leapfrog integration as an initial guess for solving the PDE. We

randomize HMC hyperparameters for each collector to attempt to minimize the impact of specific

settings: see the appendix for exact ranges. We sample 55000 training examples and 5000 validation

examples altogether. We visualize displacements drawn from this distribution in the appendix.

Data aggregation. Surrogate deployment defies standard i.i.d. assumptions in supervised

learning. The deployed surrogate encounters states determined by the energy it defines and by

boundary conditions on the composed body. Given a dataset such as that we sampled with HMC,

the distribution over states encountered by the surrogate in deployment may be very different to the

distribution of states in this dataset.
2See the appendix for approximating x̄ from u.

31

This problem—that training an agent to predict expert actions can lead to trajectories dissimilar

to those on which it was trained—is a central concern in the imitation learning literature. A number

of solutions exist (Schroecker and Isbell, 2017). One is dataset aggregation, or DAgger (Ross et al.,

2011), which reduces imitation learning or structured prediction to online learning.

In DAgger, a policy is deployed and trajectories are collected. The expert is queried on the

states in these trajectories. The state-action pairs are appended to the dataset, and the policy is

retrained on this dataset. This process of deployment, querying, appending data, and retraining, is

iterated. The distribution of states encountered in deployment and the distribution of states in the

dataset converge. Under appropriate assumptions, the instantaneous regret of the learned policy

vanishes with the number of iterations, i.e., the learned policy matches the expert policy on its own

trajectories.

Ross et al. (2011) present DAgger as a method for discrete action spaces. We have a continuous

action space: the gradient of the energy in a cell. We do not investigate generalizing DAgger’s

regret guarantees to continuous action spaces, but the intuition holds that we wish our model to

“imitate” the finite element “expert” on the optimization trajectories the model produces.

We initialize our training data with HMC as described earlier. We then apply DAgger by

iterating: (i) training the surrogate; (ii) composing surrogates and finding displacements which

minimize the composed energy; (iii) sampling displacements along the surrogate’s solution path,

querying the ground-truth energy and energy derivatives using FEA, and adding these new data

points to the dataset. We visualize displacements generated by DAgger in the appendix.

2.8 Software and hardware

We implement the finite element models in dolfin (Logg and Wells, 2010; Logg et al., 2012c), a

Python front end to FEniCS (Alnæs et al., 2015a; Logg et al., 2012b). To differentiate through

finite element solutions, we use the package dolfin-adjoint (Mitusch et al., 2019). We implement

surrogate models in PyTorch (Paszke et al., 2019).

We use Ray (Moritz et al., 2018) to run distributed workloads on Amazon EC2. The initial

dataset is collected using 80 M4.xlarge CPU spot workers. While training the surrogate, we use a

GPU P3.large driver node to train the model, and 80 M4.xlarge CPU spot worker nodes performing

DAgger in parallel. These workers receive updated surrogate model parameters, compose and

deploy the surrogate, sample displacements along the solution path, query the finite element model

for energy and derivatives, and return data to the driver node. Initial dataset collection and model

32

training with DAgger each take about one day in wall-clock time.

2.9 Empirical evaluation

We demonstrate the ability of Composable Energy Surrogates (CES) to efficiently produce accurate

solutions. We consider the systems constructed in Overvelde and Bertoldi (2014): structures with

an 8 × 8 array of pores, corresponding to a 4 × 4 assembly of our surrogates, each representing a

2× 2-pore component. We sample pore shapes from a uniform distribution over valid shapes defined

in Overvelde and Bertoldi (2014). For DAgger, we sample vertical axial strain magnitudes from

U(0., 0.3), and apply compression with probability 0.8 (as compressive displacements involve more

interesting pore collapse) or tension with probability 0.2.

We compare our composed surrogates to finite element analysis with different-fidelity meshes

under axial compression and tension with a macroscopic displacement of 0.125L0, where L0 is the

original length of the solid. See the appendix for details of the finite element meshes. We use seven

pore shapes: ξ = (0, 0), corresponding to circular pores, and six ξ sampled from a uniform distribution

over pore parameters defined as valid in Overvelde and Bertoldi (2014).

Figure 2.3: Error in solution and in estimated energy vs solution wall clock time for the composed energy
surrogate and for finite element models with varying mesh sizes. Top: axial compression. Bottom: axial
tension.

We use PyTorch’s L-BFGS routine to minimize the composed surrogate energy, with step

size 0.25 and default criteria for checking convergence. We attempt to solve each finite element

model with FEniCS’ Newton method with [1, 2, 5, 10, 20] load steps and relaxation parameters

[0.9, 0.7, 0.4, 0.1, 0.05], and record time taken for the fastest convergent solve. Under compression

these solids exhibit nonlinear behavior, and only more conservative solves converge. Under tension

33

they behave closer to a linear elastic model, and Newton’s method converges quickly. Measurements

are taken on an AWS M4.xlarge EC2 CPU instance. Using a GPU could provide further acceleration.

Figure 2.4: Meta-materials under
compression (top) and tension (bot-
tom), with solution found via CES
shown in red at spline control points.

We measure error in the solution and in the macroscopic

energy. The former is ||û− u∗||22, where û and u∗ are the approx-

imation and ground-truth evaluated at spline control points. The

latter is the relative error |Ê(û)−E∗(u∗)|/E∗(u∗), where Ê(û) is the

approximated energy of the approximate solution, and E∗(u∗)

is the ground-truth energy of the ground-truth solution. As the

energy function determines behavior, accuracy of energy is a

potential indicator of ability to generalize to larger structures.

The highest-fidelity finite element model is taken as ground truth,

and thus has an error of zero on both metrics. Multiple minimizers exist as energy is preserved

under rigid body transforms, so before comparing a solution û to the ground-truth u∗ we check each

vertical and horizontal flip and use the flip which minimizes the solution error.

Figure 2.3 shows our evaluation. Composed energy surrogates are more efficient than high-fidelity

FEA simulations yet more accurate than low-fidelity simulations. CES produces solutions with

equivalent `2 error to FEA solutions which use an order of magnitude more variables or computation

time, and with an order of magnitude less `2 error than FEM solutions requiring the same computation.

This gap increases to several orders of magnitude when we consider percentage error in the predicted

strain energy. We visualize the ground-truth and the CES approximation in Figure 2.4. See the

appendix for visualization of FEM and CES solutions for the remaining structures.

2.10 Limitations and opportunities

Use of DAgger. We use DAgger to help CES match the ground-truth on the states encountered

during the solution trajectory. This requires one to specify in advance the conditions under which the

surrogate will be deployed. Investigating CES’ ability to generalize to novel deployment conditions–

and designing surrogates which can do so effectively–is an important direction for future work.

Error estimation, refinement, and guarantees. Finite element methods permit a straight-

forward way to estimate the error (compare to the solution in a more-refined basis) and control it

(via refinement). CES currently lacks these properties.

Finite element baseline. There is an immense body of work on finite element methods and

34

iterative solvers. We provide a representative baseline, but our work should not be taken as a

comparison with the “state-of-the-art”. We show that composable machine-learned energy surrogates

enjoy advantages over a reasonable baseline, and hold promise for scalable amortization of solving

modular PDEs.

Hyperparameters. Both our method and the finite element baseline rely on a multitude of

hyperparameters: the size of the spline reduced basis; the size and learning rate of the neural network;

the size and degree of the finite element approximation; and the specific variant of Newton’s method to

solve the finite element model. We do not attempt a formal, exhaustive search over these parameters.

Known structure. We leave much fruit on the vine in terms of engineering structure known

from the into our surrogate. For example, one could also use a more expressive normalizer than

||u||22, e.g. the energy predicted by a coarse-grained linear elastic model, or exploit spatially local

correlation, e.g. by using a 1-d convolutional network around the boundary of the cell.

2.11 Conclusion

We present a framework for collapsing optimization problems with local bilevel structure by learning

composable energy surrogates. This framework is applied to amortizing the solution of PDEs

corresponding to mechanical meta-material behavior. Learned composable energy surrogates are

more efficient than high-fidelity FEA yet more accurate than low-fidelity FEA, occupying a new

point on the Pareto frontier. We believe that these surrogates could accelerate meta-material design,

as well as design and identification of other systems described by PDEs with parametric modular

structure.

35

Chapter 3

Efficient optimization of loops and

limits with randomized telescoping

sums

We consider optimization problems in which the objective requires an inner loop with many steps or is

the limit of a sequence of increasingly costly approximations. Meta-learning, training recurrent neural

networks, and optimization of the solutions to differential equations are all examples of optimization

problems with this character. In such problems, it can be expensive to compute the objective function

value and its gradient, but truncating the loop or using less accurate approximations can induce biases

that damage the overall solution. We propose randomized telescope (RT) gradient estimators, which

represent the objective as the sum of a telescoping series and sample linear combinations of terms

to provide cheap unbiased gradient estimates. We identify conditions under which RT estimators

achieve optimization convergence rates independent of the length of the loop or the required accuracy

of the approximation. We also derive a method for tuning RT estimators online to maximize a

lower bound on the expected decrease in loss per unit of computation. We evaluate our adaptive

RT estimators on a range of applications including meta-optimization of learning rates, variational

inference of ODE parameters, and training an LSTM to model long sequences.

36

3.1 Introduction

Many important optimization problems consist of objective functions that can only be computed

iteratively or as the limit of an approximation. Machine learning and scientific computing provide

many important examples. In meta-learning, evaluation of the objective typically requires the training

of a model, a case of bi-level optimization. When training a model on sequential data or to make

decisions over time, each learning step requires looping over time steps. More broadly, in many

scientific and engineering applications one wishes to optimize an objective that is defined as the limit

of a sequence of approximations with both fidelity and computational cost increasing according to

a natural number n ≥ 1. Inner-loop examples include: integration by Monte Carlo or quadrature

with n evaluation points; solving ordinary differential equations (ODEs) with an Euler or Runge

Kutta method with n steps and O(1
n) step size; and solving partial differential equations (PDEs)

with a finite element basis with size or order increasing with n.

Whether the task is fitting parameters to data, identifying the parameters of a natural system,

or optimizing the design of a mechanical part, in this work we seek to more rapidly solve problems

in which the objective function demands a tradeoff between computational cost and accuracy. We

formalize this by considering parameters θ ∈ RD and a loss function L(θ) that is the uniform limit of

a sequence Ln(θ):

min
θ
L(θ) = min

θ
lim
n→∞

Ln(θ) . (3.1)

In some problems there may be a finite n = H (horizon) that achieves the limit. We also introduce a

cost function C : N+ → R that is nondecreasing in n to represent the cost of computing Ln and its

gradient.

A principal challenge of optimization problems with the form in Eq.3.1 is selecting a finite N

such that the minimum of the surrogate LN is close to that of L, but without LN (or its gradients)

being too expensive. Choosing a large N can be computationally prohibitive, while choosing a small

N may bias optimization. Meta-optimizing learning rates with truncated horizons can choose wrong

hyperparameters by orders of magnitude Wu et al. (2018). Truncating backpropogation through

time for recurrent neural networks (RNNs) favors short term dependencies Tallec and Ollivier (2017).

Using too coarse a discretization to solve an ODE or PDE can cause error in the solution and bias

outer-loop optimization. These optimization problems thus experience a sharp trade off between

efficient computation and bias.

37

We propose randomized telescope (RT) gradient estimators, which provide cheap unbiased gradient

estimates to allow efficient optimization of these objectives. RT estimators represent the objective or

its gradients as a telescoping series of differences between intermediate values, and draw weighted

samples from this series to maintain unbiasedness while balancing variance and expected computation.

The paper proceeds as follows. Section 2 introduces RT estimators and their history. Section 3

formalizes using RT estimators for optimization, and discusses related work in optimization. Section

4 proves RT estimators can achieve optimization guarantees for loops and limits. Section 5 discusses

designing RT estimators by maximizing a bound on expected improvement per unit of computation.

Section 6 describes practical considerations adapting RT estimators online. Section 7 presents

experimental results. Section 8 discusses limitations and future work. Appendix A presents algorithm

pseudocode. Appendix B presents proofs.

3.2 Unbiased randomized truncation

In this section, we discuss the general problem of estimating limits through randomized truncation.

The first subsection presents the randomized telescope family of unbiased estimators, while the second

subsection describes their history (dating back to von Neumann and Ulam). In the following sections,

we will describe how this technique can be used to provide cheap unbiased gradient estimates and

accelerate optimization for many problems.

3.2.1 Randomized telescope estimators

Consider estimating any quantity YH := limn→H Yn for n ∈ N+ where H ∈ N+ ∪ {∞}. Assume that

we can compute Yn for any finite n ∈ N+, but since the cost is nondecreasing in n there is a point at

which this becomes impractical. Rather than truncating at some fixed value short of the limit, then,

we may find it useful to construct an unbiased estimator of YH and take on some randomness in

return for reduced computational cost.

Define the backward difference ∆n and represent the quantity of interest YH with a telescoping

series:

YH =

H∑
n=1

∆n where ∆n =


Yn − Yn−1 n > 1

Y1 n = 1

.

We may sample from this telescoping series to provide unbiased estimates of YH , introducing variance

38

to our estimator in exchange for reducing expected computation. We use the name randomized

telescope (RT) to refer to the family of estimators indexed by a distribution q over the integers 1, . . . ,H

and a weight function W (n,N):

ŶH =

N∑
n=1

∆nW (n,N) N ∈ {1, . . . ,H} ∼ q . (3.2)

Proposition 3.2.1. Unbiasedness of RT estimators. The RT estimators in (3.2) are unbiased

estimators of YH as long as

EN∼q[W (n,N)] =

H∑
N=n

W (n,N)q(N) = 1 ∀n . (3.3)

See Appendix B for a short proof. Although we are coining the term “randomized telescope” to

refer to the family of estimators with the form of Eq. 3.2, the underlying trick has a long history,

discussed in the next section. The literature we are aware of focusses on one or both of two special

cases of Eq. 3.2, defined by choice of weight function W (n,N). We will also focus on these two

variants of RT estimators, but we observe that there is a larger family.

Most related work uses the “Russian roulette” estimator originally discovered and named by von

Neumann and Ulam Kahn (1955), which we term RT-RR and has the form

W (n,N) =
1

1−
∑n−1
n′=1 q(n

′)
1{N ≥ n} . (3.4)

It can be seen as unrolling and summing the iterates ∆n while flipping a biased coin at each new

iterate ∆n. With probability q(n), the series is truncated at term n and the unrolling stops. With

probability 1− q(n), the process continues, and all future terms are upweighted by 1
1−q(n) to maintain

unbiasedness.

The other important special case of Eq. 3.2 is the “single sample” estimator RT-SS, referred to as

“single term weighted truncation” in Lyne et al. (2015). RT-SS takes

W (n,N) =
1

q(N)
1{n = N} . (3.5)

This is directly importance sampling the differences ∆n.

We will later prove conditions under which RT-SS and RT-RR should be preferred. Of all

estimators in the form of (3.2) which obey proposition 3.2.1 and for all q, RT-SS minimizes the

worst-case variance across an adversarial choice of diagonal covariances Cov(∆i,∆j). Within the

39

same family, RT-RR achieves minimum variance when ∆i and ∆j are independent for all i, j.

3.2.2 A brief history of unbiased randomized truncation

The essential trick—unbiased estimation of a quantity via randomized truncation of a series—dates

back to unpublished work from John von Neumann and Stanislaw Ulam. They are credited for using

it to develop a Monte Carlo method for matrix inversion in Forsythe and Leibler (1950), and for a

method for particle diffusion in Kahn (1955).

It has been applied and rediscovered in a number of fields and applications. The early work

from von Neumann and Ulam led to its use in computational physics, in neutron transport problems

(Spanier and Gelbard, 1969), for studying lattice fermions (Kuti, 1982), and to estimate functional

integrals (Wagner, 1987). In computer graphics Arvo and Kirk (1990) introduced its use for ray

tracing; it is now widely used in rendering software. In statistical estimation, it has been used

for estimation of derivatives (Rychlik, 1990), unbiased kernel density estimation (Rychlik, 1995),

doubly-intractable Bayesian posterior distributions (Girolami et al., 2013; Lyne et al., 2015; Wei and

Murray, 2016), and unbiased MCMC (Jacob et al., 2017).

The underlying trick has been rediscovered by Fearnhead et al. (2008) for unbiased estimation in

particle filtering, by McLeish (2010) for debiasing Monte Carlo estimates, by Rhee and Glynn (2012,

2015) for unbiased estimation in stochastic differential equations, and by Tallec and Ollivier (2017)

to debias truncated backpropagation. The latter also uses RT estimators for optimization; however,

it only considers fixed “Russian roulette”-style randomized telescope estimators and does not consider

convergence rates or how to adapt the estimator online (our main contributions).

3.3 Optimizing loops and limits

In this paper, we consider optimizing functions defined as limits, where loops are an important special

case. Consider a problem where, given parameters θ we can obtain a series of approximate losses Ln(θ),

which converges uniformly to some limit limn→H Ln := L, for n ∈ N+ and H ∈ N+ ∪ {∞}. We

assume the sequence of gradients with respect to θ, denoted Gn(θ) := ∇θLn(θ) converge uniformly

to a limit G(θ). Under this uniform convergence and assuming convergence of Ln, we have

limn→H ∇θLn(θ) = ∇θ limn→H Ln(θ) (see Theorem 7.17 in Rudin et al. (1976)), and so G(θ) is

indeed the gradient of our objective L(θ). We assume there is some computation cost C(n) associated

with evaluating Ln or Gn, which is nondecreasing with n, and we wish to efficiently minimize L with

respect to θ. Loops are a special case of this framework, where Ln is the loss resulting from running

40

the loop for some number of steps increasing in n.

3.3.1 Randomized telescopes for optimization

We propose using randomized telescopes to provide a stochastic gradient estimator for such opti-

mization problems. Our aim is to accelerate optimization in much the same manner as minibatch

stochastic gradient descent accelerates optimization for large datasets: using sampling to decrease

the expected computation cost of each optimization step, at the price of increasing variance in the

gradient estimates, without introducing bias.

Consider the gradientG(θ) = limn→H Gn(θ), and the backward difference ∆n(θ) = Gn(θ)−Gn−1(θ),

where G0(θ) = 0, so that G(θ) =
∑H
n=1 ∆n(θ). We use the randomized telescope estimator

Ĝ(θ) = GN (θ) =

N∑
n=1

∆n(θ)W (n,N) (3.6)

where N ∈ {1, 2, . . . ,H} is drawn according to a proposal distribution q, and together W and q

satisfy proposition 3.2.1.

Note that due to linearity of differentiation, and letting L0(θ) := 0, we have

N∑
n=1

∆n(θ)W (n,N) = ∇θ
N∑
n=1

(Ln(θ)−Ln−1(θ))W (n,N) .

Thus, when computing Ln(θ) can reuse most of the computation performed for computing Ln−1(θ),

we can evaluate ĜN (θ) via forward or backward automatic differentiation with cost approximately

equal to computing GN (θ), i.e., ĜN (θ) has computation cost ≈ C(N). This most often occurs

when evaluating Ln(θ) involves an inner loop and the step size used for the inner loop does not

change with n, such as in meta-learning and training RNNs. When computing Ln(θ) does not reuse

computation, e.g., when solving an ODE or PDE where n describes how fine a discretization to

use, evaluating ĜN (θ) requires separately computing Ln(θ) for all n ≤ N for which W (n,N) 6= 0,

i.e., ĜN (θ) has computation cost
∑N
n=1 C(n)1{W (n,N) 6= 0}.

3.3.2 Related work in optimization

Gradient-based bilevel optimization has seen extensive work in literature. See Jameson (1988) for an

early example of optimizing implicit functions, Christianson (1998) for a mathematical treatment,

and Maclaurin et al. (2015); Franceschi et al. (2017) for recent treatments in machine learning.

Shaban et al. (2018) propose truncating only the backward pass by only backpropagating through

41

the final few optimization steps to reduce memory requirements. Metz et al. (2018) propose linearly

increasing the number of inner steps over the course of the outer optimization.

An important case of bi-level optimization is optimization of architectures and hyperparameters.

Truncation causes bias, as shown by Wu et al. (2018) for learning rates and by Metz et al. (2018) for

neural optimizers.

Bi-level optimization is also used for meta-learning across related tasks (Schmidhuber, 1987;

Bengio et al., 1992). Ravi and Larochelle (2016) train an initialization and optimizer, and Finn

et al. (2017) only an initialization, to minimize validation loss. The latter paper shows increasing

performance with the number of steps used in the inner optimization. However, in practice the

number of inner loop steps must be kept small to allow training over many tasks.

Bi-level optimization can be accelerated by amortization. Variational inference can be seen

as bi-level optimization; variational autoencoders (Kingma and Welling, 2014) amortize the inner

optimization with a predictive model of the solution to the inner objective. Recent work such as

Brock et al. (2018); Lorraine and Duvenaud (2018) amortizes hyperparameter optimization in a

similar fashion.

However, amortizing the inner loop induces bias. Cremer et al. (2018) demonstrate this in VAEs,

while Kim et al. (2018) show that in VAEs, combining amortization with truncation by taking several

gradient steps on the output of the encoder can reduce this bias. This shows these techniques are

orthogonal to our contributions: while fully amortizing the inner optimization causes bias, predictive

models of the limit can accelerate convergence of Ln to L.

Our work is also related to work on training sequence models. Tallec and Ollivier (2017) use

the Russian roulette estimator to debias truncated backpropagation through time. They use a fixed

geometrically decaying q(N), and show that this improves validation loss for Penn Treebank. They do

not consider efficiency of optimization, or methods to automatically set or adapt the hyperparameters

of the randomized telescope. Trinh et al. (2018) learn long term dependencies with auxiliary losses.

Other work accelerates optimization of sequence models by replacing recurrent models which require

backpropagation through time with models which use convolution or attention (Vaswani et al., 2017),

which can be trained more efficiently.

3.4 Convergence rates with fixed RT estimators

Before considering more complex large-scale problems, we examine the simple RT estimator for

stochastic gradient descent on convex problems. We assume that the sequence Ln(θ) and units

42

for C are chosen such that C(n) = n. We study RT-SS, with q(n) fixed a priori. We consider

optimizing parameters θ ∈ K, where K ⊂ Rd is a bounded, convex and compact set with diameter

bounded by D. We assume L(θ) is convex in θ, and Gn(θ) converge according to ||∆n||2 ≤ ψn,

where ψn converges polynomially or geometrically. The quantity of interest is the instantaneous

regret, Rt = L(θt)−minθ L(θ), where θt is the parameter after t steps of SGD.

In this setting, any fixed truncation scheme using LN as a surrogate for L, with fixed N < H,

cannot achieve limt→∞Rt = 0. Meanwhile, the fully unrolled estimator has computation cost which

scales with H. In the many situations where H →∞, it is impossible to take even a single gradient

step with this estimator.

The randomized telescope estimator overcomes these drawbacks by exploiting the fact that Gn

converges according to ||∆n||2 ≤ ψn. As long as q is chosen to have tails no lighter than ψn, for

sufficiently fast convergence, the resulting RT-SS gradient estimator achieves asymptotic regret

bounds invariant to H in terms of convergence rate.

All proofs are deferred to Appendix B. We begin by proving bounds on the variance and expected

computation for polynomially decaying q(n) and ψn.

Theorem 3.4.1. Bounded variance and compute with polynomial convergence of ψ. As-

sume ψ converges according to ψn ≤ cψ
(n)p or faster, for constants p > 0 and cψ > 0. Choose

the RT-SS estimator with q(n) ∝ 1/((n)p+1/2). The resulting estimator Ĝ achieves expected com-

pute C ≤ (Hp−
1
2

H)2, where HiH is the Hth generalized harmonic number of order i, and expected

squared norm E[||Ĝ||22] ≤ c2ψ(Hp−
1
2

H)2 := G̃2. The limit limH→∞H
p− 1

2

H is finite iff p > 3
2 , in which case

it is given by the Riemannian zeta function, limH→∞H
p− 1

2

H = ζ(p− 1
2). Accordingly, the estimator

achieves horizon-agnostic variance and expected compute bounds iff p > 3
2 .

The corresponding bounds for geometrically decaying q(n) and ψn follow.

Theorem 3.4.2. Bounded variance and compute with geometric convergence of ψ. As-

sume ψn converges according to ψn ≤ cψpn, or faster, for 0 < p < 1. Choose RT-SS and with q(n) ∝ pn.

The resulting estimator Ĝ achieves expected compute C ≤ (1− p)−2 and expected squared norm ||Ĝ||22 ≤
cψ

(1−p)2 := G̃2.

Thus, the estimator achieves horizon-agnostic variance and expected compute bounds for all 0 < p < 1.

Given a setting and estimator Ĝ from either 3.4.1 or 3.4.2, with corresponding expected compute

cost C and upper bound on expected squared norm G̃2, the following theorem considers regret

guarantees when using this estimator to perform stochastic gradient descent.

Theorem 3.4.3. Asymptotic regret bounds for optimizing infinite-horizon programs.

Assume the setting from 3.4.1 or 3.4.2, and the corresponding C and G̃ from those theorems.

43

Let Rt be the instantaneous regret at the tth step of optimization, Rt = L(θt)−minθ L(θ). Let t(B)

be the greatest t such that a computational budget B is not exceeded. Use online gradient de-

scent with step size ηt = D√
tE[||Ĝ||22]

. As B →∞, the asymptotic instantaneous regret is bounded

by Rt(B) ≤ O(G̃D
√

C
B), independent of H.

Theorem 3.4.3 indicates that if Gn converges sufficiently fast and Ln is convex, the RT estimator

provably optimizes the limit.

3.5 Adaptive RT estimators

In practice, the estimator considered in the previous section may have high variance. This section

develops an objective for designing such estimators, and derives closed-form W (n,N) and q which

maximize this objective given estimates of E[||∆i||22] and assumptions on Cov(∆i,∆j).

3.5.1 Choosing between unbiased estimators

We propose choosing an estimator which achieves the best lower bound on on the expected improve-

ment per compute unit spent, given smoothness assumptions on the loss. Our analysis builds on

that of Balles et al. (2016): they adaptively choose a batch size using batch covariance information,

while we choose between between arbitrary unbiased gradient estimators using knowledge of those

estimators’ expected squared norms and computation cost.

Here we assume that the true gradient of the objective ∇θE[L(θ)] := ∇θ (for compactness of

notation) is smooth in θ. We do not assume convexity. Note that ∇θ is not necessarily equal to G(θ),

as the loss L(θ) and its gradient G(θ) may be random variables due to sampling of data and/or

latent variables.

We assume that L is L-smooth (the gradients of L(θ) are L-Lipschitz), i.e., there exists a

constant L > 0 such that ∇θb−∇θa≤L||θb−θa||2 ∀θa, θb ∈ Rd. It follows (Balles et al., 2016;

Bottou et al., 2018) that, when performing SGD with an unbiased stochastic gradient estimator Ĝt,

E[LH(θt)]− E[LH(θt+1)] ≥ E[ηt∇TθtĜt(θt)]− E[
Lη2

t

2
||Ĝt(θt)||22] .

Unbiasedness of Ĝ implies E[∇TθtĜt(θt)] = ||∇Tθt ||
2
2, thus:

E[LH(θt)]− E[LH(θt+1)] ≥ E[ηt||∇θ||22]− E[
Lη2

t

2
||Ĝt(θt)||22] := J .

44

Above, J is a lower bound on the expected improvement in the loss from one optimization step.

Given a fixed choice of Ĝt(θt), how should one pick the learning rate ηt to maximize J and what is

the corresponding lower bound on expected improvement?

Optimizing ηt by finding η?t s.t. dJ
dη?t

= 0 yields

η?t =
||∇θ||22

LE[||Ĝt(θt)||22]
∝ 1

E[||Ĝt(θt)||22]
(3.7)

J? =
||∇θ||4

2LE[||Ĝt(θt)||22]
∝ 1

E[||Ĝt(θt)||22]
(3.8)

This tells us how to choose ηt if we know L, ||Ĝ||22, etc. In practice, it is unlikely we know L or

even ||∇θt ||2. We might assume we have access to some “reference” learning rate η̄t, which has been

optimized for use with a “reference” gradient estimator Ḡt, with known E[||Ḡt||22]. For example, when

using RT estimators, we may have access to learning rates which have been optimized for use with

the un-truncated estimator, or can find them via grid search. Instead of directly maximizing J , we

choose ηt for Ĝ by maximizing improvement relative to the reference estimator in terms of J , the

lower bound on expected improvement.

Assume that η̄t has been set optimally for a problem and reference estimator Ḡ up to some

constant k, i.e.,

η̄t = k
||∇θt ||22

LE[||Ḡt(θt)||22]
. (3.9)

Then the expected improvement J̄ obtained by the reference estimator Ḡ is:

J̄ = (k − k2

2
)

||∇θt ||4

2LE[||Ḡt(θt)||22]
(3.10)

We assume that 0 < k < 2, such that J̄ is positive and the reference has guaranteed expected

improvement. Now set the learning rate according to

ηt = η̄t
E[||Ĝt||22]

E[||Ḡt||22]
. (3.11)

It follows that the expected improvement Ĵ obtained by the estimator Ĝ is

Ĵ =
E[||Ḡt(θt)||22]

E[||Ĝt(θt)||22]
J̄ (3.12)

Let the expected computation cost of evaluating Ĝ be Ĉ. We want to maximize Ĵ/Ĉ. If we

use the above method to choose ηt, we have Ĵ
Ĉ
∝
(
ĈE||Ĝt(θt)||22

)−1. We call
(
ĈE||Ĝt(θt)||22

)−1 the

relative optimization efficiency, or ROE. We decide between gradient estimators Ĝ by choosing the

one which maximizes the ROE. Once an estimator is chosen, one should choose a learning rate

45

according to (3.11) relative to a reference learning rate η̄ and estimator Ḡ.

3.5.2 Optimal weighted sampling for RT estimators

Now that we have an objective for choosing between unbiased stochastic gradient estimators with

varying computation, we can consider designing randomized telescope estimators which optimize the

ROE. For the classes of single sample and Russian roulette estimators, we prove conditions under

which that class maximizes the ROE across an arbitrary choice of RT estimators. We also derive

closed-form expressions for the optimal sampling distribution q for each class, under the conditions

where that class is optimal.

In this section, we assume that computation can be reused and evaluating ĜH =
∑N
n=1 ∆nW (n,N)

has computation cost C(N). As described in Section 3.1, this is approximately true for many

objectives. When it is not, the cost of computing
∑N
n=1 ∆nW (n,N) is

∑N
n=1 C(n)1{(W (n,N) 6=

0) or (W (n+1, N) 6= 0)}. This would penalize the ROE of dense W (n,N) and favor sparseW (n,N),

possibly impacting the optimality conditions for RT-RR. We mitigate this inaccuracy by subsequence

selection (described in the following subsection), which allows construction of sparse sampling

strategies.

We begin with the RT-SS estimator, showing this is minimax-optimal with regards to an adversarial

choice of diagonal covariances Cov(∆i,∆j), and deriving the optimal sampling distribution q(N).

Theorem 3.5.1. Optimality of RT-SS under adversarial correlation. Consider the family

of estimators presented in Equation 3.2. Assume θ, ∇θ, and G are univariate. For any fixed sampling

distribution q, the single-sample RT estimator RT-SS minimizes the worst-case variance of Ĝ across

an adversarial choice of covariances Cov(∆i,∆j) ≤
√

Var(∆i)
√

Var(∆j).

Theorem 3.5.2. Optimal q under adversarial correlation. Consider the family of estimators

presented in Equation 3.2. Assume Cov(∆i,∆i) and Cov(∆i,∆j) are diagonal. The RT-SS esti-

mator with qn ∝
√

E[||∆n||22
C(n) maximizes the ROE across an adversarial choice of diagonal covariance

matrices Cov(∆i,∆j)kk ≤
√

Cov(∆i,∆i)kkCov(∆j ,∆j)kk.

We continue with the RT-RR estimator, showing this is optimal when Cov(∆i,∆i) is diagonal

and ∆i and ∆j are independent for j 6= i, and deriving the optimal sampling distribution q(N).

Theorem 3.5.3. Optimality of RT-RR under independence. Consider the family of estimators

presented in Eq. 3.2. Assume the ∆j are univariate. When the ∆j are uncorrelated, for any importance

sampling distribution q, the Russian roulette estimator achieves the minimum variance in this family

and thus maximizes the optimization efficiency lower bound.

46

Theorem 3.5.4. Optimal q under independence. Consider the family of estimators presented

in Equation 3.2. Assume Cov(∆i,∆i) is diagonal and ∆i and ∆j are independent. The RT-RR

estimator with Q(i) ∝
√

E[||∆i||22
C(i)−C(i−1)], where Q(i) = Pr(n ≥ i) =

∑H
j=i q(i), maximizes the ROE.

3.5.3 Subsequence selection

The scheme for designing RT estimators given in the previous subsection contains assumptions which

will often not hold in practice. To partially alleviate these concerns, we can design the sequence of

iterates over which we apply the RT estimator to maximize the ROE.

Some sequences may result in more efficient estimators than others, depending on how the

intermediate iterates Gn converge to G. For example, solving an ODE with a number of steps for

which the solution is unstable is unlikely to produce gradients which correlate well with the true

gradient. The variance of the estimator, and the ROE, will be reduced if we choose a sequence Ln

such that Gn is positively correlated with G for all n.

We begin with a reference sequence L̄i, Ḡi, with cost function C̄, where i, j ∈ N and i, j ≤ H̄,

and where Ḡi has cost c̄i. We assume knowledge of E[||Ḡi−Ḡj ||22]. We aim to find a subsequence

S ∈ S, where S is the set of subsequences over the integers 1...H̄ which have final element S−1 = H̄.

Given S, we take Ln = L̄Sn , Gn = ḠSn , C(n) = C̄(Sn), H = |S|, and ∆n = Gn − Gn−1, where

G0 := 0.

In practice, we greedily construct S by adding indexes i to the sequence [H̄] or removing indexes

i from the sequence [1, 2, ..., H̄]. As this step requires minimal computation, we perform both greedy

adding and greedy removal and return the S with the best ROE. The minimal subsequence S = [H̄]

is always considered, allowing RT estimators to fall back on the original full-horizon estimator.

3.6 Practical implementation

3.6.1 Tuning the estimator

We estimate the expected squared distances E[||Ḡi − Ḡj ||22] by maintaining exponential moving

averages. We keep track of the computational budget B used so far by the RT estimator, and "tune"

the estimator every KC̄(H̄) units of computation, where C̄(H̄) is the compute required to evaluate

ḠH̄ , and K is a "tuning frequency" hyperparameter. During tuning, the gradients Gi are computed,

the squared norms ||Ḡi − Ḡj ||22 are computed, and the exponential moving averages are updated. At

the end of tuning, the estimator is updated using the expected squared norms; i.e. a subsequence is

47

selected, q is set according to section 5.2 with choice of RT-RR or RT-SS left as a hyperparameter,

and the learning rate is adapted according to section 5.1

3.6.2 Controlling sequence length

Tuning and subsequence selection require computation. Consider using RT to optimize an objective

with an inner loop of size M . If we let Ḡi be the gradient of the loss after i inner steps, we must

maintain M2 −M exponential moving averages E||Ḡi − Ḡj ||22, and compute M gradients Ḡi each

time we tune the estimator. The computational cost of the tuning step under this scheme is O(M2).

This is unacceptable if we wish our method to scale well with the size of loops we might wish to

optimize.

To circumvent this, we choose base subsequences such that C̄i ∝ 2i. This ensures that H̄ =

O(log2M), where M is the maximum number of steps we wish to unroll. We must maintain

O(log2
2M) exponential moving averages. Computing the gradients Ḡi during each tuning step

requires compute Ctune =
∑H̄
i=1 k ∗ 2i. Noting that C̄H̄ = k ∗ 2H̄ and that

∑N
i=1 2i < 2N+1∀N yields

Ctune < 2C̄H̄ = 2M .

3.7 Experiments

For all experiments, we tune learning rates for the full-horizon un-truncated estimator via grid

search over all a× 10b, for a ∈ {1.0, 2.2, 5.5} and b ∈ {0.0, 1.0, 2.0, 3.0, 5.0}. The same learning rates

are used for the truncated estimators and (as reference learning rates) for the RT estimators. For

simplicity, we do not decay the learning rate in any experiments.

We use the same hyperparameters for our online tuning procedure for all experiments: the

tuning frequency K is set to 5, and the exponential moving average weight α is set to 0.9. These

hyperparameters were not extensively tuned. For each problem, we compare deterministic truncations

with RT-SS and RT-RR estimators, each with different truncations.

3.7.1 Lotka-Volterra ODE

We first experiment with variational inference of parameters of a Lotka-Volterra (LV) ODE. LV

ODEs are defined by the predator-prey equations:

du1

dt
= Au1 −Bu1u2

du2

dt
= Cu1u2 −Du2

48

u2 is the predator population, and u1 is the prey population.

We aim to infer the parameters λ = [u1(t = 0), u2(t = 0), A,B,C,D]. The true parameters

are drawn from U([1.0, 0.4, 0.8, 0.4, 1.5, 0.4], [1.5, 0.6, 1.2, 0.6, 2.0, 0.6]), chosen empirically to ensure

stability solving the equations. We generate ground-truth data by solving the equations using RK4 (a

common 4th-order Runge Kutta method) from t = 0 to t = 5 with 10000 steps. The learner is given

access to five equally spaced noisy observations y(t), generated according to y(t) = u(t) +N (0, 0.1).

We place a diagonal Gaussian prior on θ with the same mean and standard deviation as the

data-generating distribution. The variational posterior is a diagonal Gaussian q(λ) with mean µ

and standard deviation σ. The parameters optimized are θ = [µ̃, σ̃]. We let µ = g(µ̃) and σ = g(σ̃),

where g(x) = log(1 + ex̃), to ensure positivity. We use a reflecting boundary to ensure positivity of

parameter samples from q. The variational posterior is initialized to have mean equal to the prior

and standard deviation 0.1.

The loss considered is the negative evidence lower bound (negative ELBO). The ELBO is:

ELBO(q(θ))=Eq(θ)
∑
t

log p(y(t)|uθ(t))+DKL

(
q(θ)||p(θ)

)
Above, uθ(t) is the value of the solution uθ to the LV ODE with parameters θ, evaluated at time t.

We consider a sequence Ln(θ), where in computing the ELBO, uθ(t) is approximated by solving the

ODE using RK4 with 2n + 1 steps, and linearly interpolating the solution to the 5 observation times.

The outer-loop optimization is performed with a batch size of 64 (i.e., 64 samples of θ are performed

at each step) and a learning rate of 0.01. Evaluation is performed with a batch size of 512.

Figure 3.1 shows the loss of the different estimators over the course of training. RT-SS estimators

outperform the un-truncated estimator without inducing bias. They are competitive with the

truncation H = 6, while avoiding the bias present with the truncation H = 4. By contrast, some

RT-RR estimators experience issues with optimization, falling into the same local minimum as the

H = 4 truncation.

3.7.2 MNIST learning rate

We next experiment with meta-optimization of a learning rate on MNIST. We largely follow the

procedure used by Wu et al. (2018). We use a feedforward network with two hidden layers of 100

units, with weights initialized from a Gaussian with standard deviation 0.1, and biases initialized to

zero. Optimization is performed with a batch size of 100.

The neural network is trained by SGD with momentum using Polyak averaging, with the

49

N
eg
at
iv
e
E
L
B
O

0 200 400 600 800 1000
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Unrolled, H = 9
Unrolled, H = 6
Unrolled, H = 4
RT-SS, H=9
RT-SS, H=6
RT-SS, H=4
RT-RR, H=9
RT-RR, H=6
RT-RR, H=4

Gradient evaluations (000s)

Figure 3.1: Lotka-Volterra parameter inference

momentum parameter fixed to 0.9. We aim to learn a learning rate η0 and decay λ for the inner-loop

optimization. These are initialized to 0.01 and 0.1 respectively. The learning rate for the inner

optimization at an inner optimization step t is ηt = η0(1 + t
5000)−λ.

As in Wu et al. (2018), we pretrain the net for 50 steps with a learning rate of 0.1. Ln is the

evaluation loss after 2n+1 training steps with a batch size of 100. The evaluation loss is measured over

2n + 1 validation batches or the entire validation set, whichever is smaller. The outer optimization is

performed with a learning rate of 0.01.

RT estimators with H = 9 or H = 5 achieve faster convergence than the fixed-truncation

estimators. RT-SS outperforms RT-RR. All estimators with H = 5 appear to suffer from some

bias. The un-truncated estimator achieves a slightly better loss than the RT estimators, but takes

significantly longer to converge.

3.7.3 enwik8 LSTM

Finally, we study a high-dimensional optimization problem: training an LSTM to model sequences

on enwik8. These data are the first 100M bytes of a Wikipedia XML dump. There are 205 unique

tokens. We use the first 90M, 5M, and 5M characters as the training, evaluation, and test sets.

We build on code from Merity et al. (2017, 2018) found at https://github.com/salesforce/awd-lstm-

lm. We train an LSTM with 1000 hidden units and 400-dimensional input and output embeddings.

50

E
va
lu
at
io
n
lo
ss

0 250 500 750 1000 1250 1500 1750

0.12

0.14

0.16

0.18

0.20 Unrolled, H = 9
Unrolled, H = 5
RT-SS, H=9
RT-SS, H=5
RT-RR, H=9
RT-RR, H=5

Neural network evaluations (000s)

Figure 3.2: MNIST learning rate meta-optimization

The model has 5.9M parameters. The only regularization is an `2 penalty on the weights with

magnitude 10−6. Gradients are clipped to magnitude 1.0 before each optimization step. The

optimization is performed with a learning rate of 2.2. This model is not state-of-the-art: our aim to

investigate performance of RT estimators for optimizing high-dimensional neural networks, rather

than to maximize performance at a language modeling task.

We choose Ln to be the mean cross-entropy after unrolling the LSTM training for 6 ∗ 2n + 1

steps. We choose the horizon H = 5, such that the un-truncated loop has 193 steps, chosen to be

approximately equal to the 200-length training sequences used by Merity et al. (2018).

Figure 3.3 shows the training bits-per-character (proportional to the training cross-entropy

loss). All RT estimators provide some acceleration over the un-truncated H = 5 estimator early in

training. RT-SS underperforms relative to RT-RR. Within the first 100k cell evaluations, the RT

estimators fall back on the un-truncated estimator, subsequently progressing slightly more slowly

due to computational cost of tuning. We conjecture that the covariance assumptions in Section 5 are

often unsuited to high-dimensional problems, and lead to overly conservative estimators.

51

T
ra
in
in
g
bi
ts
-p
er
-c
ha

ra
ct
er

0 100 200 300 400 500 600 700 800
1.50

1.75

2.00

2.50

3.00

4.00

5.00
Unrolled, H = 5
Unrolled, H = 2
RT-SS, H=5
RT-SS, H=2
RT-RR, H=5
RT-RR, H=2

LSTM cell evaluations (000s)

Figure 3.3: LSTM training on enwik8

3.8 Limitations and future work

Other optimizers. We develop the lower bound on expected improvement for SGD. Important

future directions would investigate adaptive and momentum-based SGD methods such as Adam

(Kingma and Ba, 2014).

Tuning step. Our method includes a tuning step which requires computation. It might be

possible to remove this tuning step by estimating covariance structure online using just the values of

Ĝ observed during each optimization step.

RT estimators beyond RT-SS and RT-RR. There is a rich family defined by choices of q

and W (n,N). The optimal member depends on covariance structure between the Gi. We explore

RT-SS and RT-RR under strict covariance assumptions. Could we relax these assumptions and derive

or optimize approximately optimal estimators across the wider family? This could improve adaptive

estimator performance for high-dimensional problems such as training RNNs.

Predictive models of the sequence limit. Using any sequence Gn with RT yields an unbiased

estimator as long as the sequence is consistent, i.e. its limit G is the true gradient. Combining

randomized telescopes with predictive models of the gradients (Jaderberg et al., 2017; Weber et al.,

2019) might yield a fast-converging sequence, leading to estimators with low computation and

variance.

52

3.9 Conclusion

We investigated the use of randomly truncated unbiased gradient estimators for optimizing objec-

tives which involve loops and limits. We proved these estimators can achieve horizon-independent

convergence rates for optimizing loops and limits. We derived adaptive variants which can be tuned

online to maximize a lower bound on expected improvement per unit computation. Experimental

results matched theoretical intuitions that the single sample estimator is more robust than Russian

roulette for optimization. The adaptive RT-SS estimator often significantly accelerates optimization,

and can otherwise fall back on the un-truncated estimator.

53

Chapter 4

Meta-PDE: Learning to solve PDEs

quickly without a mesh

4.1 Abstract

Partial differential equations allow us to model and design a wide variety of systems. Solving

PDEs with finite element analysis (FEA) can be computationally prohibitive, and in optimization,

model-fitting or dynamics problems, the PDE must be solved for many different governing equations,

boundary conditions, or geometric domains. Surrogate models allow fast approximate PDE solving,

but most surrogates require fixing a vector representation for the PDE’s parameters and solution

and are not usable when PDEs we encounter may have complex and varying geometry. Meanwhile,

neural nets have drawn interest for solving PDEs as they do not require a mesh and allow combining

physics with observations, but take far too long to fit to be competitive with FEA.

We use meta-learning to allow an alternative API for surrogate modeling. Meta-PDE takes

as input (i) a sampler for points in the PDE domain and (ii) a variational energy density which

measures deviation from governing equations. We represent the solution with a neural network, and

train an initialization such that it can quickly minimize the variational energy after a few gradient

steps. This functional API does not require fixing a parametric basis for the geometry or governing

equations. It also does not require supervision from expensive ground-truth or FEA solutions. We

apply Meta-PDE to a nonlinear Poisson problem, and show it learns to solve PDEs accurately

and quickly across different boundary conditions, governing equations, and problem geometries.

The resulting meta-model solves these PDEs much faster than FEA methods which achieve similar

54

accuracy.

4.2 Introduction

Partial differential equations (PDEs) can be used to model many physical, biological, and mathematical

systems, including those governing thermodynamics, continuum mechanics, and electromagnetism,

and have applications outside physics in areas such as modeling populations, traffic, optimality of

continuous control, and financial markets. Analytical solutions are rarely available for PDEs of

practical importance; thus, computational methods to approximate PDE solutions are critical for

many problems in science and engineering. One of the most widely used is finite element analysis

(FEA). In FEA, the continuous problem is discretized, with the solution represented by a piecewise

polynomial on a mesh.

Solving PDEs with FEA can be computationally prohibitive, particularly when the problem

geometry requires use of a fine mesh, as the size of the system to be solved grows proportional to

the number of mesh cells. The computational expense is exacerbated for parameter identification or

design optimization. In this case, the PDE must be solved at each step of a procedure optimizing

some set of design or system parameters to maximize a design objective or minimize discrepancy of

the solution from data. Given a solution to the PDE, the adjoint method (Lions, 1971; Mitusch et al.,

2019) may be used to obtain the gradient of an objective computed from the solution with respect

to the PDE parameters with cost equivalent to a single solve of the linearized PDE. Therefore, the

key bottleneck to optimization of PDE parameters is the "forward pass" of obtaining an accurate

solution.

Surrogate modeling typically involves fitting a model to map from PDE parameters in a vector

basis to coefficients of an approximate solution in another vector basis. The model is trained on a

distribution of PDEs to correctly predict their solution or to satisfy the associated PDE constraints.

These bases are fixed across the class of problems to be amortized. However, different problems

may require different meshes to represent the solution, source terms, or boundary conditions, or

may demand different representations for the geometry itself. Even generating a mesh which can

adequately represent the geometry and solution of a single problem can be difficult. Surrogate

modeling approaches are usually therefore restricted to scenarios where we can fix a mesh or at least

represent geometry, parameters, and solution with fixed coefficient vectors.

Meanwhile, neural networks have long been researched as a basis with which to solve PDEs, and

have seen considerable recent interest. Mesh-free methods such as neural networks remove some of

55

the difficulties with generating meshes and bases to model complex geometry. Neural networks also

alow blending observations with PDE constraints to approximate a solution field even when the data

does not come in a form amenable to being imposed as boundary conditions (Raissi et al., 2019).

However, neural networks take far too long to optimize to fit a given PDE to be competitive with

finite-element methods.

We use meta-learning to accelerate fitting neural networks to satisfy PDE constraints. This lets us

develop a new, "functional" API for surrogate modeling, which can handle arbitrary geometries and

removes the need to fix a mesh or to fix vector bases for the PDE parameters or solution. For a given

PDE, our surrogate model takes as input (i) samplers which can sample points uniformly on each

region of the domain, and (ii) a loss function encoding the PDE constraint or boundary condition for

each such region. Combining these allows unbiased estimation of a variational energy which measures

deviation of a given solution field from the governing equations. We use a neural network to model

the solution field, and train a neural network initialization to converge quickly across a distribution

of tasks a la MAML, Finn et al. (2017); in our case each task in the distribution is minimizing the

variational energy for a PDE with given domain, boundary conditions and governing equations.

Our scheme has several important properties. It does not require supervised data provided by

expensive PDE solvers. It does not place any assumptions on the structure of the geometry, and does

not require geometry to be fixed across PDEs or for the user to define a parametric representation of

varying geometry. Similarly, it does not place any assmptions on the structure of the PDE constraints

and boundary conditions. Geometry and governing equations are free to vary as long as the user

can supply an appropriate sampler or loss function. It also provides the first way to train a neural

network to satisfy a PDE with competitive or faster speed to finite element analysis.

4.3 Finite element analysis

PDEs are most naturally posed in a strong form:

F(u)(x) = 0 in Ω, (4.1)

G(u)(x) = 0 on ∂Ω. (4.2)

where Ω ⊂ RdΩ is the problem domain with boundary ∂Ω, u : Ω → Rdu is the solution, F :

(Ω → Rdu) → (Ω → RdF) is a linear or nonlinear operator involving u and its partial derivatives,

and G : (Ω → Ru) → (Ω → RdG) is an operator enforcing a boundary condition (for example,

56

FEA mesh source (control parameter) solution (state variable)

Figure 4.1: Poisson equation on a disc. Figure: Xue et al. (2020a).

G(u)(x) = u(x)− b(x) is a Dirichlet boundary condition forcing u to be equal to a function b on the

boundary).

Finite element analysis involves rewriting the PDE in a weak form: find u in a function space V,

such that

∫
Ω

< F(u)(x), v(x) > dx+

∫
∂Ω

< G(u)(x), v(x) > dx = 0 ∀v ∈ V (4.3)

When V is a suitable infinite-dimensional Sobolev space, we recover the same solution as the strong

form. In order to solve the problem numerically with FEA, we let V be a class of piecewise low-degree

polynomials over the domain, parameterized by some finite number of interpolating points. We fix

the values of the interpolating points on the boundary, form a set of basis vectors v for V , rewrite the

weak form of the PDE as a linear or nonlinear system representing the set of constraints that must

be satisfied, and solve the system with an appropriate linear or nonlinear solver. Figure 4.1 shows as

an example the Poisson problem on a disc. For this simple problem we have F(u) = ∇̇∇u− f , for a

spatially varying source term f , and G(u) = u, i.e. enforcing u = 0 on the boundary.

We observe that finding the solution to the PDE i equivalent to finding the minimizer of the

variational energy

J (u) =

∫
Ω

||F(u)(x)||22dx+

∫
∂Ω

||G(u)(x)||22dx

As with Xue et al. (2020a), we use this optimization perspective to derive an efficient training method

for our surrogate models.

4.4 Surrogate modeling

Meta-PDE is a surrogate modeling approach. Surrogate models are useful when one will need to

evaluate the solution of many PDEs from a similar family and is willing to pay the up-front cost of

57

training a surrogate in order to solve the downstream probelms with minimal cost-per-PDE. The

most popular application is in design or system identification, where a PDE must be solved at each

step optimizing the PDE’s parameters, boundary conditions, or geometry, and it is convenient to

replace the PDE solver with a cheap surrogate (Kochenderfer and Wheeler, 2019). The optimization

may be numerical ("PDE-constrained optimization") or by hand. If numerical, gradients can be

obtained using the adjoint method with cost equivalent to one solve of a linearized version of the

PDE. In both cases, therefore, the optimization bottleneck is in the "forward pass" of solving the

PDE. Surrogate models are also particularly relevant in scenarios involving dynamics models (where

a PDE must be solved at each timestep), and where real-time analysis is required for the convenience

of a human designer or to allow embedding the PDE solver in a control policy.

There are many approaches to surrogate modeling, such as random forests (Criminisi et al.,

2011), Gaussian processes (Shahriari et al., 2015), Student-t processes (Shah et al., 2014), and neural

networks (Snoek et al., 2015). Regression can be from the PDE’s parameters to coefficients of the

PDE solution, yielding a general-purpose surrogate for that distribution of PDEs, or from PDE

parameters to an objective value for a specific optimization problem. Most surrogate modeling

procedures have two key restrictions:

1. They require supervised training data in the form of (PDE parameter, PDE solution) or (PDE

parameter, objective value) pairs, which must be generated by an expensive ground-truth PDE

solver,

2. They regress from a vector representation of the PDE or its parameters to a vector representaion

of the solution; having to fix these vector bases makes it difficult to fit surrogates for distributions

of PDEs containin highly varied structure in geometry or governing equations.

Restriction 1 means that in order to be of net computational benefit, the surrogate must be applied

to many more downstream problems than the number of data points required to fit a good model.

For rich classes of PDEs and expressive models, it can take tens or hundreds of thousands of data

points to fit a model which can generalize, so this greatly limits surrogate models’ use case.

Restriction 2 is not an issue if the problem can be phrased as regressing from coefficients of a

parameter or boundary condition in a piecewise polynomial basis to coefficients of a solution in

a similar basis, with the discretization fixed across problems. However, many problems are not

amenable to such framing. Problems with different domain geometry or very different parameters

and solutions may require very different discretizations to represent them well; generating a good

mesh for a given problem can itself be a hard problem and can be a greater bottleneck than the

58

cost of the base PDE solve. The factors of variation of a PDE (the domain, governing equations,

and parameters) are naturally and generally expressed as functions on the domain and as operators

on solutions: requiring them to be parameterized by vectors restricts the classes of PDEs to which

surrogate models can be applied and greatly limits their use case.

Several recent works have relaxed one of these restrictions. Zhu et al. (2019) amortize the finite

differentce method, predicting PDE solutions from parameter fields with a ConvNet by training the

ConvNet to produce solutions with minimum variational energy across a distribution of problems.

This removes restriction 1 but requiring the discretization to be a fixed uniform grid. Xue et al. (2020a)

amortize the finite element method, training a surrogate model to minimize a similar variational

energy but use a finite element discretization: their model can handle complicated geometry, and

by measuring the variational energy in the finite element basis maintains some desirable properties

of finite element analysis. This avoids restriction 1 and allows arbitrary meshes but requires a

single mesh be fixed for all PDEs in the distribution to be amortized. Graph Neural Network based

approaches (Sanchez-Gonzalez et al., 2020; Pfaff et al., 2020), which learn a forward operator in

terms of interactions between nearby particles or mesh cells, allow for arbitrary geometries (partially

removing restriction 2) but require supervised data and have not yet produced surrogate models

which are cheaper to evaluate than ground-truth solvers when tested on equivalent hardware. Neural

Operator based approaches (Li et al., 2020b,a) learn a map from initial conditions or parameters to

solution which builds in some invariance to mesh resolution, but require the mesh to be a uniform

grid, and also require expensive supervised data.

4.5 Meta-learning mesh-free PDE operators

We propose Meta-PDE, an approach which meta-learns mesh-free PDE operators and provides a new,

functional API for PDE surrogate modeling. Most PDEs can be fully defined by specification of:

• a domain Ω with boundary ∂Ω,

• an operator F representing governing equations,

• and an operator G representing boundary conditions.

We aim for a surrogate model with an input schema as close to this general specification as possible.

Meta-PDE uses meta-learning, and specifically MAML (), to achieve this. Meta-PDE’s parameters

are the initial parameters θ0 for a neural network uθ representing a function u : RdΩ → Rdu , and

per-parameter per-step learning rates αk. The geometric dimension RdΩ and solution dimension Rdu

59

must remain fixed across PDEs in the distribution, even though Ω is allowed to vary. When using

Meta-PDE as a surrogate to compute an approximate solution to a given PDE (one ’example’ or

’task’), the inputs to the Meta-PDE model are:

• a sampler s(Ω) which returns points in the domain Ω,

• a sampler s(∂Ω) which returns points on the boundary ∂Ω,

• an operator F representing governing equations,

• and an operator G representing boundary conditions.

The operators F and G may be supplied directly and do not require a particular parametric form.

The user must suppy a sampler for the domain and for the boundary of each PDE within the training

disribution and for each PDE seen during deployment. A sampler can easily be constructed for any

domain for which we have a mesh, but it is also often easier to construct a sampler than to construct

an accurate mesh. Finite element models usually use piecewise linear meshes, which can take many

elements to accurately represent curved shapes: even when using piecewise polynomially-shaped

meshes, the slow rate of convergence of using these meshes to approximate non-polynomial geometry

can be a major source of error and/or computational expense for FEA. Given an inside-outside

oracle for the domain, it is easy to use rejection sampling to sample from it exactly. Most parametric

geometry representations such as those used in computer-aided design also allow exact sampling of

the boundary, and even minimal representations such as signed distance functions allow approximate

sampling (Brubaker et al., 2012).

The samplers and operators are sufficient to construct an estimator Ĵ for the variational energy

J :

J (u) =

∫
Ω

||F(u)(x)||22dx+

∫
∂Ω

||G(u)(x)||22dx

Ĵ (u) = Ex∼s(Ω)||F(u)(x)||22 + Ex∼s(∂Ω)

∫
∂Ω

||G(u)(x)||22

Ĵ (u) is unbiased as long as s(̇) return points with uniform probability over their supports, or return

batches of points which have uniform probability for any given x aggregated over the batch. Unbiased

estimation is not necessarily essential. Note Ĵ (u) > 0 and J (u) > 0 ∀u, and the true solution u∗

of the PDE achieves J (u) = Ĵ (u) = 0. These properties hold if we multiply the integrand in J (u)

by an arbitrary density µ > 0 or if we choose samplers s which have full support but nonuniform

60

probability on Ω or ∂Ω. Therefore, biased sampling will not change the minimizer of the energy

estimator if we have a sufficiently expressive hypothesis class for u.

The "forward pass" computing an approximate solution for a given PDE involves a small number

K of inner-loop steps (we use K = 5) of stochastic optimization, minimizing the variational energy

J (u) and starting from the initialization θ0:

θk = θk−1 − αk∇θk−1
Ĵ (uθk−1

) k = 1..K

Meta-PDE returns the approixmate solution uθK , the neural network with the final set of

parameters.

To train Meta-PDE, we use a distribution of tasks, each specified by samplers and constraint

operators for the boundary and loss, each representing a different PDE. We draw a batch of tasks with

variational energy estimators Ĵi, i = 1...n, and unroll the inner loop to find uθK ,i. For each task the

loss is Ĵi(uθK ,i). We backpropogate through the inner loop to find the gradients ∇θ0
∑
i

1
n Ĵi(uθK ,i)

and ∇α
∑
i

1
n Ĵi(uθK ,i), which are used in an outer loop to train the model.

4.6 Experiments

We demonstrate Meta-PDE on a nonlinear Poisson problem with varying source terms, boundary

conditions, and geometric domain. The PDE takes the form:

∇ · ((1 + 0.1u2)∇u)(x) = f(x) x in Ω

∇ · u(x) = b(x) x on ∂Ω,

where u ∈ R1 and Ω ⊂ R2. Using our notation from the preceding section, this is equivalent

to constraining the solution in the domain with an operator F(u) = ((1 + 0.1u2)∇u)− f , and

constraining the solution on the boundary with an operator G(u) = u− b.

The domain Ω is a disc-like shape centered at the origin, defined in polar coordinates by and the

varying radius about the origin

r(θ) = r0[1 + c1 cos(4θ) + c2 cos(8θ)],

where the varying parameters are c1, c2 ∼ U(−0.2, 0.2). The source term f is a sum of radial basis

61

functions,

f(x) =

3∑
i=1

βi exp ||x− µi||22,

where βi ∈ R1 and µi ∈ R2 are both drawn from standard normal distributions. The boundary

condition b is a periodic function, defined in polar coordinates as

b(x) = b0 + b1 cos(θ) + b2 sin(θ) + b3 cos(θ) + b4 sin(θ),

where the parameters b0:4 ∼ U(−1, 1).

We train Meta-PDE with a batch size of 16 tasks, with 5 inner steps, and with 256 sampled

points on the boundary and in the domain used to evaluate the variational energy at each inner step

of optimization for each task. To sample points on the boundary, we construct an evenly spaced

interval mesh of angles in [0, 2 ∗ π], add uniform noise of the size of one interval to each point, and

use the points on the boundary using these angles. To sample points in the domain, we do the same

but also draw random radii uniformly in [0, r(θ)]. These samplers are not unbiased for non-circular

shapes, but this does not change the optimal solution.

Our model is a three layer NN with sinusoidal activations initialized according to the scheme in

Sitzmann et al. (2020), (although we replace ω0 = 30. in that paper with ω0 = 3. to avoid numerical

issues when taking higher-order derivatives of a neural network’s input-output function). We initialize

the inner-loop learning rate to 1× 10−4, and use an outer loop learning rate of 1× 10−5. Gradients

in both inner and outer loop are clipped to have maximal norm 100. In the inner loop, we use vanilla

SGD. In the outer loop, we use the Adam optimizer (Kingma and Ba, 2014). We train for 200,000

outer-loop steps, which takes about 6 hours on one GeForce RTX 2080.

All finite element baselines are implemented in FEniCS (Logg et al., 2012a; Alnæs et al., 2015b).

We use the Mumps linear solver backend. Meta-PDE is implemented in Jax (Bradbury et al., 2018).

Meta-PDE learns to quickly find solutions with low error. Table 4.1 shows the mean squared

solution error and solution time after zero through five gradient steps for a Meta-PDE model trained

to minimize the energy estimate after five gradient steps, as compared to finite element models of

varying fidelities. The highest-fidelity finite element model was taken as ground truth and was used

to compute errors. Errors and solution times were evaluated using sixteen held-out problems from the

same distribution which were not used during training Mean-squared errors are computed between

the value of a given approximate solution and the value of the ground truth (highest fidelity finite

element solution) at 1024 randomly sampled points within the domain. The relative mean-squared

62

Method Resolution Mean finite element DoFs Relative MSE Simulation time (CPU) Simulation time (GPU)
FEA 1 15 0.28± 0.63 0.053s N/A
FEA 2 53 0.014± 0.030 0.13s N/A
FEA 3 85 0.0065± 0.014 0.24s N/A
FEA 4 178 0.0012± 0.0022 0.45s N/A
FEA 5 222 7.1× 10−4 ± 1.5× 10−3 0.74s N/A
FEA 6 324 3.7× 10−4 ± 8.7× 10−4 0.83s N/A
FEA 8 433 4.0× 10−5 ± 6.0× 10−5 1.2s N/A
FEA 10 568 2.9× 10−5 ± 6.2× 10−5 1.9s N/A
FEA 12 1246 5.1× 10−6 ± 9.7× 10−6 2.5s N/A
FEA 16 2163 5.1× 10−6 ± 9.7× 10−6 2.92s N/A

Meta-PDE N/A N/A 6.2× 10−5 ± 1.0× 10−4 0.097s 0.0022s

Table 4.1: Accuracy vs solution time for finite element methods and for meta-PDE. For FEA, a mesh
is generated with MSHR using 3x "resolution" points to define the geometry, and "resolution" as an
argument to MSHR’s automeshing too.

Figure 4.2: Solutions to nonlinear Poisson equations with varying domains, boundary conditions and source
terms. Top: ground truth finite element solution. Second row: solution represented by Meta-PDE initial
neural network parameters. Third row onwards: solution after each gradient step in the Meta-PDE inner
loop.

error is computed by dividing the mean-squared error by the sum of squares of solution values for

the ground-truth solution. various fidelities for sampled test problems. Figure 4.2 shows the ground

truth and the Meta-PDE solution after zero through five gradient steps minimizing the variational

energy for sampled test problems.

We see that Meta-PDE learns to output accurate solutions, and when run on the same CPU

(a 2.5GHz Intel i7) is about 4-7x faster than a finite element method with similar accuracy, and

about 50x more accurate than a finite element method with the same computation cost. Unlike finite

element models, Meta-PDE can be easily accelerated by a GPU, and on GPU we see close to 50x

speed up in deployment, leading to a 400x speed increase over similar accuracy finite element models.

We expect these gains would only increase if we replaced the vanilla fully-connected neural network

with a more tailored NN (such as the attention-like model used to fit PDE solutions in Wang et al.

63

(2020)), used a lower-variance sampling strategy, or more carefully tailored a meta-learning algorithm

to this problem. The speed-accuracy tradeoff could also be tuned by changing the size of the NN

used or the number of steps in the inner loop optimization.

4.7 Conclusion

We presented Meta-PDE, a surrogate model uses meta-learning to amortize PDE solving across

classes of PDEs with complex and varying geometries and governing equations. Meta-PDE takes as

input the governing equations themselves and a sampler for the PDE domain and boundary, thus

remaining as close as possible in API to the fundamental representation of the PDE in terms of

governing equations and domain. This avoids having to fix a parametric representation of geometry,

governing equations and solution for the class of PDEs to be amortized. We show on a nonlinear

Poisson problem that Meta-PDE can learn to output accurate solutions with a significantly more

favorable accuracy-speed trade-off than a baseline finite element solver.

64

Chapter 5

Conclusion

In this thesis, we presented several methods using deep learning and stochastic gradient estimation to

speed up numerical modeling. There is an increasing and justified interest in using neural networks

and other tools from the discipline of machine learning to accelerate numerical procedures (as function

approximation has been used to do for decades). As researchers and engineers increasingly integrate

machine learning into numerical modeling, it will often be tempting to think about either machine

learning or the numerical procedure or both as a black box – to use a numerical method as just a

source of parameter vector, solution vector pairs for a regression dataset, or to use machine learning

methods as just a tool for doing said regression. In certain scenarios, where data is plentiful and

conforms to such a schema, such an approach can be appropriate and can have great results.

However, going beyond this shallow approach will let us develop methods which are of use in

a far wider range of scenarios. In this thesis, we showed that tailoring machine learning methods

to the computational and physical structure of numerical models can let us train models on cheap

simulations and deploy them as surrogates for expensive simulations, or lets us remove the need

for supervised data entirely, and lets us develop new efficient methods for optimization and system

identification. Perhaps most importantly, synthesis of ML and numerical modeling can allow us to

develop methods with new and more flexible APIs, and which allow acceleration of broader classes of

numerical models.

65

Bibliography

Mohammad H Aliabadi. The boundary element method, volume 2: applications in solids and

structures, volume 2. John Wiley & Sons, 2002.

Martin Alnæs, Jan Blechta, Johan Hake, August Johansson, Benjamin Kehlet, Anders Logg, Chris

Richardson, Johannes Ring, Marie E Rognes, and Garth N Wells. The FEniCS project version 1.5.

Archive of Numerical Software, 3(100), 2015a.

Martin S. Alnæs, Jan Blechta, Johan Hake, August Johansson, Benjamin Kehlet, Anders Logg, Chris

Richardson, Johannes Ring, Marie E. Rognes, and Garth N. Wells. The FEniCS project version

1.5. Archive of Numerical Software, 3(100), 2015b. doi: 10.11588/ans.2015.100.20553.

James Arvo and David Kirk. Particle transport and image synthesis. ACM SIGGRAPH Computer

Graphics, 24(4):63–66, 1990.

Lukas Balles, Javier Romero, and Philipp Hennig. Coupling adaptive batch sizes with learning rates.

In Uncertainty in Artificial Intelligence, 2016.

Yohai Bar-Sinai, Stephan Hoyer, Jason Hickey, and Michael P Brenner. Learning data-driven

discretizations for partial differential equations. Proceedings of the National Academy of Sciences,

116(31):15344–15349, 2019.

Alex Beatson and Ryan P Adams. Efficient optimization of loops and limits with randomized

telescoping sums. arXiv preprint arXiv:1905.07006, 2019.

Alex Beatson, Zhaoran Wang, and Han Liu. Blind attacks on machine learners. Advances in Neural

Information Processing Systems, 2016.

Alex Beatson, Jordan Ash, Geoffrey Roeder, Tianju Xue, and Ryan P Adams. Learning composable

energy surrogates for pde order reduction. Advances in Neural Information Processing Systems,

33, 2020.

66

Alex Beatson, Sunny T Qin, Nick McGreivy, and Ryan Prescott Adams. Meta-pde: Learning to

solve pdes quickly without a mesh. In preparation, 2021.

Samy Bengio, Yoshua Bengio, Jocelyn Cloutier, and Jan Gecsei. On the optimization of a synaptic

learning rule. In Conference on Optimality in Artificial and Biological Neural Networks, 1992.

Gal Berkooz, Philip Holmes, and John L Lumley. The proper orthogonal decomposition in the

analysis of turbulent flows. Annual Review of Fluid Mechanics, 25(1):539–575, 1993.

Katia Bertoldi, Vincenzo Vitelli, Johan Christensen, and Martin van Hecke. Flexible mechanical

metamaterials. Nature Reviews Materials, 2(11):1–11, 2017.

Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings of

COMPSTAT’2010, pages 177–186. Springer, 2010.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine

learning. SIAM Review, 60(2):223–311, 2018.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal

Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao

Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:

//github.com/google/jax.

Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. Smash: one-shot model

architecture search through hypernetworks. arXiv preprint arXiv:1708.05344, 2017.

Andrew Brock, Theo Lim, J.M. Ritchie, and Nick Weston. SMASH: One-shot model architecture

search through hypernetworks. In International Conference on Learning Representations, 2018.

Marcus Brubaker, Mathieu Salzmann, and Raquel Urtasun. A family of mcmc methods on implicitly

defined manifolds. In Artificial intelligence and statistics, pages 161–172. PMLR, 2012.

Wenshan Cai and Vladimir M Shalaev. Optical metamaterials, volume 10. Springer, 2010.

Anindya Chatterjee. An introduction to the proper orthogonal decomposition. Current science, pages

808–817, 2000.

Bruce Christianson. Reverse accumulation and implicit functions. Optimization Methods and Software,

9(4):307–322, 1998.

67

Chris Cremer, Xuechen Li, and David Duvenaud. Inference suboptimality in variational autoencoders.

arXiv preprint arXiv:1801.03558, 2018.

Antonio Criminisi, Jamie Shotton, and Ender Konukoglu. Decision forests for classification, regression,

density estimation, manifold learning and semi-supervised learning. Microsoft Research Cambridge,

Tech. Rep. MSRTR-2011-114, 5(6):12, 2011.

Wojciech M Czarnecki, Simon Osindero, Max Jaderberg, Grzegorz Swirszcz, and Razvan Pascanu.

Sobolev training for neural networks. In Advances in Neural Information Processing Systems,

pages 4278–4287, 2017.

Petros Drineas and Michael W Mahoney. Randnla: randomized numerical linear algebra. Communi-

cations of the ACM, 59(6):80–90, 2016.

Petros Drineas, Ravi Kannan, and Michael W Mahoney. Fast monte carlo algorithms for matrices ii:

Computing a low-rank approximation to a matrix. SIAM Journal on computing, 36(1):158–183,

2006.

Simon Duane, Anthony D Kennedy, Brian J Pendleton, and Duncan Roweth. Hybrid Monte Carlo.

Physics Letters B, 195(2):216–222, 1987.

Paul Fearnhead, Omiros Papaspiliopoulos, and Gareth O Roberts. Particle filters for partially

observed diffusions. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70

(4):755–777, 2008.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of

deep networks. In International Conference on Machine Learning, 2017.

Alexander IJ Forrester and Andy J Keane. Recent advances in surrogate-based optimization. Progress

in Aerospace Sciences, 45(1-3):50–79, 2009.

George E Forsythe and Richard A Leibler. Matrix inversion by a Monte Carlo method. Mathematics

of Computation, 4(31):127–129, 1950.

Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil. Forward and reverse

gradient-based hyperparameter optimization. In International Conference on Machine Learning,

2017.

68

Stuart Geman and Donald Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian

restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, (6):

721–741, 1984.

Mark Girolami, Anne-Marie Lyne, Heiko Strathmann, Daniel Simpson, and Yves Atchade. Playing

Russian roulette with intractable likelihoods. Technical report, Citeseer, 2013.

Robert J Guyan. Reduction of stiffness and mass matrices. AIAA journal, 3(2):380–380, 1965.

Elad Hazan et al. Introduction to online convex optimization. Foundations and Trends R© in

Optimization, 2(3-4):157–325, 2016.

Nicholas J Higham, Mark R Dennis, Paul Glendinning, Paul A Martin, Fadil Santosa, and Jared

Tanner. The Princeton companion to applied mathematics. Princeton University Press, 2015.

Alan J Hoffman, Michael S Martin, and Donald J Rose. Complexity bounds for regular finite

difference and finite element grids. SIAM Journal on Numerical Analysis, 10(2):364–369, 1973.

Alexandra Ion, Johannes Frohnhofen, Ludwig Wall, Robert Kovacs, Mirela Alistar, Jack Lindsay,

Pedro Lopes, Hsiang-Ting Chen, and Patrick Baudisch. Metamaterial mechanisms. In Proceedings

of the 29th Annual Symposium on User Interface Software and Technology, pages 529–539, 2016.

Pierre E Jacob, John O’Leary, and Yves F Atchadé. Unbiased Markov chain Monte Carlo with

couplings. arXiv preprint arXiv:1708.03625, 2017.

Max Jaderberg, Wojciech Marian Czarnecki, Simon Osindero, Oriol Vinyals, Alex Graves, David Silver,

and Koray Kavukcuoglu. Decoupled neural interfaces using synthetic gradients. In International

Conference on Machine Learning, pages 1627–1635. JMLR. org, 2017.

Antony Jameson. Aerodynamic design via control theory. Journal of Scientific Computing, 3(3):

233–260, 1988.

Herman Kahn. Use of different Monte Carlo sampling techniques. 1955.

Yoon Kim, Sam Wiseman, Andrew C Miller, David Sontag, and Alexander M Rush. Semi-amortized

variational autoencoders. In International conference on Machine Learning, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International

Conference on Learning Representations, 2014.

69

Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. In International Conference

on Learning Representations, 2014.

Mykel J Kochenderfer and Tim A Wheeler. Algorithms for optimization. MIT Press, 2019.

Slawomir Koziel and Leifur Leifsson. Surrogate-based modeling and optimization. Springer, 2013.

Julius Kuti. Stochastic method for the numerical study of lattice fermions. Physical Review Letters,

49(3):183, 1982.

Prem K Kythe, Dongming Wei, and M Okrouhlik. An introduction to linear and nonlinear finite

element analysis: a computational approach. Appl. Mech. Rev., 57(5):B25–B25, 2004.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew

Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential

equations. arXiv preprint arXiv:2010.08895, 2020a.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew

Stuart, and Anima Anandkumar. Neural operator: Graph kernel network for partial differential

equations. arXiv preprint arXiv:2003.03485, 2020b.

J.L. Lions. Optimal control of systems governed by partial differential equations. Grundlehren der

mathematischen Wissenschaften. Springer-Verlag, 1971.

Jun S Liu. The collapsed Gibbs sampler in Bayesian computations with applications to a gene

regulation problem. Journal of the American Statistical Association, 89(427):958–966, 1994.

Anders Logg and Garth N Wells. DOLFIN: Automated finite element computing. ACM Transactions

on Mathematical Software (TOMS), 37(2):1–28, 2010.

Anders Logg, Kent-Andre Mardal, Garth N. Wells, et al. Automated Solution of Differential Equations

by the Finite Element Method. Springer, 2012a. doi: 10.1007/978-3-642-23099-8.

Anders Logg, Kent-Andre Mardal, Garth N. Wells, et al. Automated Solution of Differential Equations

by the Finite Element Method. Springer, 2012b. doi: 10.1007/978-3-642-23099-8.

Anders Logg, Garth N Wells, and Johan Hake. DOLFIN: A C++/Python finite element library. In

Automated solution of differential equations by the finite element method, pages 173–225. Springer,

2012c.

70

Jonathan Lorraine and David Duvenaud. Stochastic hyperparameter optimization through hypernet-

works. arXiv preprint arXiv:1802.09419, 2018.

Yucen Luo, Alex Beatson, Mohammad Norouzi, Jun Zhu, David Duvenaud, Ryan P Adams, and

Ricky TQ Chen. Sumo: Unbiased estimation of log marginal probability for latent variable models.

In ICLR 2020, 2019a.

Yucen Luo, Alex Beatson, Mohammad Norouzi, Jun Zhu, David Duvenaud, Ryan P Adams, and

Ricky TQ Chen. Sumo: Unbiased estimation of log marginal probability for latent variable models.

In ICLR 2020, 2019b.

Anne-Marie Lyne, Mark Girolami, Yves Atchadé, Heiko Strathmann, Daniel Simpson, et al. On

Russian roulette estimates for Bayesian inference with doubly-intractable likelihoods. Statistical

science, 30(4):443–467, 2015.

Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based hyperparameter optimization

through reversible learning. In International Conference on Machine Learning, pages 2113–2122,

2015.

Jay D Martin and Timothy W Simpson. Use of kriging models to approximate deterministic computer

models. AIAA journal, 43(4):853–863, 2005.

Romit Maulik, Bethany Lusch, and Prasanna Balaprakash. Reduced-order modeling of advection-

dominated systems with recurrent neural networks and convolutional autoencoders. Physics of

Fluids, 33(3):037106, 2021.

Don McLeish. A general method for debiasing a Monte Carlo estimator. Monte Carlo Methods and

Applications, 2010.

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimizing LSTM

language models. arXiv preprint arXiv:1708.02182, 2017.

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. An analysis of neural language modeling

at multiple scales. arXiv preprint arXiv:1803.08240, 2018.

Luke Metz, Niru Maheswaranathan, Jeremy Nixon, C Daniel Freeman, and Jascha Sohl-Dickstein.

Learned optimizers that outperform SGD on wall-clock and validation loss. arXiv preprint

arXiv:1810.10180, 2018.

71

Sebastian Mitusch, Simon Funke, and Jørgen Dokken. dolfin-adjoint 2018.1: automated adjoints for

FEniCS and Firedrake. Journal of Open Source Software, 4(38):1292, 2019.

Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric Liang,

Melih Elibol, Zongheng Yang, William Paul, Michael I Jordan, et al. Ray: A distributed framework

for emerging AI applications. In 13th USENIX Symposium on Operating Systems Design and

Implementation (OSDI 18), pages 561–577, 2018.

Zhenguo Nie, Haoliang Jiang, and Levent Burak Kara. Stress field prediction in cantilevered structures

using convolutional neural networks. Journal of Computing and Information Science in Engineering,

20(1), 2020.

R.W. Ogden. Non-linear Elastic Deformations. Dover Civil and Mechanical Engineering. Dover

Publications, 1997.

Deniz Oktay, Nick McGreivy, Joshua Aduol, Alex Beatson, and Ryan P Adams. Randomized

automatic differentiation. ICLR 2021, 2021.

Naoki Osada. Acceleration methods for vector sequences. Journal of Computational and Applied

Mathematics, 38(1-3):361–371, 1991.

Johannes TB Overvelde and Katia Bertoldi. Relating pore shape to the non-linear response of

periodic elastomeric structures. Journal of the Mechanics and Physics of Solids, 64:351–366, 2014.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor

Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,

high-performance deep learning library. In Advances in Neural Information Processing Systems,

pages 8024–8035, 2019.

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W Battaglia. Learning mesh-based

simulation with graph networks. arXiv preprint arXiv:2010.03409, 2020.

Alexander Poddubny, Ivan Iorsh, Pavel Belov, and Yuri Kivshar. Hyperbolic metamaterials. Nature

photonics, 7(12):948, 2013.

Nestor V Queipo, Raphael T Haftka, Wei Shyy, Tushar Goel, Rajkumar Vaidyanathan, and P Kevin

Tucker. Surrogate-based analysis and optimization. Progress in aerospace sciences, 41(1):1–28,

2005.

72

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A

deep learning framework for solving forward and inverse problems involving nonlinear partial

differential equations. Journal of Computational Physics, 378:686–707, 2019.

Sachin Ravi and Alex Beatson. Amortized bayesian meta-learning. In ICLR 2019, 2018.

Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In International

Conference on Learning Representations, 2016.

Chang-han Rhee and Peter W Glynn. A new approach to unbiased estimation for SDEs. In Proceedings

of the Winter Simulation Conference, page 17. Winter Simulation Conference, 2012.

Chang-han Rhee and Peter W Glynn. Unbiased estimation with square root convergence for SDE

models. Operations Research, 63(5):1026–1043, 2015.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathematical

statistics, pages 400–407, 1951.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and structured

prediction to no-regret online learning. In Proceedings of the Fourteenth International Conference

on Artificial Intelligence and Statistics, pages 627–635, 2011.

Walter Rudin et al. Principles of Mathematical Analysis, volume 3. McGraw-hill New York, 1976.

Tomasz Rychlik. Unbiased nonparametric estimation of the derivative of the mean. Statistics &

probability letters, 10(4):329–333, 1990.

Tomasz Rychlik. A class of unbiased kernel estimates of a probability density function. Applicationes

Mathematicae, 22(4):485–497, 1995.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter

Battaglia. Learning to simulate complex physics with graph networks. In International Conference

on Machine Learning, pages 8459–8468. PMLR, 2020.

Jürgen Schmidhuber. Evolutionary principles in self-referential learning, or on learning how to learn:

the meta-meta-... hook. PhD thesis, Technische Universität München, 1987.

Jörg Schröder. A numerical two-scale homogenization scheme: the fe 2-method. In Plasticity and

beyond, pages 1–64. Springer, 2014.

73

Yannick Schroecker and Charles L Isbell. State aware imitation learning. In Advances in Neural

Information Processing Systems, pages 2911–2920, 2017.

Ari Seff, Alex Beatson, Daniel Suo, and Han Liu. Continual learning in generative adversarial nets.

In arXiv preprint, 2017.

Amirreza Shaban, Ching-An Cheng, Nathan Hatch, and Byron Boots. Truncated back-propagation

for bilevel optimization. arXiv preprint arXiv:1810.10667, 2018.

Amar Shah, Andrew Wilson, and Zoubin Ghahramani. Student-t processes as alternatives to Gaussian

processes. In International Conference on Artificial Intelligence and Statistics, pages 877–885,

2014.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas. Taking the

human out of the loop: A review of Bayesian optimization. Proceedings of the IEEE, 104(1):

148–175, 2015.

Daichao Sheng, Scott W Sloan, and Andrew J Abbo. An automatic Newton–Raphson scheme. The

International Journal Geomechanics, 2(4):471–502, 2002.

Timothy W Simpson, JD Poplinski, Patrick N Koch, and Janet K Allen. Metamodels for computer-

based engineering design: survey and recommendations. Engineering with computers, 17(2):129–150,

2001.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Im-

plicit neural representations with periodic activation functions. Advances in Neural Information

Processing Systems, 33, 2020.

Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan Sundaram,

Mostofa Patwary, Mr Prabhat, and Ryan Adams. Scalable Bayesian optimization using deep neural

networks. In International Conference on Machine Learning, pages 2171–2180, 2015.

Jerome Spanier and Ely M Gelbard. Monte Carlo Principles and Neutron Transport Problems.

Addison-Wesley Publishing Company, 1969.

Endre Süli and David F Mayers. An introduction to numerical analysis. Cambridge university press,

2003.

Kevin Swersky, Jasper Snoek, and Ryan Prescott Adams. Freeze-thaw bayesian optimization. arXiv

preprint arXiv:1406.3896, 2014.

74

Corentin Tallec and Yann Ollivier. Unbiasing truncated backpropagation through time. arXiv

preprint arXiv:1705.08209, 2017.

Yee W Teh, David Newman, and Max Welling. A collapsed variational Bayesian inference algorithm

for latent Dirichlet allocation. In Advances in Neural Information Processing Systems, pages

1353–1360, 2007.

Jonathan Tompson, Kristofer Schlachter, Pablo Sprechmann, and Ken Perlin. Accelerating eulerian

fluid simulation with convolutional networks. In International Conference on Machine Learning,

pages 3424–3433. PMLR, 2017.

Trieu H Trinh, Andrew M Dai, Thang Luong, and Quoc V Le. Learning longer-term dependencies in

RNNs with auxiliary losses. arXiv preprint arXiv:1803.00144, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz

Kaiser, and Illia Polosukhin. Attention is all you need. In Neural Information Processing Systems,

pages 5998–6008, 2017.

Wolfgang Wagner. Unbiased Monte Carlo evaluation of certain functional integrals. Journal of

Computational Physics, 71(1):21–33, 1987.

Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating gradient pathologies

in physics-informed neural networks, 2020.

Théophane Weber, Nicolas Heess, Lars Buesing, and David Silver. Credit assignment techniques in

stochastic computation graphs. arXiv preprint arXiv:1901.01761, 2019.

Colin Wei and Iain Murray. Markov chain truncation for doubly-intractable inference. In International

Conference on Artificial Intelligence and Statistics (AISTATS), 2016.

Jared Willard, Xiaowei Jia, Shaoming Xu, Michael Steinbach, and Vipin Kumar. Integrating

physics-based modeling with machine learning: A survey. arXiv preprint arXiv:2003.04919, 2020.

Yuhuai Wu, Mengye Ren, Renjie Liao, and Roger Grosse. Understanding short-horizon bias in

stochastic meta-optimization. In International Conference on Learning Representations, 2018.

Tianju Xue, Alex Beatson, Sigrid Adriaenssens, and Ryan Adams. Amortized finite element analysis

for fast pde-constrained optimization. In International Conference on Machine Learning, pages

10638–10647. PMLR, 2020a.

75

Tianju Xue, Alex Beatson, Maurizio Chiaramonte, Geoffrey Roeder, Jordan T Ash, Yigit Menguc,

Sigrid Adriaenssens, Ryan P Adams, and Sheng Mao. A data-driven computational scheme for

the nonlinear mechanical properties of cellular mechanical metamaterials under large deformation.

Soft matter, 16(32):7524–7534, 2020b.

Yinhao Zhu, Nicholas Zabaras, Phaedon-Stelios Koutsourelakis, and Paris Perdikaris. Physics-

constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification

without labeled data. Journal of Computational Physics, 394:56–81, 2019.

76

Appendix A

List of publications

A.0.1 Chapter 2

• Alex Beatson, Jordan Ash, Geoffrey Roeder, Tianju Xue, and Ryan P Adams. Learning

composable energy surrogates for pde order reduction. Advances in Neural Information

Processing Systems, 33, 2020

A.0.2 Chapter 3

• Alex Beatson and Ryan P Adams. Efficient optimization of loops and limits with randomized

telescoping sums. arXiv preprint arXiv:1905.07006, 2019

A.0.3 Chapter 4

• Alex Beatson, Sunny T Qin, Nick McGreivy, and Ryan Prescott Adams. Meta-pde: Learning

to solve pdes quickly without a mesh. In preparation, 2021

A.0.4 Not included in this thesis

• Deniz Oktay, Nick McGreivy, Joshua Aduol, Alex Beatson, and Ryan P Adams. Randomized

automatic differentiation. ICLR 2021, 2021

• Tianju Xue, Alex Beatson, Sigrid Adriaenssens, and Ryan Adams. Amortized finite element

analysis for fast pde-constrained optimization. In International Conference on Machine Learning,

pages 10638–10647. PMLR, 2020a

77

• Tianju Xue, Alex Beatson, Maurizio Chiaramonte, Geoffrey Roeder, Jordan T Ash, Yigit

Menguc, Sigrid Adriaenssens, Ryan P Adams, and Sheng Mao. A data-driven computational

scheme for the nonlinear mechanical properties of cellular mechanical metamaterials under

large deformation. Soft matter, 16(32):7524–7534, 2020b

• Yucen Luo, Alex Beatson, Mohammad Norouzi, Jun Zhu, David Duvenaud, Ryan P Adams,

and Ricky TQ Chen. Sumo: Unbiased estimation of log marginal probability for latent variable

models. In ICLR 2020, 2019b

• Sachin Ravi and Alex Beatson. Amortized bayesian meta-learning. In ICLR 2019, 2018

• Ari Seff, Alex Beatson, Daniel Suo, and Han Liu. Continual learning in generative adversarial

nets. In arXiv preprint, 2017

• Alex Beatson, Zhaoran Wang, and Han Liu. Blind attacks on machine learners. Advances in

Neural Information Processing Systems, 2016

78

Appendix B

Appendix for Chapter 2

79

B.1 Contents

This appendix consists of:

• specification of the data generating distribution and hyperparameters;

• visualization of data generated via Hamiltonian Monte Carlo;

• visualization of data generated via DAgger;

• hyperparameters used for neural network specification and training;

• ablation study of neural network design choices;

• specification of the finite element meshes used as baselines;

• visualization of all solutions found under compression and tension for each pore shape for each

baseline mesh and the composed energy surrogate.

80

B.2 Data generation with Hamiltonian Monte Carlo

We use 100 data collectors, each with randomly drawn hyperparameters, which each terminate (and

have their place taken by a newly initialized collector) after sampling 25 data points. We collect

60,000 data points, consisting of a training set of 55,000 and a validation set of 5,000. As our

distribution is arbitrary, and as we assume that more data is always a good thing, when a HMC

sample is rejected, we still add it to the dataset, but return to the last un-rejected sample to continue

the Markov chain.

Hyperparameter distributions are chosen heuristically such that the finite element simulation

tends to converge in a reasonable amount of time. The hyperparameter distributions are as follows:

• Leapfrog step size: U(0.005, 0.02)

• Leapfrog path length: U(0.05, 0.3)

• Temperature used to scale the log-probability: U([0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1])

• Standard deviation of the Gaussian from which the Hamiltonian momentum is drawn: U(0.01, 0.3)

We approximate the macroscopic strain tensor x̄ from u as:

x̄(u) =
1

N


∑
X∈rhs

u1(X)−
∑
X∈lhs

u1(x)
∑
X∈rhs

u2(X)−
∑
X∈lhs

u2(X)∑
X∈top

u1(X)−
∑
X∈bot

u1(x)
∑
X∈top

u2(X)−
∑
X∈bot

u2(X)


Above, u1(X) and u2(X) are horizontal and vertical displacements defined by u at a point X,

and top, bot, lhs and rhs are the set of control point locations for the splines on the top, bottom, left

and right of the component.

81

B.3 Visualizing HMC data

Here we display 24 randomly chosen examples from the training set.

82

B.4 Visualizing DAgger data

Here we display 24 randomly chosen examples from the data collected with DAgger.

B.5 Neural network hyperparameters

We use a fully-connected neural network with three hidden layers of 512 units, Swish nonlinarities,

and He initialization. We optimize our neural network using Adam with a learning rate of 3e-4 and a

batch size of 512.

83

B.6 Surrogate design ablation study

We perform an ablation study by switching on and off the following independent variables:

• "Scale": parameterizing the log of the scalar stiffness, vs parameterizing energy directly;

• "Remove rigid": removing rigid body translations from the data via Procrustes analysis;

• "Sobolev-G": Sobolev training on energy gradients;

• "Sobolev-Hvp": Sobolev training on energy Hessian-vector products.

We measure performance after 10,000 training steps (93 epochs) on the training set, without DAgger.

We evaluate each model on the validation dataset using the following metrics:

• "E %err": the error in predicted energy, expressed as a percentage of the true energy;

• "G-sim": the cosine similarity between predicted and true gradients;

• "Hvp-sim": the cosine similarity between predicted and true Hessian-vector products.

Results are shown below. For the independent variables, a value of ’1’ indicates that method or

technique was turned on, while a value of ’0’ indicates it was turned off.

Each design choice improves the validation metrics. "Remove rigid" has marginal impact, as our

training displacements contain little rigid body transformation. We leave this feature in as it causes

no harm; as it improved performance under earlier dataset creation methods which resulted in more

rigid body translation; and as removing translations before computing energy is necessary to be able

to compose energy surrogates by tiling.

84

B.7 Finite element baselines

We generate meshes for the finite element baselines using two parameters: pore resolution, and

minimum mesh resolution. Firstly, for each pore in the cellular solid, we generate a polygon

representing that pore using a number of points equal to pore resolution. We let the material domain

be the overall volume of the solid with these polygons subtracted. Next, we generate a mesh over the

material domain using mshr’s automated mesh generation routine, passing as resolution minimum

mesh resolution multiplied by the number of cells. In mshr, the resolution parameter controls the

maximum cell size, which is the diameter of the domain’s bounding circle divided by the resolution.

It should be noted that cells can be much smaller than this maximum size, or there can be many

more cells than the resolution parameter would imply, as mshr will place one cell vertex on each

point used to construct the domain geometry (i.e. each point in the pore polygon).

B.8 Benchmark visualizations

In the following pages we visualize the solutions found for each pore by each FEA mesh and by CES.

For each pore we use six different finite element meshes. These respectively used [4, 8, 16, 32, 48, 64]

points used to define the geometry of each pore, and minimum of [1, 2, 4, 8, 12, 16] internal mesh

vertices along a given axis per pore. Given these parameters and the geometry of the material domain,

meshes were created using the automatic mesh generation tool from mshr (the mesh generation

component of FEniCS). We include the number of degrees of freedom in the finite element basis in

each plot. We superimpose the solution found with CES in red dots on the solution found with FEA.

The CES solution has 690 degrees of freedom in all cases.

85

B.8.1 Compression

86

87

88

89

90

91

92

B.8.2 Tension

93

94

95

96

97

98

99

Appendix C

Appendix for Chapter 3

100

C.1 Algorithm pseudocode

Algorithm 1: Optimization with randomized telescopes
Input: initial parameter θ, gradient routine g(θ, i) which returns Ḡi(θ), compute costs C̄,

exponential decay α, tuning frequency K, horizon H̄, reference learning rate η̄

Initialize B = 0, next_tune= 0, Di,j = 0

repeat

if next_tune<= B then

D̄, q,W, S ← tune(θ, D̄, g, C̄, α, H̄)

expectedCompute, expectedSquaredNorm = compute_and_variance(D̄, C̄, S)

η ← η̄ expectedSquaredNorm
D̄0,H̄

B+ =
∑H̄
i=1 C̄(H̄)

next_tune + = C̄(H̄)

end if

N ∼ q

for n = 1 to N do

Gn ← g(θ, S[n])

end for

Ĝ←
∑N
n=1GnW (n,N)

θ ← θ − ηĜ

if compute reused then

B+ = C̄(S[N])

else

B+ =
∑N
n=1 C̄(S[n])

end if

until converged

101

Algorithm 2: tune
Input: current parameter θ, current squared distance estimates D̄i,j , gradient routine g(θ, i)

which returns Ḡi(θ), compute costs C̄, exponential decay α, horizon H̄

Ḡ0(θ)← 0

for i = 1 to H̄ do

Ḡi(θ)← g(θ, i)

end for

for i = 0 to H̄ do

for j = 1 to H̄ do

Di,j ← ||Gi −Gj ||22

end for

end for

D̄ ← αD̄ + (1− α)D

S ← greedy_subsequence_select(D̄, C̄)

q,W ← q_and_W (D̄, C̄, S)

Return: updated estimates D̄i,j , sampling distribution q, weight function W , and subsequence S

102

Algorithm 3: greedy_subsequence_select
Input: Norm estimates D̄, compute costs C̄

Initialize N = len(C)

Initialize S+ = [N], S− = [1, ..., N], converged=FALSE, bestAddCost=cost(D̄, S+, C̄),

bestRemoveCost=cost(D̄, S−, C̄)

while not converged do

for i ∈ [i for i ∈ [1...N] if not i ∈ S+] do

trialS ←sort(S+ + [i])

trialCost←cost(D̄, C̄,trialS)

if trialCost < bestAddCost then

S+ ←trialS

bestAddCost←trialCost

converged ← False

BREAK

else

converged ← True

end if

end for

end while

converged ← False

while not converged do

for i ∈ [i for i ∈ S− ifi 6= N do

trialS ← [j for j ∈ S−ifj! = i]

trialCost←sequence_cost(D̄, C, trialS)

if trialCost < bestRemoveCost then

S− ←trialS

bestRemoveCost←trialCost

converged ← False

BREAK

else

converged ← True

end if

end for

end while

if bestRemoveCost> bestAddCost then

Return: S−

else

Return: S+

end if

103

Algorithm 4: compute_and_variance
Input: Norm estimates D̄, compute costs C̄, sequence S

q, W ← q_and_W (D̄, C̄, S)

expectedCompute ←
∑
i∈[1...|S|] q(S[i]])C̄(S[i])

if RT-SS then

expectedSquaredNorm ←
∑
i∈[1...|S|] q(S[i]])W (S[i], S[i])D̄S[i−1],S[i]

else if RT-RR then

expectedSquaredNorm ←
∑
i∈[1...|S|]

∑
j∈[1...i] q(S[i]])W (S[j], S[i])D̄S[j],S[i]

else

Undefined: must specify RT-SS or RT-RR

end if

Return: expectedCompute, expectedSquaredNorm

Algorithm 5: sequence_cost
Input: Norm estimates D̄, compute costs C̄, sequence S

expectedCompute, expectedSquaredNorm = compute_and_variance(D̄, C̄, S)

Return: expectedCompute * expectedSquaredNorm

Algorithm 6: q_and_W
Input: D̄, C̄, and S

if RT-SS then

q(N)←
√

D̄S[N],S[N−1]

C̄(S[n])

W (n,N)← 1
q(N)1{n = N}

else if RT-RR then

Q̃(N)←
√

D̄S[N],S[N−1]

C̄(S[n])−C̄(S[n−1])

(̃q)(N)←max(0, Q̃(N)− Q̃(N − 1))

q(N)← q̃(N)∑
i q̃(i)

W (n,N)← 1
1−

∑
i q(i)

1{n ≤ N}

else

Undefined: must specify RT-SS or RT-RR

end if

Return: q, W

104

C.2 Proofs

C.2.1 Proofs for section 2

Proposition 3.2.1

Unbiasedness of RT estimators. The RT estimators in (3.2) are unbiased estimators of YH as

long as

EN∼q[W (n,N)1{N ≥ n}] =

H∑
N=n

W (n,N)q(N) = 1 ∀n .

Proof. A randomized telescope estimator which satisfies the above linear constraint condition has

expectation:

E[ŶH] =

H∑
N=1

q(N)

N∑
n=1

W (n,N)∆n

=

H∑
n=1

H∑
N=1

∆nW (n,N)q(N)1{n ≤ N}

=

H∑
n=1

∆n

H∑
N=n

W (n,N)q(N) =

H∑
n=1

∆n = YH

C.2.2 Proofs for section 4

Theorem 3.4.1

Bounded variance and compute with polynomial convergence of ψ. Assume ψ converges

according to ψn ≤ c
(n)p or faster, for constants p > 0 and c > 0. Choose the RT-SS estimator with

q(n) ∝ 1/((n)p+1/2). The resulting estimator Ĝ achieves expected compute C ≤ (Hp−
1
2

H)2, where HiH

is theHth generalized harmonic number of order i, and expected squared norm E[||Ĝ||22] ≤ c2ψ(Hp−
1
2

H)2 := G̃2.

The limit limH→∞H
p− 1

2

H is finite iff p > 3
2 , in which case it is given by the Riemannian zeta func-

tion, limH→∞H
p− 1

2

H = ζ(p− 1
2). Accordingly, the estimator achieves horizon-agnostic variance and

expected compute bounds iff p > 3
2 .

Proof. Begin by noting the RT-SS estimator returns ∆n

qn
with probability q(n). Let q̄(n) = 1

np+ 1
2

and
∑H
n=1 q̄(n) = Z, such that q(n) = q̄(n)

Z . First, note Z =
∑H
n=1

1

np+ 1
2

= Hp+
1
2

H . Now inspect the

105

expected squared norm E||Ĝ||22:

H∑
n=1

q(n)||∆n

qn
||22 =

H∑
n=1

q(n)
||∆n||22
q2
n

= Z

H∑
n=1

q̄(n)
||∆n||22
q̄2
n

≤ Zc2ψ
H∑
n=1

q̄(n)
n2p+1

n2p

= Zc2ψ

H∑
n=1

n2p+1

n3p+ 1
2

= Zc2ψ

H∑
n=1

1

np−
1
2

= Zc2ψH
p− 1

2

H

= c2ψH
p− 1

2

H Hp+
1
2

H

≤ c2ψ(Hp−
1
2

H)2

Now inspect the expected compute, En∼qn:

En∼q =

N∑
n=1

q(n)n

= Z

H∑
n=1

n

np+
1
2

= Z

H∑
n=1

1

np−
1
2

= ZHp−
1
2

H

= Hp−
1
2

H Hp+
1
2

H

≤ (Hp−
1
2

H)2

Theorem 3.4.2

Bounded variance and compute with geometric convergence of ψ. Assume ψn converges

according to ψn ≤ cpn, or faster, for 0 < p < 1. Choose RT-SS and with q(n) ∝ pn. The resulting esti-

mator Ĝ achieves expected compute C ≤ (1− p)−2 and expected squared norm ||Ĝ||22 ≤ c
(1−p)2 := G̃2.

Thus, the estimator achieves horizon-agnostic variance and expected compute bounds for all 0 < p < 1.

106

Proof. Let q(n) = q̄(n)
Z , for q̄(n) = pn. Note Z =

∑H
n=1 p

n = p 1−pH
1−p ≤

1
1−p . Now, note ψn = cψ q̄(n).

It follows

En∼q||
∆n

q(n)
||22 =

H∑
n=1

q(n)
||∆n||22
q(n)2

≤
H∑
n=1

q(n)
ψ2
n

q(n)2

=≤ c2ψ
H∑
n=1

q(n)
q̄(n)2

q(n)2

= c2ψZ
2
H∑
n=1

q(n)

= c2ψZ
2

Now consider the expected compute. We have

En∼qn =

N∑
n=1

nq(n)

=

N∑
n=1

npn

Z

=
1

Z

N∑
n=1

npn

= p
1

Z

1 +HpH+1 − (H + 1)pH

(1− p)2

=
1 +HpH+1 − (H + 1)pH

(1− p)(1− pH)

≤ 1

(1− p)(1− pH)

≤ 1

(1− p)2

Theorem 3.4.3

Asymptotic regret bounds for optimizing infinite-horizon programs. Assume the setting

from 3.4.1 or 3.4.2, and the corresponding C and G̃ from those theorems. Let Rt be the instantaneous

regret at the tth step of optimization, Rt = L(θt)−minθ L(θ). Let t(B) be the greatest t such that

a computational budget B is not exceeded. Use online gradient descent with step size ηt = D√
tE[||Ĝ||22]

.

As B →∞, the asymptotic instantaneous regret is bounded by Rt(B) ≤ O(G̃D
√

C
B), independent

107

of H.

Proof. First, we control t(B) using the central limit theorem. Note t → ∞ ⇐⇒ B(t) → ∞.

Consider B as a function B(t) of t. We have B(t) =
∑t
τ=1Nt, where N ∼ q. Thus,

B(t)
t → EN∼qN

by the central limit theorem. This implies that in the limit, t = B
C .

To complete the proof, plug in t(B) and ηt, as well as the upper bound on squared norm

E||Ĝ||22 ≤ G̃2 and upper bound on diameter D, into standard results for stochastic gradient descent

with convex loss functions (e.g. section 3.4 in Hazan et al. (2016))

C.2.3 Proofs for section 5

Theorem 3.5.1

Optimality of RT-SS under adversarial correlation. Consider the family of estimators pre-

sented in Equation 3.2. Assume θ, ∇θ, and G are univariate. For any fixed sampling distribution q,

the single-sample RT estimator RT-SS minimizes the worst-case variance of Ĝ across an adversarial

choice of covariances Cov(∆i,∆j) ≤
√

Var(∆i)
√

Var(∆j).

Proof. Recall Ĝ =
∑N
n=0 ∆nW (n,N). Let σ2

i,j = Cov(∆i,∆j) and σ2
i = Var(∆i). The variance of Ĝ

is:

Var(Ĝ) =
∑
N

q(N)
[N∑
i=0

N∑
j=0

W (i,N)W (j,N)σ2
i,j

]

≤
∑
N

q(N)
[N∑
i=0

N∑
j=0

W (i,N)W (j,N)σiσj

]

=
∑
N

q(N)
(N∑
n=0

W (n,N)σn

)2

Note the above bound is tight as the adversary can choose Cov(∆i,∆j) = σiσj . Introduce ρ(n,N) =

W (n,N)q(N), and note that the constraint from proposition 3.2.1 can equivalently be stated as∑
N≥n ρ(n,N) = 1∀n. We have the variance:

Var(Ĝ|N) ≤
∑
N

1

q(N)

(N∑
n=0

ρ(n,N)σn

)2

Consider finding ρ(n,N) which minimizes the variance for an arbitrary q. The constrained optimiza-

108

tion has the Lagrangian:

J =
(∑

N

1

q(N)
(

N∑
n=0

ρ(n,N)σn)2
)

+
∑
n

λn(
∑
N≥n

ρ(n,N)− 1)

We can accordingly optimize by taking derivatives:

dJ

dρ(n,N)
= 2Cq(N)(

N∑
i=0

w(i,N)σi)σn + λn

dJ

dρ(n,N)
= 0 =⇒ σnq(N)

N∑
i=0

w(i,N)σi = kn

=⇒ σn

N∑
i=0

ρ(i,N)σi = kn∀N ≥ n

=⇒ ρ(n,N) = 0∀N > n

Theorem 3.5.2

Optimal q under adversarial correlation. Consider the family of estimators presented in Equa-

tion 3.2. Assume Cov(∆i,∆i) and Cov(∆i,∆j) are diagonal. The RT-SS estimator with qn ∝
√

E[||∆n||22
C(n)

maximizes the ROE across an adversarial choice of diagonal covariance matrices Cov(∆i,∆j)kk ≤
√

Cov(∆i,∆i)kkCov(∆j ,∆j)kk.

Proof. First, note that by the assumption of diagonal covariance between all terms, the expected

squared norm decomposes over indices k:

E||Ĝ||22 =
∑
k

EĜ[k]2

For all choices of q, the RT-SS estimator minimizes the worst-case variance and thus (due to

unbiasedness) the expected squared value of each entry in Ĝ. Because the squared norm decomposes,

the RT-SS estimator minimizes the squared norm for all q.

It remains to optimize q. We know ρ(n,N) = 0∀N > n. Therefore to satisfy the constraint, we

have ρ(N,N) = 1. It follows that:

ROE−1 =
(∑
N

q(N)C(N)
)(∑

N

E||∆N ||22
q(N)

)

109

We require
∑
N q(N) = 1. The constrained optimization has the Lagrangian:

J =
(∑

N

q(N)C(N)
)(∑

N

E||∆N ||22
q(N)

)
+ λ(

∑
N

q(N)− 1)

Let C =
(∑

N q(N)C(N)
)
and V =

(∑
N

E||∆N ||22
q(N)

)
. We optimize q(N) by taking the derivative of

the inverse ROE:

dROE−1

dq(N)
= C(N)V − C σ2

N

q(N)2

dROE−1

dq(N)
= 0 =⇒ q(N)2 ∝ E||∆N ||22C

C(N)V

=⇒ q(N) ∝

√
E||∆N ||22
C(N)

Theorem 3.5.3

Optimality of RT-RR under independence. Consider the family of estimators presented in

Eq. 3.2. Assume the ∆j are univariate. When the ∆j are uncorrelated, for any importance sampling

distribution q, the Russian roulette estimator achieves the minimum variance in this family and thus

maximizes the optimization efficiency lower bound.

Proof. By independence, we have E
(∑

nW (n,N)∆n

)2
=
∑
nW (n,N)2E∆2

n. It follows that an RT

estimator has variance:

Var(Ĝ) =
∑
N

q(N)
∑
n≤N

W (n,N)2E∆2
n

=
∑
N

1

q(N)

∑
n≤N

ρ(n,N)2E∆2
n

Recall the constraint in proposition 3.2.1 requires
∑
N≥n ρ(n,N) = 1 for all n. The Lagrangian of

the constrained minimization of Var(Ĝ) with respect to ρ is:

J = Var(Ĝ) +
∑
n

λn(
∑
N≥n

ρn − 1)

110

We optimize ρ by finding the minimum of the Lagrangian:

dJ

dρ(n,N)
=

2

q(N)
ρ(n,N)E∆2

n + λn

dJ

dρ(n,N)
= 0 =⇒ ρ(n,N)

q(N)
= − λn

2E∆2
n

=⇒ W (n,N) = − λn
2E∆2

n

, which is independent of N

=⇒ W (n,N) =
1∑

N ′≥n q(N
′)

to fulfill the constraint in proposition 3.2.1

Theorem 3.5.4

Optimal q under independence. Consider the family of estimators presented in Equation 3.2.

Assume Cov(∆i,∆i) is diagonal and ∆i and ∆j are independent. The RT-RR estimator with

Q(i) ∝
√

E[||∆i||22
C(i)−C(i−1)], where Q(i) = Pr(n ≥ i) =

∑H
j=i q(j), maximizes the ROE.

Proof. First note that by theorem 3.5.3, for any q and for each element in the vector Ĝ, the RT-RR

estimator minimizes the variance of that element. Now note that due to independence of ∆i,∆j and

diagonality of Cov(∆i,∆i):

E||
N∑
n=1

W (n,N)∆n||22 =

N∑
n=1

W (n,N)E||∆n||22

=
∑
k

N∑
n=1

W (n,N)E∆n[k]2 =
∑
k

EĜ[k]2

As the RT-RR estimator minimizes EĜ[k]2 for each coordinate k, it also minimizes E||Ĝ||22. It remains

to optimize Q. Consider the inverse ROE of the RT-RR estimator. By independence we have:

ROE(Ĝ)−1 = E||Ĝ||22EC =
(∑

N

q(N)
∑
n≤N

1

Q(n)2
E||∆n||22

)(∑
N

q(N)C(N)
)

Take the gradient of the inverse optimization efficiency lower bound w.r.t. q(n):

dROE(Ĝ)−1

dq(N)
= C(N)E||Ĝ||22 +

∑
n≤N

1

Q(n)2
E||∆n||22 −

∑
i

q(i)
∑

j≤min(i,N)

2

Q(j)3
E||∆j ||22

111

∑
i

q(i)
∑

j≤min(i,N)

2

Q(j)3
E||∆j ||22 =

∑
j≤N

2

Q(j)2
E||∆j ||22

∑
i q(i)1{i ≥ j}

Q(j)

=
∑
j≤N

2

Q(j)2
E||∆j ||22 by definition of Q(j)

=⇒ dROE(Ĝ)−1

dq(N)
= C(N)E||Ĝ||22 −

∑
n≤N

1

Q(n)2
E||∆n||22

Now optimize the objective w.r.t. Q by finding the critical point:

dROE(Ĝ)−1

dq(N)
= 0 =⇒ C(N)E||Ĝ||22 =

∑
n≤N

1

Q(n)2
E||∆n||22

=⇒ E||Ĝ||22
(
C(N)− C(N − 1)

)
=

1

2

E||∆N ||22
Q(N)2

=⇒ Q(N)2 ∝ E||∆n||22
C(N)− C(N − 1)

112

