
Bayesian Methods for Discovering Structure in
Neural Spike Trains

Citation
Linderman, Scott Warren. 2016. Bayesian Methods for Discovering Structure in Neural Spike
Trains. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:33493391

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:33493391
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Bayesian%20Methods%20for%20Discovering%20Structure%20in%20Neural%20Spike%20Trains&community=1/1&collection=1/4927603&owningCollection1/4927603&harvardAuthors=3582a4bafd064b31b7e3ace19e509beb&departmentEngineering%20and%20Applied%20Sciences%20-%20Computer%20Science
https://dash.harvard.edu/pages/accessibility

Bayesian Methods for Discovering
Structure in Neural Spike Trains

a dissertation presented
by

Scott Warren Linderman
to

The John A. Paulson School of Engineering and Applied Sciences

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy
in the subject of
Computer Science

Harvard University
Cambridge, Massachusetts

May 2016

©2016 Scott Warren Linderman
all rights reserved.

Thesis advisors: Professors Ryan P. Adams and Leslie G. Valiant Scott Warren Linderman

Bayesian Methods for Discovering Structure in
Neural Spike Trains

Abstract

Neuroscience is entering an exciting new age. Modern recording technologies enable simultaneous
measurements of thousands of neurons in organisms performing complex behaviors. Such record-
ings offer an unprecedented opportunity to glean insight into the mechanistic underpinnings of
intelligence, but they also present an extraordinary statistical and computational challenge: how do
we make sense of these large scale recordings? This thesis develops a suite of tools that instantiate
hypotheses about neural computation in the form of probabilistic models and a corresponding set
of Bayesian inference algorithms that efficiently fit these models to neural spike trains. From the pos-
terior distribution of model parameters and variables, we seek to advance our understanding of how
the brain works.

Concretely, the challenge is to hypothesize latent structure in neural populations, encode that
structure in a probabilistic model, and efficiently fit the model to neural spike trains. To surmount
this challenge, we introduce a collection of structural motifs, the design patterns from which we con-
struct interpretable models. In particular, we focus on random network models, which provide an
intuitive bridge between latent types and features of neurons and the temporal dynamics of neural
populations. In order to reconcile these models with the discrete nature of spike trains, we build on
the Hawkes process — a multivariate generalization of the Poisson process — and its discrete time
analogue, the linear autoregressive Poisson model. By leveraging the linear nature of these mod-
els and the Poisson superposition principle, we derive elegant auxiliary variable formulations and
efficient inference algorithms. We then generalize these to nonlinear and nonstationary models of
neural spike trains and take advantage of the Pólya-gamma augmentation to develop novel Markov
chain Monte Carlo (MCMC) inference algorithms. In a variety of real neural recordings, we show
how our methods reveal interpretable structure underlying neural spike trains.

In the latter chapters, we shift our focus from autoregressive models to latent state space models
of neural activity. We perform an empirical study of Bayesian nonparametric methods for hidden
Markov models of neural spike trains. Then, we develop an MCMC algorithm for switching linear

iii

Thesis advisors: Professors Ryan P. Adams and Leslie G. Valiant Scott Warren Linderman

dynamical systems with discrete observations and a novel algorithm for sampling Pólya-gamma ran-
dom variables that enables efficient annealed importance sampling for model comparison.

Finally, we consider the “Bayesian brain” hypothesis — the hypothesis that neural circuits are
themselves performing Bayesian inference. We show how one particular implementation of this hy-
pothesis implies autoregressive dynamics of the form studied in earlier chapters, thereby providing
a theoretical interpretation of our probabilistic models. This closes the loop, connecting top-down
theory with bottom-up inferences, and suggests a path toward translating large scale recording capa-
bilities into new insights about neural computation.

iv

Contents

1 Introduction 1
1.1 Neurons, Spikes, and Computation . 2
1.2 Discovering Structure: Types, Features, Networks, and States 4
1.3 A Bayesian Approach . 6
1.4 Summary of Contributions . 8

2 Background 10
2.1 Generative Probabilistic Models . 10
2.2 Motifs of Time Series Models . 16
2.3 Bayesian Inference . 22
2.4 Conclusion . 30

3 Hawkes Processes with Latent Network Structure 31
3.1 Probabilistic Network Models . 33
3.2 Hawkes Processes . 37
3.3 The Network Hawkes Model . 41
3.4 Bayesian Inference with Gibbs Sampling . 44
3.5 Synthetic Results . 49
3.6 Modeling Hippocampal Place Cells . 50
3.7 Trades on the S&P 100 . 53
3.8 Gangs of Chicago . 55
3.9 Related Work . 57
3.10 Conclusion . 59

4 Discrete-Time Linear Autoregressive Poisson Models 60
4.1 Probabilistic Model . 61
4.2 Inference with Gibbs Sampling . 63
4.3 Stochastic Variational Inference . 65
4.4 Synthetic Results . 69
4.5 Connectomics Results . 70

v

4.6 Conclusion . 71

5 Networks with Nonlinear Autoregressive Dynamics 73
5.1 Probabilistic Model . 75
5.2 Inference via Gibbs Sampling . 78
5.3 Results . 84
5.4 Discussion . 92
5.5 Conclusion . 94

6 Dynamic Network Models 96
6.1 A Biophysical Interpretation of the GLM . 97
6.2 A Sparse Time-Varying Generalized Linear Model 99
6.3 Inference via Particle MCMC . 102
6.4 Evaluation . 105
6.5 Discussion . 109

7 Bayesian Nonparametric Hidden Markov Models 111
7.1 Probabilistic Model . 112
7.2 Markov Chain Monte Carlo Inference . 115
7.3 Variational Inference . 121
7.4 Synthetic Data Experiments . 123
7.5 Hippocampal Place Cells . 128
7.6 Extensions . 133
7.7 Conclusion . 135

8 Switching Linear Dynamical Systems with Count Observations 136
8.1 A Hierarchy of Latent State Space Models . 137
8.2 Markov Chain Monte Carlo Inference . 139
8.3 Alternative Approaches . 145
8.4 Model Comparison via Marginal Likelihood Estimation 147
8.5 A Novel Sampling Algorithm for the Pólya-gamma Distribution 150
8.6 Conclusion . 154

9 Reverse Engineering Bayesian Computations from Spike Trains 156
9.1 The “Bayesian Brain” Hypothesis . 157
9.2 A Direct Distributed Representation of Probability Distributions 160

vi

9.3 Complexity of the Direct Distributed Representation 162
9.4 Bayesian Inference with Neural Dynamics . 170
9.5 Example of a Simple Mixture Model . 175
9.6 Reverse Engineering the Probabilistic Model from Spike Trains 177
9.7 Future Work . 180
9.8 Conclusion . 187

10 Conclusion 188
10.1 Toward Programmatic Models of Neural Computation 189
10.2 Toward Joint Models of Neural Activity, Behavior, and Environment 190

Appendix A Common Distributions 192

References 216

vii

Listing of figures

1.1 Box’s loop . 7

2.1 Simple neuron with up and down states . 11
2.2 Motifs of time series models . 17

3.1 Components of the network Hawkes model . 33
3.2 Examples of network models . 36
3.3 Illustration of a Hawkes process . 40
3.4 Distribution of the maximum eigenvalue for i.i.d. random graphs 43
3.5 Synthetic link prediction and predictive log likelihood 50
3.6 Inferred weights and locations of hippocampal place cells 51
3.7 Financial embedding and dynamics eigenvectors 54
3.8 Inferred gang interactions in the city of Chicago 56

4.1 Runtime comparison of continuous and discrete time Hawkes models 65
4.2 Predictive log likelihood versus wall clock time . 69
4.3 Discrete time Hawkes process applied to connectomics challenge 70

5.1 Retinal ganglion cell types and locations inferred from spike trains alone 85
5.2 Hippocampal place fields inferred from spike trains 87
5.3 Synthetic RGC results . 89
5.4 Inferred connection probabilities for synthetic RGC data 91
5.5 Scalability of the proposed Bayesian inference algorithm 92

6.1 A simple example of a GLM with time-varying synaptic weights 98
6.2 Synaptic weight trajectories for synthetic data from a time-varying GLM 106
6.3 Dynamic link prediction on data generated from NEURON 107
6.4 Synaptic weight trajectories for data generated from NEURON 109

7.1 A synthetic dataset drawn from an HDP-HMM 123
7.2 Inference results for an HDP-HMM fit to synthetic data 127

viii

7.3 Inferred parameters of the HDP-HMM for synthetic data 128
7.4 Trajectory of the freely foraging rat during hippocampal recording 129
7.5 Place fields inferred by an HDP-HMM applied to rat hippocampal data 130
7.6 Inferred parameters of the HDP-HMM for hippocampal data 131
7.7 Effect of concentration hyperparameters . 132
7.8 True and inferred place field comparison . 133

8.1 Special cases of the switching linear dynamical system. Adapted from Figure 2.2. . . 139
8.2 Rejection sampling algorithm for the Pólya-gamma distribution 151

9.1 Example of a population of neurons encoding a probability distribution 161
9.2 Theoretical bounds on expected spike count and physiological parameters 168
9.3 Empirical and theoretical ℓ∞-distance . 169
9.4 Demo of neural inference in a simple mixture model 176
9.5 Reverse engineering probabilistic models from neural spike trains 179

ix

Acknowledgments

I am extraordinarily fortunate to have had two fantastic advisors, Leslie Valiant and Ryan Adams.
Les has been an amazing source of wisdom, perspective, and inspiration. I am thankful for his pa-
tience and his guidance in sifting through the excitement of the moment and identifying lasting
questions. The first class I attended at Harvard was Ryan’s first lecture as a professor, and that for-
tuitous meeting kicked off five of the most rewarding years of my life. Of all that he has shared with
me — a wealth of technical knowledge, an ability to articulate ideas, and an appreciation for clear
figures and neat handwriting — I am most grateful for the joy he has helped me find in research.

I also wish to thank Jonathan Pillow, Sam Gershman, and Haim Sompolinsky, who have been
invaluable sources of mentorship and advice. Their generous sharing of time and ideas has had a
profound impact on my perspective of computational neuroscience.

I cannot imagine a more fun and intellectually stimulating community than the Harvard Intel-
ligent Probabilistic Systems group. I am grateful to David Duvenaud, Miguel Hernandez-Lobato,
Dougal Maclaurin, Andy Miller, Oren Rippel, Yakir Reshef, and Jasper Snoek for all the “unsuper-
vised learning” I’ve benefitted from in MD209. I’d particularly like to thank Matt Johnson, who
has literally taught me everything I know about many subjects. His enthusiasm and encouragement
have made me a better researcher and a stronger person.

I am indebted to Chris Stock and Aaron Tucker for working with me during their undergraduate
years. Whatever I may have taught them about computational neuroscience surely pales in compari-
son to what they taught me about advising. Their hard work has shaped many pages of this thesis.

I thank my friends in the theory group — Varun, Thomas, Mark, Jon, and Justin — for push-
ing me to think abstractly, and I thank my housemates in Cambridge — Ryan, Bill, James, Chris,
Eddie, and Steve — for keeping me grounded. My graduate years have been blessed by many other
wonderful friends, and I thank them for all of the fond memories.

My parents, Richard and Linnea, have always encouraged me to pursue this dream, and I am for-
ever grateful for all the opportunities they have given me. I thank my brothers, Stephen, Matthew,
and Randy, for never letting me miss a beat. To Stephen, who once warned me that if I delayed on
graduate school I might not finish before the age of thirty, I say: five months to spare!

Above all, my thanks go to my wife, Anne, who has been my partner throughout this great ad-
venture. This thesis is a testament to her unbounded love and support.

x

1
Introduction

Neuroscience is undergoing a data-driven revolution. In laboratories around the world, optical tools
are illuminating thousands of neurons at a time (Kerr and Denk, 2008). For some organisms, we
can now monitor large fractions of the neurons in the brain (Ahrens et al., 2013; Prevedel et al.,
2014; Lemon et al., 2015). Not long ago, this immense recording capability would have been mind-
boggling to the average practitioner poking around in the dark, hoping to record from a handful
of neurons. Complementing these recording capabilities, recent advances in connectomics — the
mapping of synaptic connectivity (Sporns et al., 2005) — are providing a more complete atlas of the
wiring diagram that underlies neural activity (Lichtman et al., 2008; Helmstaedter et al., 2013; Oh
et al., 2014). Likewise, sophisticated monitoring and processing methods (e.g. Berman et al., 2014;
Wiltschko et al., 2015) are providing rich measurements of the natural behavior that this activity
gives rise to.

These unprecedented technological capabilities are leading to a fundamental paradigm shift. The
scientific process of proposing hypotheses, testing them against experimental observations, and re-
vising them accordingly, is becoming increasingly data-driven. Rather than collecting data to test a
specific hypothesis, we can now collect large-scale recordings in relatively unstructured experimental
setups (e.g. from freely behaving animals) and use statistical structure in the data to guide us toward
hypotheses. Of course, there is no “free lunch” — we must still specify what types of structure to
look for. For example, when we cluster neuronal data we are hypothesizing that there are different

1

types of neurons, and when we apply principal components analysis to neural population record-
ings we are assuming that neural activity reflects a low-dimensional latent state. As we move toward
this more data-driven paradigm, we are presented with a challenge: how do we formulate models
that capture our intuitions and hypotheses about neural computation, how do we fit these models
to large scale recordings, and how do we revise our models based on what we have learned?

This thesis builds a sequence of modeling and inference tools to address this challenge. We build
tools for analyzing neural spike trains, which are sequences of discrete events in time, and we use
probabilistic models to compose flexible hypotheses that allow us to discover structure in the dynam-
ics of spike trains. The workhorse of this process is a set of Bayesian methods, statistical inference
algorithms that take in a neural recording and output a distribution over parameters and variables of
our model. We begin by describing each of these these in turn.

1.1 Neurons, Spikes, and Computation

The human brain is a three pound ball of densely packed cells. It is soft, with a consistency like that
of tofu. Amazingly, from this curd-like mass of cells, our mental faculties arise. About half of the
roughly 170 billion cells in our brain are neurons, widely believed to be the fundamental units of
computation (Dayan and Abbott, 2001). Neurons are electrically excitable cells that contain an ionic
soup of charged atoms like sodium, potassium, and calcium, which together maintain a difference in
electrical potential between the inside and the outside of the cell membrane (Kandel et al., 2000).

In most neurons, the cell membrane is littered with voltage-gated ion channels. At rest, these
channels are closed, but if the membrane potential is excited above a certain threshold, some chan-
nels rapidly start to open, initiating an action potential. As described in the seminal work of Hodgkin
and Huxley (1952), positively charged sodium ions are first to rush into the cell, causing a further in-
crease in membrane potential and leading more channels to open. The upswing in membrane po-
tential eventually causes a reversal in cell polarity and the inactivation of sodium channels. At the
same time, potassium channels open, allowing an efflux of positively charged potassium ions. To-
gether, these halt the rising membrane potential and drive it back down toward its resting state. This
brief action potential, or “spike,” takes place in just a few milliseconds.

The first challenge of deciphering neural computation is understanding how information is en-
coded in patterns of coordinated spiking activity across neural populations. To first approximation,
spikes are discrete events in time. That is, in a short enough window of time, a neuron either does
or does not fire an action potential. Much progress has been made in understanding how sensory

2

neurons digitize continuous signals and how the activity of motor neurons innervates muscles and
drives behavior (Rieke et al., 1999), yet how internal states, plans, goals, decisions, and thoughts are
encoded remains largely a mystery.

The second challenge is understanding how this information is transformed over time. The neu-
rons in our brain are connected by about 1014 synapses (Kandel et al., 2000). When a pre-synaptic
neuron fires an action potential, neurotransmitters are released that then bind with receptors on the
post-synaptic neuron, causing its ion channels to open and allowing current to flow into or out of
the post-synaptic cell. These currents induce brief changes in the membrane potential of the down-
stream cell called post-synaptic potentials (PSPs). Depending on the direction of current, the PSP
will be either excitatory, making the downstream neuron more likely to spike, or inhibitory, sup-
pressing post-synaptic spiking. The probability of neurotransmitter release and the number of
post-synaptic receptors together determine the “strength” of the synapse, which is manifest in the
amplitude of the PSP (Cowan et al., 2003).

This web of synaptic connections imbues neural circuits with complex dynamics that govern
how patterns of neural activity evolve over time, along with the information they encode. It is these
dynamics that actually perform computation — the transformation of an input into an output.
While these dynamics have been very well studied at the level of single connections between pairs of
neurons, the dynamics of large networks of interconnected neurons is at the frontier of research.

Perhaps the most fundamental aspect of intelligence is our ability to learn, to store memories,
and to generalize from past experience. In neural circuits, learning is most directly associated with
the process of synaptic plasticity. In response to coordinated patterns of pre- and post-synaptic
spiking, synapses adapt their strength. This synaptic plasticity leads to changes in the dynamics of
neural circuits. In some cases, this plasticity leads to the creation of new associations that support
generalization from noisy or partial sensory input. Thus, a third challenge of deciphering neural
computation is understanding the processes of learning that cause neural dynamics to evolve in an
activity-dependent manner.

Our goal, as neuroscientists, is to address these three challenges — encoding, dynamics, and
learning — by searching for patterns in large-scale recordings of neural spike trains, simultaneously
recorded time series of spiking activity in populations of neurons. While this type of data is very
hard to collect in humans, it is widely collected in worms, fish, flies, mice, rats, monkeys, and a host
of other model organisms. Still, these model organisms have taught us a great deal about the work-
ings of human brains and intelligence. This thesis does not focus on the unique aspects of any single
organism or brain region, but rather on the general challenges associated with modeling structure in

3

time series of discrete events that are common to all neural spike trains.

1.2 Discovering Structure: Types, Features, Networks, and States

Discovering structure is primarily about finding meaningful abstractions. While neurons, spikes,
and synapses are the elementary building blocks of many models of neural computation, our goal
is to connect this level of detail to more abstract theories of computation. Just as our knowledge
of in silico computation is partitioned into a hierarchy of concepts — from transistors, logic gates,
pipelines and processors, to assembly code, operating systems, algorithms and programs — our
knowledge of neural computation must also include a hierarchy of concepts and descriptions. Marr
(1982) proposed three levels of abstraction: the computational level, which concerns the inputs and
outputs of a system; the algorithmic level, which specifies the transformations between inputs and
outputs; and the implementation level, which focuses on how these transformations are realized
in neural substrates. From this perspective, our goal is to interpolate between neural spike trains,
typically associated with implementation level descriptions, and higher level abstractions, like those
hypothesized by algorithmic and computational theories. To do so, we compose our spike train
models out of a set of simple motifs that appear over and over again in models of neural computa-
tion.

1.2.1 Discrete Types and Low-Dimensional Features

Many successes of neuroscience have come from careful cataloging of neural types and features.
From the earliest investigations of Ramón y Cajal, it has been clear that the brain is made up of
anatomically distinct cell types (Cajal, 1899), but further classifications have been made on the ba-
sis of functional distinctions as well. Kuffler (1953) identified the response properties of “on” and
“off” ganglion cells in the retina, characterizing the ways in which these cells respond to light. Kuf-
fler’s students, Hubel and Wiesel, carried on this work, characterizing simple and complex cells in
visual cortex (Hubel and Wiesel, 1962) and eventually winning the Nobel Prize for their discoveries.
These are pioneering examples of a common theme in neuroscience: clustering cells into discrete
types that facilitate our understanding of neural computation. Indeed, the clustering of cells in the
early visual pathway continues to this day (Macosko et al., 2015; Sanes and Masland, 2015).

Complementing these classic examples of discrete subtypes of neurons are similarly compelling
examples of neurons characterized by continuous features. Most prominent among these are the
place cells of the hippocampus (O’Keefe and Nadel, 1978). These cells fire selectively when an ani-

4

mal is in a particular location in its environment. Thus, each cell is naturally associated with a con-
tinuous position in space. As we seek to make sense of spike trains from other complex neural cir-
cuits, discrete latent types and continuous latent features form one of the core building blocks in our
probabilistic modeling toolkit.

1.2.2 Networks and Dynamics

Networks play a central role in modern neuroscience: they enable us to reason about complex sys-
tems in terms of relationships among their constituent parts. Whether the nodes of the network
represent individual neurons in a “connectome” (e.g. Sporns et al., 2005), populations of cells in a
neural circuit (e.g. Felleman and Van Essen, 1991), voxels in an fMRI recording (e.g. Friston, 1994),
or idealized neurons in a theoretical model (e.g. Hopfield, 1982), networks tell us about the pairwise
relationships in large populations of nodes. Once we have extracted such a network, a great deal of
intuition can be gleaned from its aggregate properties (Bullmore and Sporns, 2009; Newman, 2003).
Moreover, the network itself can often be summarized in terms of latent types and features of nodes
that govern how likely any pair of nodes is to be connected (Goldenberg et al., 2010).

We often use networks to represent the dynamics of systems. For example, an edge in the network
may represent the influence that activity on one node exerts on the subsequent activity of another.
In this way, networks provide a simple summary of complex dynamics. Much of this thesis is de-
voted to learning network representations from neural spike trains, building on a rich body of exist-
ing work on generalized linear models for neural spike trains (Paninski, 2004; Truccolo et al., 2005;
Pillow et al., 2008). In these models, nodes correspond to the individual neurons in our dataset, and
the edges represent a probabilistic relationship between the spiking activity of one neuron and the
future firing rate of its downstream neighbors. By combining latent variable models for the network
with dynamics models for its edges, this thesis will construct sophisticated, hierarchical models for
dynamical spike trains.

1.2.3 Latent States of Neural Populations

Networks model dynamic data in terms of relationships between nodes, which are typically asso-
ciated with individual neurons in the generalized linear model. In some cases, however, it is more
natural to think about neural dynamics in terms of a latent state that evolves over time but cannot
be directly observed. For example, population activity might reflect a low-dimensional, continuous
latent state with smooth (Yu et al., 2009) or linear (Smith and Brown, 2003; Paninski et al., 2010)

5

dynamics, or a discrete latent state with Markovian dynamics (e.g. Jones et al., 2007; Latimer et al.,
2015). In these models, the firing rates of individual neurons are a function of the underlying latent
state.

By combining these simple building blocks — latent types and features, networks, and dynamic
latent states — we can express sophisticated hypotheses about the underlying structure in observed
neural spike trains. However, in order to determine this structure, we need to instantiate these hy-
potheses in the form of a model that we can fit and evaluate. Bayesian probabilistic models and in-
ference algorithms provide a principled means of tackling this problem.

1.3 A Bayesian Approach

Structural hypotheses specify how a set of parameters and latent variables give rise to patterns of
neural activity. These hypotheses are naturally formalized in terms of probabilistic generative mod-
els, which provide an intuitive way of expressing the joint probability of parameters, latent variables,
and observed data. Once formalized, we use the tools of Bayesian inference to compute the poste-
rior distribution over parameters and latent variables implied by a given spike train and our prior
beliefs, and use this posterior distribution to gain insight into the structure of the data and potential
shortcomings of our theories.

Recent decades have witnessed an explosion of interest in Bayesian machine learning methods,
and the development of both theoretical and analytical tools have led to the widespread adoption
of these techniques (Bishop, 2006; Murphy, 2012). Nevertheless, performing Bayesian inference
in sophisticated models will always be a challenge. The art of probabilistic modeling lies in balanc-
ing two objectives: designing models that capture the details of the generative processes underlying
our data, while simultaneously ensuring that these models admit efficient inference algorithms. To
achieve this balance, we often look for model-specific structure that we can exploit during inference.
This thesis is largely dedicated to developing algorithms that capitalize on the properties of models
in order to efficiently scale to large recordings.

Figure 1.1 outlines the process of model building. We begin by collecting data, in this case, large-
scale recordings of neural spike trains, and building a probabilistic model that captures our in-
tuitions and hypotheses about structure in that data. Given these two ingredients, we perform
Bayesian inference to compute the posterior distribution over structural variables and parameters.
Visualizing, analyzing, and exploring this posterior often lead to new insights and ways to think
about generative processes that can explain further structure in the data. We can also criticize the

6

Build Model

z1

s1 s2

z2

. . .

. . .

sT

zT

µ

π

Criticize ModelPerform Inference

p
(z
,
θ
|s
)

Collect Data

s

Analyze Posterior
z1 z2 zTz3 z4 . . .

Revise

“Box’s Loop”

T (s)

p
(T

(s
))

µ1 µ2

Figure 1.1: Box’s loop for hypothesis driven probabilistic modeling. Adapted fromBlei (2014).

model, formally, by assessing goodness-of-fit, evaluating predictive likelihoods, and performing pos-
terior predictive checks (Gelman et al., 2013). This leads to new hypotheses, which in turn lead to
new models and repetition of this process. Thus, model building is an interactive process in which
we are constantly adapting and refining hypotheses. Blei (2014), from whom this figure has been
adapted, calls this “Box’s loop,” a reference to the foundational work of Box (1980).

We are certainly not the first to adopt a Bayesian approach to modeling of neural data. Indeed,
probabilistic methods (e.g. Brillinger et al., 1976; Brillinger, 1988; Paninski, 2004; Truccolo et al.,
2005; Pillow et al., 2008), particularly Bayesian methods (e.g. Sahani, 1999; Rieke et al., 1999; Yu
et al., 2009; Park and Pillow, 2011; Macke et al., 2011), have played a major role in advancing our un-
derstanding of spike trains. We build on this foundation and specifically focus on expanding the
set of models, combining standard point process and spike count models with hierarchical prior
distributions that capture latent structure. To go along with these more sophisticated models, we
also derive efficient* Bayesian inference algorithms that take advantage of clever data augmentation
strategies. Together, these expand the repertoire of probabilistic models that we may leverage when

*We do not mean efficient in the formal, complexity-theoretic sense. Indeed, approximate Bayesian infer-
ence is, in the worst case, NP-hard (Dagum and Luby, 1993; Roth, 1996). We simply mean that the individual
iterations of our algorithm can be performed in low-order polynomial time and that these algorithms yield
good empirical results in a reasonable, if not provably polynomial, number of iterations.

7

looking for structure in neural data.

1.4 Summary of Contributions

This thesis consists of a sequence of probabilistic models and inference algorithms that capture in-
creasingly sophisticated structure in neural spike trains. While these models build upon one an-
other, layering in additional structural hypotheses and incorporating more and more detail, the
chapters can also be read independently without severe loss of clarity, especially by those who are
more versed in machine learning.

We begin with a brief overview of point processes, probabilistic modeling, and Bayesian inference
in Chapter 2. This lays the foundation for the methodological contributions in the remainder of this
thesis. We also introduce common notation for spike trains, firing rates, and latent variables of the
model. Readers who are well versed in probabilistic modeling may skip this chapter without much
harm.

Chapter 3 introduces our first probabilistic model for neural spike trains — a combination of
continuous time Hawkes processes and probabilistic network models. This is based on Linderman
and Adams (2014). However, since this is the first model of the thesis, we provide a more thorough
discussion of network models, Hawkes processes, and the steps in deriving an efficient Markov chain
Monte Carlo (MCMC) inference algorithm. This is also the only chapter that will apply these tech-
niques to spike trains from domains other than neuroscience, specifically, from finance and crimi-
nology.

Chapter 4 continues the focus on Hawkes processes and networks, but here we break from the
continuous time models of Chapter 3 and begin working in discrete time. The remainder of the
thesis continues in this vein. This chapter also introduces a scalable variational inference algorithm
that leverages the discrete model structure. This is based on Linderman and Adams (2015).

Chapter 5 reconsiders the linear interactions of Hawkes processes and develops a nonlinear au-
toregressive model for neural spike trains. Again, we use probabilistic network models as prior distri-
butions over the pattern of functional interaction, and in doing so, show that interesting represen-
tations of neural populations can be learned directly from the data. The key to efficient inference is
the Pólya-gamma augmentation — a recently developed method for performing Bayesian inference
in models with linear Gaussian structure and discrete observations (Polson et al., 2013). A prelimi-
nary version of this work was presented by Linderman et al. (2015).

Chapter 6 continues the network theme, but here we begin to transition from static models to

8

ones with dynamic latent states. Specifically, we adopt a mechanistic view of the network and treat
its connections as actual synapses. This leads to a consideration of the evolution of synaptic weights
over time. We construct a framework for modeling arbitrary synaptic plasticity rules and fitting
them with particle MCMC. This chapter is based on Linderman et al. (2014).

Chapter 7 departs from network models and instead considers dynamical discrete state space
models, specifically hidden Markov models (HMM), for neural data. We address a major challenge
in applying these well-known models, namely, selecting the number of latent states. By introducing
a hierarchical Dirichlet process (HDP) prior and both an MCMC and a variational inference algo-
rithm, we develop a Bayesian nonparametric solution to this problem. While this combination is
relatively well studied, these models are notoriously sensitive to hyperparameter settings. Thus, we
introduce a variety of methods for selecting hyperparameters and perform a thorough comparison
on real and synthetic data. This is based on Linderman et al. (2016a).

Building on the discrete state space models of the preceding chapter, Chapter 8 develops efficient
Bayesian inference algorithms for switching linear dynamical systems (SLDSs) with discrete count
observations. The Pólya-gamma augmentation once again makes Bayesian inference surprisingly
easy. Given these auxiliary variables, a host of tools for inference in Gaussian models is at our dis-
posal. We then turn to a major problem, that of model comparison. We derive a novel sampling al-
gorithm for the Pólya-gamma distribution that renders annealed importance sampling (AIS) simple
and efficient for a broad class of models, including the SLDSs of this chapter. A preliminary version
of this work was presented in Linderman et al. (2016b).

Chapter 9 takes a step in a radical direction. We build on the probabilistic models of the preced-
ing chapters, but here we combine these models with a top-down theory of neural computation.
Specifically, we consider the repercussions of the “Bayesian brain” hypothesis, namely, that neu-
ral circuits are performing approximate Bayesian inference in a probabilistic model of the world.
We make predictions about the patterns of neural spike trains that would be expected from such a
circuit, and show how the methods of previous chapters can be leveraged to reverse engineer proba-
bilistic models from observations of neural spike trains. This work is necessarily speculative, but we
believe it suggests a promising path forward as we seek to reconcile computational and algorithmic
theories of neural computation with large scale recordings.

Code for these models and inference algorithms, as well as for many of the figures in this thesis, is
available at https://github.com/slinderman.

9

https://github.com/slinderman

2
Background

This chapter lays the foundation for probabilistic modeling of neural spike trains. We start by intro-
ducing the language of generative models, which allow us to formalize, in probabilistic terms, our
hypotheses about dynamics and low-dimensional structure. The key ingredients are latent variables
that reflect the underlying state of the system and conditional distributions that relate these variables
to the observed data. Once we understand the basics of this language, we can begin to articulate hy-
potheses about dynamical data in the form of generative time series models. Section 2.2 enumerates
a few common motifs of time series modeling that will be used throughout this thesis. Finally, given
a model and an observed spike train, we can invert the model and reason about the posterior distri-
bution over latent variables using Bayesian inference algorithms such as Markov Chain Monte Carlo
and mean field variational inference, which are introduced in Section 2.3. At the end of this chapter,
we will have the basic foundation necessary to start looking for structure in neural data. The rest of
the thesis will build upon this foundation by developing more sophisticated models and increasingly
efficient inference algorithms, and by putting them to use on real neural recordings.

2.1 Generative Probabilistic Models

Generative probabilistic models tell a story of how data comes to be. While this story never captures
every physical detail, it serves as an idealized version, capturing the essence of the system. For exam-
ple, when modeling a neural spike train, we will ignore the states of individual ion channels and the

10

0 200 400 600 800 1000
time [ms]

0

20

40

60

80

100

fir
in

g
ra

te
 [H

z]
st 7 0 0 6 5 0 5 3 0 1 2 7 0 1 1 5 0 0 7 5

zt u d d u u d u u d d d u d d d u d d u u

Figure 2.1: A simple neuron that randomly switches between an up and a down state every 50ms. Here, time bins are

colored blue and yellow depending on the latent state, zt. Each state has an associated firing rate fromwhich a Poisson

number of spikes, st, is drawn. Precise spike times are uniformly distributed over the 50ms interval.

nonlinear dynamics of membrane potential and instead characterize the instantaneous firing rate of
a neuron — the probability that a neuron spikes at any moment in time.

As a simple illustration, consider the following generative process. Suppose a neuron has two
states, an up state and a down state. In the up state, it spikes at a high rate, say 100Hz, and in the
down state it fires less frequently, say at 10Hz. Assume that every 50ms the neuron flips a coin to de-
cide its new state and then fires a random number of spikes according to the firing rate associated
with that state. For the sake of simplicity, assume the precise spike times are uniformly distributed
over the 50ms interval. Once the interval has elapsed, the neuron flips another coin and its rate im-
mediately changes to reflect its new state. Our goal is to infer the latent state of the neuron given the
observed spikes.

Clearly, this generative story contains many simplifying assumptions and omits a great amount
of detail. In addition to assuming that spiking is adequately captured by firing rates, the notion that
a neuron has only two firing rates and that it randomly switches between them is a gross simplifica-
tion. Nevertheless, this very simple model captures patterns of spiking that have been observed in
actual experiments (Cowan and Wilson, 1994; Shu et al., 2003).

We can formalize this generative story with a probabilistic model that specifies a distribution
over latent states and observed spike counts. Let st ∈ N denote the number of spikes counted in
the t-th time bin, and zt ∈ {up, down} denote the corresponding state of the neuron. The assump-

11

tion that states are drawn from a coin flip corresponds to the prior distribution, zt ∼ Discrete(π),
whereπ = [πup, πdown] is a nonnegative vector that sums to one and specifies the probability of
up and down states.* Implicitly, we have assumed thatπ =

[
1
2 ,

1
2

]
, though this need not be the

case. We previously said that the neurons fire a random number of spikes according to their state-
dependent firing rate; now we will formalize this by assuming, st ∼ Poisson(λzt ·∆t), where
∆t = 0.05s, λup = 100 spikes/s, and λdown = 10 spike/s.

Figure 2.1 shows a neural spike train sampled from this generative model. The time bins are col-
ored blue or yellow depending on whether the neuron is in the up or down state, respectively. The
precise spike times are denoted by black vertical lines with circular endpoints. Above, the vector
of observed spike counts, s =

[
s1, . . . , sT

]
, and the vector of latent states, z =

[
z1, . . . , zT

]
, are

shown. We will use this notation throughout the thesis: bold symbols like swill denote arrays of
variables; lowercase bold symbols will typically denote vectors.

The generative procedure defines the likelihood of any given set of observed spike counts and
corresponding latent states. This can be written as a conditional distribution where the state proba-
bilities and firing rates are given. We have,

p(s, z |π,λ) = p(z |π) p(s | z,λ) (2.1)

=

T∏
t=1

p(zt |π) p(st |λzt) (2.2)

=

T∏
t=1

Discrete(zt |π) Poisson(st |λzt ·∆t). (2.3)

Since∆t is a constant, we do not include it as a random variable in the joint distribution or explic-
itly condition on it.

The probabilistic model specifies the particular factorization of the likelihood implied by the
generative story. Eq. 2.1 applies the product rule of probability, and reflects the assumptions that z
depends only onπ and s depends only on z andλ. In going from (2.1) to (2.2), we have asserted
that the latent states zt and zt′ are conditionally independent givenπ, and that the spike counts st
and st′ are conditionally independent given their corresponding latent states and firing rates. This
conditional independence assumption, which was implicit in the generative story, becomes explicit

*The notation z ∼ P(θ)means that the random variable z is sampled from (or distributed according to)
the distribution P , which is parameterized by θ. When we writeP(z | θ)we refer to the density (assuming it
exists) ofP evaluated at z. A list of commonly used distributions and their densities is given in Appendix A.

12

when we factor the likelihood into a product over time bins. Eq. 2.3 specifies the functional form
of the conditional distributions. When we hypothesize relationships between different variables,
we are making assertions about the factorization and the form of the likelihood. In Section 2.2, we
explore different patterns of conditional dependence that provide the building blocks of models for
dynamic data.

So far, we have assumed that the firing rates and state probabilities are known, but in practice this
is a bit unreasonable. To complete the probabilistic model, we need to combine the likelihood func-
tion with a prior distribution that captures our uncertainty about these parameters. For example, a
more reasonable hypothesis is that neurons have two firing rates, and while we do not know their
exact values, we can specify a distribution over them, p(λ). Similarly, we may not know the exact
probability of each state,π, but perhaps we can specify a prior, p(π), that captures our intuition
that the states should be equally likely a priori. Putting this all together, we can now write down the
joint distribution of our probabilistic model — the product of the likelihood and the prior distribu-
tions:

p(s, z,π,λ) = p(s, z |π,λ) p(π) p(λ). (2.4)

When constructing a probabilistic model, we express these prior intuitions and simultaneously
make inference easier by using conjugate prior distributions.

Conjugate Prior Distributions

A conjugate prior ensures that the conditional distribution of a parameter, given the data, will have
a tractable form. Specifically, the conditional distribution will have the same form as the prior. For
example, take the parameter, λup. If we look at the likelihood as a function of λup and ignore terms
that do not depend on this parameter, we have,

p(s, z |π,λ) ∝
T∏
t=1

[
Poisson(st |λup ·∆t)

]I[zt=up]

∝
T∏
t=1

[
λstup e

−λup·∆t
]I[zt=up]

= λ
sup
up e

−λup·tup ,

13

where

sup =
T∑
t=1

st · I[zt = up],

tup =
T∑
t=1

∆t · I[zt = up],

and I[x] is an indicator function that equals one if x evaluates to true and equals zero otherwise.
Now consider a gamma prior distribution,

p(λup |α, β) = Gamma(λup |α, β)

∝ λα−1up e−λup·β .

The conditional distribution over λup given the observed spike counts, the latent states, and the
prior is proportional to the likelihood times the prior. This simplifies to,

p(λup | s, z, α, β) ∝ p(s, z |π,λ) p(λup |α, β)

∝ λsup+α−1up e−λup(tup+β)

∝ Gamma(λup | sup + α, tup + β).

Since both the prior and the the conditional distribution over λup are in the gamma family, we say
gamma prior is conjugate with this product-of-Poissons likelihood. Moreover, the parameters of
conditional distribution only depend on s and z through simple sufficient statistics, sup and tup.
A Dirichlet prior distribution on the state probability, Dir(π | γ), is similarly conjugate with the
product of discrete densities in the likelihood that linksπ and z. In fact, conjugate priors exist for
all likelihoods in the exponential family. These ideas are thoroughly discussed in standard Bayesian
statistics and machine learning textbooks like Gelman et al. (2013); Murphy (2012).

Latent Variables, Parameters, and Hyperparameters As our models become increas-
ingly complicated, we will often distinguish between the different types of random variables. The
states, z, are called local latent variables because there is one for each data point. The unknown la-
tent state probability and the firing rates, {π,λ}, are either called parameters or global latent vari-
ables because their dimension is fixed. The remaining values, {α, β, γ}, are called hyperparameters.
These are constants that we set prior to performing inference. Typically, these can be tuned by cross-

14

validation, or simply set based on intuition and physical constraints. For conciseness, we will refer to
the set of all parameters as θ and the set of hyperparameters as η.

2.1.1 Representations of Spike Trains

One of the first decisions we must make is how to represent our data. In this thesis we will focus on
modeling spike trains, which are sequences of discrete events in time. These spike trains typically
come from spike sorting algorithms applied to extracellular recordings from multi-electrode arrays
(Lewicki, 1998) or from deconvolution algorithms applied to optically recorded calcium fluorescence
traces (Pnevmatikakis et al., 2016; Vogelstein et al., 2010). Reducing the data to a set of spike times
often results in enormous compression. Rather than considering electrode potentials, which may be
sampled at upwards of 10kHz, or calcium fluorescence traces, which are highly autocorrelated due to
the relatively slow dynamics of calcium concentration in cells, we only consider the times of action
potentials.

The most general representation of a spike train is a set of real-valued times for each neuron. In
Figure 2.1, this corresponds to the temporal locations of each black spike. When there is more than
one neuron, we have a set ofmarked spike times, which we call,

S = {(sm, cm)}Mm=1 ⊂ [0, T]× {1, . . . , N}.

Each member of this set consists of a real-valued spike time sm in the interval [0, T], and an inte-
ger, cm ∈ {1, . . . , N}, that specifies the index of the cell that generated this spike. M is the total
number of spikes on all neurons.

This continuous-time representation is warranted when the temporal resolution of the data is
considerably higher than the time-scale of typical action potentials. For example, multi-elecrode
arrays typically have sampling intervals of 0.1ms or smaller, whereas the width of action potentials is
on the order of 1ms. This allows us to specify the spike time as an effectively real-valued number.

Sets of discrete events like these are typically modeled as realizations of amarked point pro-
cess (Daley and Vere-Jones, 2003). Such a process is defined by its nonnegative firing rates†,
{λn(t |Ht)}Nn=1, whereHt captures the history of the process through time t. For example, the
history may include the previous spikes,Ht = {(sm, cm) : sm < t}, as well as some external
covariates. If we consider a small time window, [t, t+∆t), and take the limit as∆t approaches
zero, λn(t |Ht) ·∆t is the expected number of spikes fired by neuron n in the window [t, t+∆t).

†In the point process literature, these firing rates are called conditional intensity functions.

15

The limiting perspective on the conditional intensity functions suggests an alternative, discrete-
time representation. Rather than modeling a set of continuous spike times and conditional firing
rates, we may instead represent a spike count matrix,S, and the corresponding rate matrix,Λ,
where,

S =



s1,1 · · · s1,N

...
...

sT,1 · · · sT,N


, Λ =



λ1,1 · · · λ1,N

...
...

λT,1 · · · λT,N


.

Here, st,n ∈ N denotes the number of spikes fired in the t-th time bin by the n-th neuron,
and λt,n ∈ R+ denotes the corresponding firing rate. Sometimes, the effects we are interested in
studying occur at relatively slow time scales, so discretizing may provide valuable compression while
retaining most of the relevant information. For example, if we are studying neural dynamics on the
order of minutes, then simply knowing how many spikes occurred each second may provide most of
the relevant information, while precise, millisecond-resolution spike timing may be superfluous.

However, the primary reason to discretize spike times into a matrix of counts is that the statistics
and machine learning community has developed a much broader set of models for matrices than for
sets of continuous time events. In the next section, we will explore a number of common modeling
motifs that can be applied to time series data represented as matrices, and many of the chapters of
this thesis will focus on extending these motifs in novel ways.

2.2 Motifs of Time Series Models

The art of probabilistic modeling lies in balancing two conflicting concerns: our model should cap-
ture as much of the relevant structure in the data as possible, drawing on our intuition and our ex-
isting knowledge of the system, yet at the same time we wish to limit the complexity of the model so
that we may perform inference efficiently. One way to balance these goals is to compose our model
out of common, well-studied motifs.

Motifs correspond to factorizations of probabilistic models. To visualize these motifs, we rep-
resent the probabilistic model in the form of a directed acylcic graph. Each node in the graph cor-
responds to a random variable, and shaded nodes indicate which variables are observed. The edges
represent conditional dependencies. For example, in the mixture model shown in Figure 2.2, the

16

λ λ

Figure 2.2:Motifs of time series models. By introducing conditional dependencies and layers of random variables, we

construct models that reflect sophisticated hypotheses about the structure underlying the data. See Section 2.2 for

detailed description.

spike count s2 has incoming edges from the corresponding latent state z2 and the firing rates,λ.
Thus, the joint probability distribution contains the factor, p(s2 | z2,λ). Since the graph is directed
and acyclic, we read off the factors starting with the root nodes, p(π) and p(λ), and ending with
the leaf nodes, p(st | zt,λ). In this way, the graph captures the factorization of the joint proba-
bility distribution and specifies a particular subset of all possible joint distributions over this set of
variables.

The edges of the graph do not, however, specify the type of the random variable or functional
form of the factors. For example, a node may indicate either a discrete or a continuous random vari-
able, and an edge may indicate an arbitrary form of dependence, like a linear relationship. In this
way, two models may share the same graph but have fundamentally different interpretations. This
is true of mixture models and factor analysis models shown in Figure 2.2. Some patterns of factor-
ization, types, and dependencies are used over and over again and form the building blocks for more
complex models. Next, we discuss a few of the common motifs shown in Figure 2.2.

17

Mixture Models Our working example from Section 2.1 is an instance of a simple mixture
model. The firing rate assumes only two values, and the observed spike counts are a mixture of
counts drawn from the up state and counts from the down state. We can easily extend this to pop-
ulations of neurons and mixtures of more than two states. Suppose there are nowK states, such
that zt ∈ {1, . . . ,K}. Furthermore, we generalize the rates λup and λdown, to vectors of rates, one
for each neuron and state. In a slight abuse of notation, letλk = [λk,1, . . . , λk,N] denote a vector
of rates in which λk,n is the firing rate of the n-th neuron in state k.

In a mixture model, the latent states are discrete, the time bins are conditionally independent,
and the dependence of st on zt andλ is linear. To see the latter claim, note that that the instanta-
neous firing rate of neuron n can be written,

∑K
k=1 I[zt = k] · λk,n. These three properties suggest

multiple dimensions along which the mixture model may be generalized.

Hidden Markov Models First, let’s address the conditional independence of time bins in the
mixture model. According to this model, the distribution over latent states factors into a prod-
uct, p(z |π) =

∏
t p(zt |π). This clearly ignores the temporal dynamics of neural data. Instead,

we may hypothesis that latent states obey Markovian dynamics,

p(z |π(0),P) = p(z1 |π(0))
T∏
t=2

p(zt | zt−1,P)

= Discrete(z1 |π(0))

T∏
t=2

Discrete(zt |π(zt−1)),

whereπ(0) ∈ [0, 1]K is a discrete probability distribution over initial states, and

P =


— π(1) —

...
— π(K) —

 ,
is aK ×K transition matrix where the row,π(k) ∈ [0, 1]K , specifies a discrete conditional dis-
tribution over zt given zt−1 = k. This is known as a hidden Markov model (HMM) (Baum and
Petrie, 1966; Rabiner, 1989), and the corresponding graphical model is shown in Figure 2.2. Chap-
ter 7 studies some of the challenges involved in selecting the number of states,K , in a nonparamet-
ric way.

18

Autoregressive Models In an HMM, correlations in spike counts from one bin to the next
arise from correlations in the underlying latent states. Alternatively, we may directly model the rate
as a function of previous spike counts. For example, consider an autoregressive model with linear
dynamics,

λt,n =

N∑
n′=1

D∑
d=1

w
(d)
n′→n · st−d,n′ . (2.5)

The weight,w(d)
n′→n, specifies the influence that spikes on neuron n′ have on the rate of neuron n

at an offset of d time bins in the future. Unlike the HMM, which has an autoregressive model for
latent states, here the autoregression governs the rates directly. Moreover, this autoregressive model
sums over the spike counts of all neurons over the pastD time bins, allowing delayed interactions.
Figure 2.2 shows the graph structure of an autoregressive model in the special case thatD = 1.

In continuous time, autoregressive interactions like these are the basis of the Hawkes process
(Hawkes, 1971), a mutually-excitatory point process. Chapter 3 will study these models in great de-
tail, and Chapter 4 will extend the Hawkes process inference algorithms to their discrete time coun-
terparts.

One complication of this formulation is that negative weights could lead to negative firing rates,
which would invalidate the assumptions of the model. The easiest way to address this issue is to
require nonnegative weights,w(d)

n′→n ∈ R+. This implicitly instantiates the hypothesis that in-
teractions between spikes on one neuron and the rate of another is always excitatory — a spike can
never decrease the future firing rate. While this is not the most biologically realistic model given our
knowledge of excitatory and inhibitory synapses, it is important to remember that this is simply a
descriptive model of firing rate dynamics, and it does not necessarily map onto physical synaptic
connections. As we will show, the weights inferred by this type of excitatory autoregressive model
can still provide useful insight into the structure of neural activity.

Nonlinear Autoregressive Models In order to capture both excitatory and inhibitory
autoregressive weights, we need to introduce a nonlinear function that ensures a nonnegative firing

19

rate. Specifically, assume that,

ψt,n =
N∑

n′=1

D∑
d=1

w
(d)
n′→n · st−d,n′ ,

λt,n = g (ψt,n) .

The nonlinear function g(·) : R→ R+ maps a real valued “activation,” ψt,n, into a nonnegative
firing rate, λt,n. In this formulation, the weights may be either positive or negative to reflect either
excitatory or inhibitory interactions, respectively. In computational neuroscience, this is often called
a generalized linear model (GLM) (Paninski, 2004; Truccolo et al., 2005; Pillow et al., 2008), since
the linear-nonlinear cascade that links spike history to firing rate is an instance of the GLM com-
monly used in statistics (Nelder and Baker, 1972). Chapter 5 combines these nonlinear autoregressive
models with prior distributions on the underlying network and derives efficient Bayesian inference
algorithms to fit them to data.

Factor Models HMM’s introduced dynamics to the mixture model and nonlinear autore-
gressive models generalized the linear functional dependence. Factor models generalize the discrete
nature of the random variables with a continuous analogue. For example, consider a model in which
the discrete variable zt ∈ {1, . . . ,K} is replaced by a discrete probability distributionπt ∈ [0, 1]K .
The rate is then a nonnegative combination,

λt,n =

K∑
k=1

πt,k · λk,n.

This is naturally interpreted as amixed membership model in which the rates at each time bin derive
from a mixture of discrete latent states with mixing weightsπt. In text modeling, this motif is the
basis of the latent Dirichlet allocation (LDA) model (Blei et al., 2003).

Alternatively, we may replace the discrete latent state with a continuous one, xt ∈ RK . As in
the nonlinear autoregressive model, we can retain the linear form and introduce an elementwise

20

nonlinearity to ensure nonnegative firing rates:

p(x) =

T∏
t=1

N (xt |0,Σ),

ψt,n =
K∑
k=1

xt,k · ck,n,

λt,n = g(ψt,n).

Here, ck,n is an entry in the real valued matrixC ∈ RK×N , andΣ = diag
(
[σ21, . . . , σ

2
K]
)
. This

corresponds to a factor analysis model. Unlike standard factor analysis, however, here the observa-
tions are discrete spike counts rather than Gaussian observations.

Linear Dynamical Systems In the same way that HMM’s extend mixture models with tem-
poral dynamics, linear dynamical systems (LDSs) extend factor models with linear autoregressive
dynamics in the latent state. We simply replace the prior on xwith a model of the form,

p(x) = N (x1 |0,Σ)
T∏
t=2

N (xt |Axt−1,Σ),

whereA ∈ RK×K specifies the linear dynamics of the latent state. The elementwise nonlinear
mapping from latent states to firing rates is the same as in the factor model, but now the linear au-
toregressive nature of the dynamics induces correlations in spike counts from one time bin to the
next.

Hierarchical Extensions These motifs — continuous and discrete latent states, linear au-
toregressive dynamics, and nonlinear link functions — provide a foundation for constructing prob-
abilistic models for spike trains. Atop this foundation, we may layer additional random variables
reflecting hypotheses about shared structure. For example, a switching linear dynamical system,
shown in Figure 2.2 and studied in Chapter 8, combines discrete and continuous latent states (Mur-
phy, 2012; Fox, 2009). Likewise, Chapters 3, 4, and 5 consider structured prior distributions on the
weights of autoregressive models, and Chapter 7 considers nonparametric Bayesian priors on the
number of states in an HMM. Once the dynamics model has been specified, it is easy to test a variety
of hypotheses about hierarchical structure. In order to fit these models, however, we need efficient
inference algorithms that capitalize on the compositional structure of the model.

21

2.3 Bayesian Inference

Given an observed spike train, our goal is to compute the posterior distribution over latent vari-
ables, z, and parameters, θ, of the model. For example, in an HMM the latent variables are the dy-
namic latent states and the parameters are θ = {P ,λ}, the transition matrix and the firing rates for
each latent state. Bayes’ rule relates the posterior distribution to the joint distribution of our proba-
bilistic model,

p(z,θ | s) = p(s, z,θ)

p(s)
=

p(s, z,θ)∫
p(s, z,θ) dz dθ

. (2.6)

Unfortunately, the denominator in Eq. 2.6 involves an integral that is intractable for all but the sim-
plest models. Instead, we must resort to approximate algorithms like Markov chain Monte Carlo
(MCMC) and mean field variational inference. We will briefly describe each of these in turn.

2.3.1 Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) algorithms are a central component of modern machine learn-
ing, and many texts are devoted to the subject (e.g. Geyer, 1992; Gilks, 2005; Robert and Casella,
2013). The fundamental idea is to generate a collection of samples from the posterior distribution
and use them to estimate expectations. Specifically, given a set of samples,{(

z(1),θ(1)
)
, . . . ,

(
z(L),θ(L)

)}
,

where

z(ℓ),θ(ℓ) ∼ p(z,θ | s),

we can form a Monte Carlo estimate of the expectation of a function f(z,θ)with respect to the
posterior,

Ep(z,θ | s) [f(z,θ)] ≈
1

L

L∑
ℓ=1

f
(
z(ℓ),θ(ℓ)

)
.

When the samples are independently drawn from the posterior, the strong law of large numbers
states that the Monte Carlo estimate converges to the true expectation almost surely, implying that

22

these Monte Carlo estimates are unbiased. Moreover, if the function f is real-valued, the variance of
the Monte Carlo estimator scales asO(L−1) regardless of the dimension of z and θ.

To collect these samples, we design a Markov chain to stochastically explore the space of latent
variables and parameters. The chain iteratively samples a new state according to its transition op-
erator, T

(
(z,θ)→ (z′,θ′)

)
, which specifies the probability of transitioning from state (z,θ) to

state (z′,θ′). Each state the Markov chain visits is taken as a sample. If we design the Markov chain
appropriately, we guarantee that the transition operator will asymptotically visit states according to
their posterior probability.

When states are sampled with a Markov chain, it is no longer true that the samples are indepen-
dent. In fact, the transition operator often leads to relatively local updates, which in turn lead to au-
tocorrelation in the sequence of samples. This does not affect the bias of the Monte Carlo estimate,
but it does affect the constant in the asymptoticO(L−1) convergence rate. However, in addition to
the increased variance, MCMC algorithms also suffer from a transient bias due to the fact that the
initial state is not drawn from the posterior distribution (we would not be using MCMC if we could
sample from the posterior directly). Fortunately, the transient bias of the Monte Carlo estimator
also decays asO(L−1). Since the mean squared error of an estimator is equal to its variance plus its
bias squared, and since both variance and bias scale inversely withL, the asymptotic effect of the
transient bias is insignificant compared to that of the variance.

The critical property of our Markov chain is that, asymptotically, it visits states with probability
equal to the true posterior probability. For this asymptotic guarantee to hold, the posterior distri-
bution must be invariant with respect to the transition operator, which is defined by the following
equivalence,

p(z,θ | s) =
∫
p
(
z′,θ′ | s

)
T
(
(z′,θ′)→ (z,θ)

)
dz′ dθ′. (2.7)

Intuitively, an invariant, or “stationary” distribution with respect to T has the property that if we
randomly sample a state from the stationary distribution and apply the transition operator, the
resulting state will be drawn from the stationary distribution as well. When z and θ are discrete, the
stationary distribution is an eigenvector of a transition matrix with an eigenvalue of one.

In addition to leaving the posterior distribution invariant, the Markov chain must also converge
to this stationary distribution regardless of where it starts. If this property holds, the Markov chain
is ergodic, and the posterior distribution is the unique stationary distribution of the chain. One sim-
ple sufficient condition that ensures ergodicity is that the transition probability be strictly positive

23

for all states.
Designing an MCMC algorithm thus boils down to designing a valid transition operator. This

is typically done by composing a sequence of operators, T = T1 ◦ . . . ◦ TK , each of which leaves
the stationary distribution intact. While there are many ways of developing these transition opera-
tors, one of the most common is to sample from the conditional distribution of one variable while
holding the rest fixed. This leads to an algorithm called Gibbs sampling (Geman and Geman, 1984).

Gibbs Sampling

Consider a transition operator, Tz , that only updates z, holding θ constant. In order to update z, it
samples from the conditional distribution, p(z |θ, s). To see that this transition operator leaves the
posterior distribution invariant, we plug it into (2.7):∫

Tz
(
(z′,θ′)→ (z,θ)

)
p
(
z′,θ′ | s

)
dz′ dθ′

=

∫
p(z |θ′, s) δθ′(θ) p

(
z′,θ′ | s

)
dz′ dθ′

=

∫
p(z |θ′, s) δθ′(θ) p

(
θ′ | s

) ∫
p
(
z′ |θ′, s

)
dz′︸ ︷︷ ︸

=1

dθ′

= p(z |θ, s) p(θ | s)

= p(z,θ | s).

The same holds for a transition operator that samples p(θ | z, s), or even a single element of these
sets, p(θj |θ¬j , z, s). Here, θj is one parameter, like the transition matrix in an HMM, and θ¬j is
the set of all other parameters except for the j-th.

Many compositional models are designed such that these conditional distributions are easy to
sample from. For example, if the model is defined with conjugate prior distributions, as described
above, the conditional distributions have closed forms that can often be sampled exactly. Moreover,
some model motifs enable more efficient types of Gibbs updates outlined below:

Block Gibbs Sampling: In some cases, entire subsets or “blocks” of random variables
can be updated by a single transition operator. Consider the conditional distribution over a

24

single latent state in an HMM, zt, given all other variables,

p(zt | s, z¬t,θ) ∝ p(zt | zt−1,θ) p(zt+1 | zt,θ) p(st | zt,θ).

A naïve Gibbs sampling algorithm would enumerate theK possible values of zt, compute
their posterior probability, and sample accordingly. However, this would be horribly inef-
ficient when the states are highly correlated. Given zt−1 and zt+1, the state zt may essen-
tially be deterministic. Thus, even if there is genuine uncertainty over the state sequence as
a whole, this simple transition operator may get stuck in a single state sequence assignment.
This would be an example of “poor mixing.” To be precise, let p̃ℓ be the distribution over
states of the chain after running ℓ iterations (starting from a given initial state). A Markov
chain is said to mix poorly if it takes exponentially many steps before the total variation dis-
tance between the ℓ-step distribution, p̃ℓ, and the true posterior distribution, p, shrinks to
less than ϵ. One way to improve mixing, at least empirically, is to perform joint updates of
many variables simultaneously, leveraging model-specific structure.

Consider a Gibbs step that simultaneously updates the entire state sequence of an HMM.
The conditional distribution of z is proportional to the joint distribution,

p(z | s,θ) ∝ p(z1 |θ) p(s1 | z1,θ)
T∏
t=2

p(zt | zt−1,θ) p(st | zt,θ).

While there areKT possible assignments of z, since the conditional distribution is chain
structured (each state depends only on the previous state and the current spike counts), we
can actually sample this distribution using dynamic programming without enumerating all
possible assignments (e.g. Bishop, 2006).

Block Parallel Gibbs Sampling: A special case of block Gibbs sampling occurs when
an entire block of variables is conditionally independent given the rest. For example, consider
the conditional distribution of z in a mixture model,

p(z |θ, s) ∝
T∏
t=1

p(zt |θ) p(st | zt,θ).

Since the conditional distribution factors into a product, the individual latent variables are
conditionally independent of one another. That is, the update to zt does not depend on

25

the updated value of zt′ . This allows us to sample new latent states in parallel using as many
processors or threads as we have at our disposal.

Collapsed Gibbs Sampling: Another special case of block Gibbs sampling occurs when
the conditional distribution can be factored using the product rule. For example, consider
a model with two highly correlated latent variables, z1 and z2. Naïvely alternating between
sampling p(z1 | z2,θ, s) and p(z2 | z1,θ, s)will lead to poor mixing, so we would like to
update them jointly. Suppose, however, that it is challenging to directly sample the full con-
ditional distribution p(z1, z2 |θ, s). By the sum and product rules of probability,

p(z1, z2 |θ, s) = p(z2 | z1,θ, s) p(z1 |θ, s)

= p(z2 | z1,θ, s)
∫
p(z1, z2 |θ, s) dz2.

If it is possible “collapse” the second variable and obtain a tractable closed form solution
for p(z1 |θ, s), then we can sample the pair of variables jointly in a two step procedure.
First, sample z1 from its marginal conditional distribution, p(z1 |θ, s), and then sam-
ple p(z2 | z1,θ, s). We use this technique in the spike-and-slab models of Chapter 5.

Augmented Gibbs Sampling: Just as it is possible to collapse some variables during block
updates, in other cases it is possible to introduce auxiliary variables that make the model
conditionally conjugate and thus easier to work with. For example, in some cases p(z |θ, s)
is challenging to sample from, but by introducing an auxiliary variable,ω, it becomes easier
to sample from the conditional distributions of the full model, p(s, z,ω,θ). It is as if we
“un-collapse”ω and then perform augmented Gibbs sampling in two steps,

z′ ∼ p(z |ω,θ, s),

ω′ ∼ p(ω | z′,θ, s).

As long as the original joint distribution, p(s, z,θ), is equal to the marginal distri-
bution,

∫
p(s, z,ω,θ) dω, the samples {z(ℓ),θ(ℓ)}will be distributed according

to p(z,θ | s). Thus, simply discarding the samples ofω leaves a set of samples drawn from
the desired posterior. This technique of data augmentation is a powerful tool that we use
throughout this thesis.

26

2.3.2 Mean Field Variational Inference

Variational inference methods (Jordan et al., 1999; Wainwright and Jordan, 2008) take a fundamen-
tally different approach to approximating the posterior distribution. Rather than collecting a set
of samples, variational methods attempt to find the distribution within a tractable family of dis-
tributions that most closely matches the true posterior. Thus, inference becomes an optimization
problem.

Let’s assume the variational posterior is parameterized byϑ, and call the variational distribu-
tion, q(z,θ;ϑ). ‡ To find the optimal q(·), we optimize a functional,L[q], called the variational
lower bound, which provides a lower bound on the log marginal likelihood, log p(s). Specifically,
we can write the log marginal likelihood as an expectation with respect to q,

log p(s) = Eq(z,θ;ϑ)
[
log

p(s, z,θ)

p(z,θ | s)

]
= Eq(z,θ;ϑ)

[
log

p(s, z,θ)

q(z,θ;ϑ)

]
+ Eq(z,θ;ϑ)

[
log

q(z,θ;ϑ)

p(z,θ | s)

]
= L[q(z,θ;ϑ)] + KL(q(z,θ;ϑ) || p(z,θ | s)

≥ L[q(z,θ;ϑ)].

whereKL(q || p) is the KL-divergence between distributions q and p. The last line follows from
the fact that the KL-divergence is nonnegative and equal to zero if and only if the distributions are
identical. Thus, optimizing this functional is equivalent to minimizing the KL-divergence between
the variational distribution and the true posterior.

Our goal is to maximize the variational lower bound over a parameterized family of tractable
distributions,Q. Inmean field variational inference, we takeQ to be the family of fully factorized
distributions,

Q =

q : q(z,θ;ϑ) ∝
T∏
t=1

qt(zt;ϑt)

J∏
j=1

qj(θj ;ϑj)

 .

We will set these parameters,ϑ, in order to maximize the variational lower bound over the set of
distributions inQ.

‡We use a semicolon to indicate that q(z,θ) is parameterized byϑ. Sinceϑ is not a random variable, q is
not strictly a conditional distribution and the vertical bar notation is inappropriate.

27

In general, this objective function is not concave, so we should not expect to find a global op-
timum. However, we can still use local optimization and multiple random restarts with the hope
of finding a global optimum. For mean field variational inference, a simple approach is to per-
form coordinate ascent on the parameters of one variational factor at a time, holding the rest fixed.
Given the equivalence between maximizing the variational lower bound and minimizing the KL-
divergence, we can derive the general form of a mean field update. Consider updating the variational
factor for θj . We have,

KL(q || p) = Eq(z,θ;ϑ) [log q(z,θ)]− Eq(z,θ;ϑ) [log p(z,θ | s)]

≃ Eq(z,θ;ϑ) [log q(z,θ;ϑ)]− Eq(z,θ;ϑ)
[log p(s, z,θ)]

≃ Eqj(θj ;ϑj) [log qj(θj ;ϑj)]− Eq(θj ;ϑj)
[
Eq(z,θ¬j ;ϑ¬j)

[
log p(s, z,θ)

]]
≃ KL

(
qj(θj ;ϑj) || p̃j(θj)

)
, (2.8)

where≃ denotes equality up to an additive term that is constant with respect to θj , and

p̃j(θj) ∝ exp
{
Eq(z,θ¬j ;ϑ¬j)

[
log p(s, z,θ)

]}
. (2.9)

We are able to separate the expectations in the third line of (2.8) due to the factorized form
of q(z,θ;ϑ). Since KL-divergence is minimized when the two distributions are equal, the opti-
mal qj(θj ;ϑj), given the variational factors for the remaining variables, is equal to p̃j(θj). As in the
Gibbs sampling algorithms developed before, the expectation in (2.9) is often greatly simplified by
the factorization of the joint distribution in our probabilistic model. Moreover, when the model
is constructed out of conjugate distributions, these mean field updates can be computed in closed
form.

Structured Mean Field Just as block Gibbs sampling enables more efficient updates for sets
of correlated random variables, structured mean field algorithms allow groups of random variables
to share a variational factor. For example, in an HMM, we can group the latent states z together in
a shared factor, q(z), that does not necessarily factor into a product over time bins. If the optimal
shared factor given by (2.9) has a tractable form, we can perform coordinate ascent on the variational
lower bound by updating the parameters of the shared factor, rather than sequentially updating
individual factors for each time bin. As a result, our coordinate ascent algorithm will converge much
more rapidly. The only other requirement is that it must be possible to compute the expectations

28

with respect to the shared factor. In the case of HMMs, the same type of dynamic programming
algorithm that enables efficient block sampling also enables efficient calculation of expectations.

2.3.3 Model Comparison

Now that we have developed the tools to formulate models and perform Bayesian inference,
we need a way to compare and criticize our models. The easiest way, and the primary way used
throughout this thesis, is to compare the models based on how well they predict held-out data. Sup-
pose that at the beginning of the experiment, we reserve a set of spike counts, stest, to be used for
model comparison. Once we have used Bayesian inference to compute a posterior distribution over
the model’s parameters and latent variables, we can then compute the predictive likelihood,

p(stest | strain) =
∫
p(stest | ztest,θ) p(ztest |θ) p(θ | strain) dztest dθ. (2.10)

Notice that this is an expectation with respect to the posterior distribution of θ given the training
data, and amarginal distribution in that it involves an integration over the latent variables associated
with the test data. This integral is typically intractable, but we can construct a Monte Carlo estimate
given samples from the approximate posterior,

p(stest | strain) ≈
1

L

L∑
ℓ=1

p(stest | z(ℓ)test,θ
(ℓ))

where

θ(ℓ) ∼ p(θ | strain),

z
(ℓ)
test ∼ p(ztest |θ(ℓ)).

When Bayesian inference is performed with MCMC, the samples {θ(ℓ)} are simply the states vis-
ited by the Markov chain. When variational methods are used, we assume they are drawn from the
variational posterior, q(θ).

This is by no means the only method of comparing models. In “fully Bayesian” analyses, it is
common to compare models on the basis of theirmarginal likelihood, p(s) (Kass and Raftery,
1995). Recall that this is the quantity that variational methods attempt to lower bound. Unfortu-
nately, we cannot evaluate the tightness of variational lower bounds because they depend on the
KL-divergence, which is intractable.

29

Instead, we may resort to other methods of approximating the marginal likelihood. Notice that,

p(s) =

∫
p(s | z,θ) p(z |θ) p(θ) dz dθ (2.11)

is equal to the predictive likelihood in the absence of training data. Unfortunately, training data
plays the crucial role of winnowing the posterior distribution over parameters. Without this con-
straint, simple Monte Carlo estimates like those used to approximate the predictive likelihood will
suffer from extremely high variance. Instead, more sophisticated methods, like annealed importance
sampling (Neal, 2001) are typically employed.

Finally, another means of evaluating and criticizing models is via posterior predictive checks
(PPCs) (Box, 1980; Gelman et al., 2013; Blei, 2014). Though we do not make use of them in this the-
sis, we note that they provide a slightly different view on model performance. Rather than assessing
how well the model predicts held-out data, they assess how well statistics of data simulated from the
posterior distribution match statistics calculated from samples of the real data. Rather than eval-
uating how well one model performs relative to another, PPCs assess how well the model explains
relevant aspects of the data.

2.4 Conclusion

With this background, we have the basic tools necessary to formulate models, perform Bayesian
inference, and evaluate model performance. However, as we incorporate more structure into our
model and scale up to larger datasets, inference quickly becomes computationally intractable. This
thesis is about extending the frontier of models and motifs at our disposal by leveraging model struc-
ture to develop efficient inference algorithms. One of the major techniques we use is the introduc-
tion of auxiliary variables that render the model conjugate and enable block parallel Gibbs samplers
or structured mean field algorithms. Essentially, these methods provide nice “axes” for inference.
While this increases the dimensionality of the posterior, it is sometimes easier to make two simple
updates rather than one hard update. These insights enable us to push the frontier of modeling and
inference for complex discrete datasets like neural spike trains, and extend the set of motifs in our
modeling toolkit.

30

3
Hawkes Processes with Latent Network Structure

Networks are fundamental models for complex systems, enabling us to reason about systems by
studying the relationships between their parts. As we discussed in Chapter 1, networks are employed
in a myriad of ways throughout neuroscience. Whether they represent synapses in the human con-
nectome, population-level interactions in brain circuits, pairwise correlations in fMRI recordings,
or coupling in theoretical models, networks serve as an abstraction for the messy details of systems.
A network consists of a set of nodes, which may represent neurons, populations, voxels, etc., de-
pending on the application. Connecting these nodes is a set of edges, which represent interactions
between pairs of nodes, like the effect of one neuron’s spikes on the subsequent activity of its down-
stream neighbors. By reducing a system to a network of nodes and edges, we create a simplified ob-
ject for analysis.

A great deal can be learned by considering simple network properties like the average number of
connections per node, or higher order statistics like “betweenness” and the number of connected
triangles (Bullmore and Sporns, 2009). Some network analyses involve probabilistic modeling. For
example, we may look for clusters or features of nodes that have similar patterns of connectivity.
Other analyses are more supervised in nature; in a “link prediction” task we seek to predict whether
or not a pair of nodes is connected, given partial observations of the network (Liben-Nowell and
Kleinberg, 2007). Traditionally, network analysis has focused on explicit network problems in which
the network itself is considered to be the observed data. That is, the nodes are and edges are con-

31

sidered known. A rich literature has arisen in recent years for applying statistical machine learning
models to this type of problem, e.g., Liben-Nowell and Kleinberg (2007); Hoff (2008); Goldenberg
et al. (2010).

In practice, however, we are often confronted with implicit networks that cannot be observed
directly, but about which we wish to perform analysis. In an implicit network, the nodes or edges
of the network may not be directly observed, but the graph structure may be inferred from noisy
emissions. These noisy observations are assumed to have been generated according to an underlying
model that respects the latent network structure.

For example, in connectomics problems the network must be inferred from noisy electron mi-
croscopy images; in spike train modeling the network must be inferred from weak anatomical ev-
idence and noisy measurements of population activity; and in fMRI experiments, the network is
derived from noisy blood-oxygen-level dependent (BOLD) responses. In all cases, if we knew the
underlying network (i.e. if we knew how the nodes were connected), we could assign a likelihood to
the observed electron microscopy images or to the measured activity. By combining this likelihood
with a prior distribution that reflects our intuitions about the network structure, we construct a
probabilistic model to tackle these implicit network problems.

In this chapter, we consider the case where our observations come in the form of neural spike
trains, and our intuition is that a spike on one neuron will influence the activity of downstream neu-
rons. We formalize this with a probabilistic model based on mutually interacting point processes.
Specifically, we combine the Hawkes process (Hawkes, 1971) with hierarchical prior distributions
on the network. This combination allows us to reason about properties of neurons that govern net-
work structure, which in turn governs the dynamics of activity via a Hawkes process.

Figure 3.1 illustrates the components of the probabilistic model. At the highest level, we have a
network of neurons. The pattern of connectivity in the network may be governed by latent variables
like cell types and locations. In this case there are four types of cells (different colors in Fig. 3.1a), and
each cell has a location in the two-dimensional plane. Nearby cells of the same type are more likely
to connect. The network governs the dynamics of the firing rate (Fig. 3.1b), which in turn gives rise
to the observed spikes (Fig. 3.1c). In this case, spikes on one neuron induce impulse responses that
feed back into the firing rate of downstream neurons. These firing rate–spike train dynamics are
modeled with Hawkes processes.

The rest of the chapter is organized as follows. In Section 3.1 we introduce a compositional prob-
abilistic model for networks, and in Section 3.2 we introduce Hawkes processes. Section 3.3 stitches
these two components together into a joint model for implicit networks with spike train observa-

32

Firing Rate

time

(a) (b) (c)

time

Figure 3.1: Components of the generativemodel. (a) Each neuron is endowedwith latent variables, like locations in

space and discrete types (illustrated with different colors). These variables determine the probability of connections

and the strength of those connections. In this example, nearby neurons of the same type aremost likely to connect. (b)

The network parameterizes an autoregressivemodel with a time-varying firing rate, which specifies the instantaneous

probability of an action potential. (c) Spikes are randomly generated according to the firing rate. Each spike induces an

impulse response on the firing rate of downstream neurons.

tions. Before diving into inference applications, we first consider the theoretical consequences of
a particular network model on the stability of the system, and provide some intuition on how the
network properties affect the asymptotic behavior of the system. Then, in Section 3.4, we derive a
Gibbs sampling algorithm with an elegant auxiliary variable formulation that allows efficient paral-
lelism. Since this is the first technical chapter, we go through these derivations in substantial detail.
In later chapters we will move more quickly. Finally, the remaining sections consider applications,
first to synthetic data, and then to biological recordings. While the primary emphasis is on modeling
neural data, we also explore some applications in areas of finance and criminology.

3.1 Probabilistic Network Models

Networks ofN nodes can be represented byN ×N matrices. Unweighted networks correspond
to binary adjacency matricesAwhere am,n = am→n = 1 indicates a directed edge from nodem to
node n. We use the arrow notation (→) to remind the reader of the directionality of the connection.
When these edges have scalar weights associated with them, we can encode the weights in a second
matrix,W ∈ RN×N . The complete network is then defined by the elementwise product,A⊙W .
The binary adjacency matrix captures the sparsity pattern, and the real-valued weight matrix cap-
tures the strength of the connections. From a modeling perspective, separating these two matrices
allows us to separate our prior intuitions about sparsity and strength. This is known as a spike-and-
slab model (Mitchell and Beauchamp, 1988).

Hierarchical models can be constructed by incorporating latent variables into the prior distribu-

33

Name ϑ dom(zn) ρn→n′

Empty Model — — 0
Dense Model — — 1

Bernoulli Model ρ — ρ
Stochastic Block Model {{ρk→k′}} {1, . . . , K} ρzn→zn′
Latent Distance Model γ0 RK σ(−||zn − zn′ ||22 + γ0)

Table 3.1: Binary adjacencymatrix models.

tions overA andW . Unsurprisingly, the same types of motifs that recur throughout probabilistic
modeling — discrete latent types and continuous latent features— also form the building blocks of
standard network models. We briefly outline a few simple models that are used in this and following
chapters.

Table 3.1 summarizes a few models for binary adjacency matrices. In all cases, the distribution
overA factorizes into a product over edges,

p(A | z,ϑ) =
N∏
n=1

N∏
n′=1

p(an→n′ | zn, zn′ ,ϑ)

=

N∏
n=1

N∏
n′=1

Bern(an→n′ | ρn→n′).

The difference is in how the local latent variables, zn′ and zn, and the global network parame-
ters,ϑ, combine to determine the probability, ρn→n′ . We describe these models below:

Empty Model: The empty model is essentially a null model. According to this model, there
are no connections between neurons. Nevertheless, it is useful to list it here because the
empty model provides a baseline for more sophisticated models, capturing the null hypothe-
sis that neurons are independent.

Dense Model: At the other extreme, the dense model corresponds to the hypothesis that all
pairs of neurons are connected. In the models of neural activity that follow, the dense model
will reduce to the standard models in use today, which do not incorporate structured prior
distributions over the network.

Bernoulli Model: The Bernoulli model is a spike-and-slab model in which each connection

34

Name ϑ dom(z) µn→n′

Independent Model µ — µ
Stochastic Block Model {{µk→k′}} {1, . . . , K} µzn→zn′
Latent Distance Model µ0 RK −||zn − zn′ ||22 + µ0

Table 3.2: General weight models.

is an independent and identically distributed Bernoulli random variable. This is also known
as an Erdős-Rényi model.

Stochastic Block Model (SBM): In the stochastic block model (SBM) (Nowicki and
Snijders, 2001), each neuron has an associated class, zn. The probability of connection
depends on the class of the two neurons. This is the network equivalent of a mixture
model. In a Bayesian framework, we assume the class assignments are drawn from a dis-
crete prior, zn ∼ Discrete(π), and the class weights are given a conjugate, symmetric
Dirichlet prior,π ∼ Dir(α1K). The connection probabilities are given a conjugate beta
prior, βk→k′ ∼ Beta(α, β).

Latent Distance Model: The latent distance model (Hoff, 2008) encodes the belief that
connection probability should decrease with distance between latent locations. The locations
are given spherical Gaussian priors, zn ∼ N (0, τI), and the scale is drawn from an inverse
gamma prior, τ ∼ IGa(1, 1). The offset is given a standard normal prior, γ0 ∼ N (0, 1).

The same ideas can be applied to models for the scalar weight matrix,W , but rather than model-
ing the connection probability, we now model the mean weight, µn→n′ . The resulting distribution
is of the form,

p(W | z,ϑ) =
N∏
m=1

N∏
n=1

p(wm→n | zn, zn′ ,ϑ)

=

N∏
m=1

N∏
n=1

p(wm→n |µm→n,ϑ).

We do not specify the exact functional form of the distribution since this will depend on the
model for neural activity. The linear models with nonnegative weights in this chapter will use a
gamma prior, whereas the nonlinear autoregressive models in Chapter 5 will use a Gaussian distri-

35

Adjacency Model

W
eig

ht
M
od
el

Figure 3.2: Example networkmodels. Each row corresponds to a fixedweight matrix,W , for three different weight

models, and each column corresponds to a fixed adjacencymatrix,A, for four different adjacencymodels. The panels

show the elementwise product of the two. Color denotes the weight (blue is negative, red is positive). In the SBM, the

rows and columns are sorted by type, and in the distancemodel, they are sorted by location.

bution. Table 3.2 lists some examples of weight models analogous to the adjacency matrix models
above. While we have only shown models for the mean weight, the same latent variables may also
parameterize the variance of the weight distribution. For example in a Gaussian SBM, each directed
pair of classes may have an associated variance, σ2k→k′ .

Probabilistic network models like these are unified under an elegant theoretical framework due
to Aldous and Hoover (Aldous, 1981; Hoover, 1979). Conceptually, the Aldous-Hoover representa-
tion characterizes the class of exchangeable random graphs, that is, graph models for which the joint
probability is invariant under permutations of the node labels. Just as de Finetti’s theorem equates
exchangeable sequences to independent draws from a random probability measure, Aldous-Hoover
renders the entries ofA andW conditionally independent given latent variables z and global pa-
rametersϑ. Lloyd et al. (2012) and Orbanz and Roy (2015) review this theoretical framework and its
applications in probabilistic machine learning.

Note that we have associated each neuron with a single latent variable, zn. This suggests that
both the adjacency matrix and the weight matrix are governed by the same latent variable, but in

36

general they can have separate variables. Whether or not they are shared is a modeling decision. We
will collectively refer to all latent variables of the network as zn and whether they govern the adja-
cency model or the weight model will be clear from context.

Figure 3.2 shows how a variety of networks can be constructed by combining different priors on
the weights (rows) with priors on the pattern of connectivity (columns). Each row corresponds to
a fixed weight matrix drawn from either an independent model, a stochastic block model (SBM),
or a latent distance model. In these cases, the weights are Gaussian distributed with unit variance
and model-specific mean. Each column corresponds to a fixed adjacency matrix drawn from either
a dense model, an independent Bernoulli model, an SBM, or a latent distance model. The matrices
show the element-wise product, which encodes a weighted, directed network. Next, we introduce a
model for spike trains that leverages an underlying network.

3.2 Hawkes Processes

Hawkes processes (Hawkes, 1971) are a special type of point process that allow spikes to influence the
future firing rate. This is achieved via a linear superposition of Poisson processes. Before jumping
into the details, a brief primer on Poisson processes is in order.

3.2.1 Poisson Processes

Point processes are fundamental statistical objects that yield random finite sets of
spikes {sm}Mm=1 ⊂ V , where V is a compact subset ofRD (Daley and Vere-Jones, 2003).
When modeling neural spike trains, we typically let V be the interval [0, T]. The Poisson pro-
cess is the canonical example. It is governed by a nonnegative firing rate or intensity func-
tion, λ(t) : V → R+. The number of spikes in a subset V ′ ⊂ V follows a Poisson distribution with
mean

∫
V ′ λ(t) dt. Moreover, the number of spikes in disjoint subsets are independent (Kingman,

1993).
We use the notation {sm}Mm=1 ∼ PP(λ(t)) to indicate that a set of spikes {sm}Mm=1 is drawn

from a Poisson process with rate λ(t). There are many ways to sample a Poisson process; one way
is to sample a Poisson number of spikes with mean

∫
V λ(t)dt and then sample the individual spike

times, sm, independently from the density, p(s) = λ(s)∫
V λ(t) dt

.Thus, after accounting for theM !

37

permutations, the likelihood of a set of spikes is given by,

p({sm}Mm=1 |λ(t)) = Poisson

(
M

∣∣∣∣ ∫
V
λ(t) dt

)(M∏
m=1

λ(sm)∫
V λ(t) dt

)
M !

=
M !

M !

(∫
V
λ(t) dt

)M
exp

{
−
∫
V
λ(t) dt

}(M∏
m=1

λ(sm)∫
V λ(t) dt

)

= exp

{
−
∫
V
λ(t)dt

} M∏
m=1

λ(sm). (3.1)

Poisson Superposition Principle We will make use of a special property of Poisson pro-
cesses called the Poisson superposition principle, which states that if we have sets of spikes from
independent Poisson processes, then the union of spikes is distributed according to a Poisson
process as well (Kingman, 1993). Moreover, the rate of this process equals the sum of rates from
the individual processes. Formally, suppose we are given sets of spikes drawn independently
from K Poisson processes with rates λ1(t), . . . , λK(t). Call the union of the spikes {sm, ωm},
where sm ∈ V is the location of the spike and ωm ∈ {1, . . . ,K} denotes which process it came
from. Let λtot(t) =

∑K
k=1 λk(t). The likelihood of the full set of spikes is,

p({sm, ωm}Mm=1 | {λk(t)}Kk=1) =

K∏
k=1

PP({sm : ωm = k} |λk(t))

=

K∏
k=1

[
exp

{
−
∫
V
λk(t) dt

} M∏
m=1

λk(sm)
I[ωm=k]

]

= exp

{
−
∫
V
λtot(t) dt

} M∏
m=1

K∏
k=1

λk(sm)
I[ωm=k].

The Poisson superposition principle states that the marginal distribution, summing over all pos-

38

sible process assignments, {ωm}, is a Poisson process with rate λtot(t). That is,

p({sm}Mm=1 | {λk(t)}Kk=1) =

K∑
ω1=1

· · ·
K∑

ωM=1

p({sm, ωm}Mm=1 | {λk(t)}Kk=1)

= exp

{
−
∫
V
λtot(t) dt

} M∏
m=1

K∑
ωm=1

K∏
k=1

λk(sm)
I[ωm=k]

= exp

{
−
∫
V
λtot(t) dt

} M∏
m=1

λtot(sm)

= PP({sm} |λtot(t)).

Furthermore, the conditional distribution of ωm is,

p(ωm = k | sm, {λk(t)}Kk=1) =
λk(sm)∑K

k′=1 λk′(sm)
.

In other words, given a set of spikes drawn from rate λtot(t), we can attribute each spike to one of
theK additive contributions to the rate function by sampling a discrete distribution with probabil-
ities given by the relative rate at the time of the spike. This is known as Poisson thinning (Kingman,
1993).

3.2.2 Including Spike History with Hawkes Processes

Though the Poisson process has many nice properties, it cannot capture interactions between
spikes. For this we turn to a more general model known as the Hawkes process (Hawkes, 1971).
First, consider the spike train of a single neuron, {sm}Mm=1 ⊂ [0, T]. In a Hawkes process, the firing
rate, λ(t |Ht), is a function of the spike history,Ht = {sm : sm < t}. The neuron has a baseline
firing rate, λ(0). On top of this baseline, each spike adds a nonnegative impulse response, h(∆t),
to the subsequent firing rate. This allows for spike-driven dynamics that are not possible in Pois-
son processes. Causality and locality of influence are enforced by limiting the support of h(∆t)
to∆t ∈ [0,∆tmax]. The rate is thus given by,

λ(t |Ht) = λ(0) +

M∑
m=1

h(t− sm).

39

1

2

3

4

5a

5b

5c

I

II

III

Figure 3.3: Illustration of a Hawkes process. Spikes induce impulse responses on connected processes and spawn

“child” spikes. See themain text for a complete description.

When the impulse response is equal to zero, the Hawkes process reduces to a standard Poisson pro-
cess with rate λ(0).

By the Poisson superposition principle, these additive components can be considered indepen-
dent processes, each giving rise to their own spikes. This suggests a convenient latent variable repre-
sentation in which each spike is attributed to either the background rate or the impulse response of a
preceding spike. We augment our data with an auxiliary variable ωm ∈ {0, . . . ,m− 1} to indicate
the origin of them-th spike (0 if the spike is due to the background rate and 1 . . .m− 1 if it was
spawned by a preceding spike).

This is easily extended to a population ofN neurons by considering a Hawkes process that gives
rise to sets ofmarked spikes {sm, cm}Mm=1, where cm ∈ {1, . . . , N} specifies the neuron on which
them-th spike occurred. As in the single neuron case, the rate of the n-th neuron, λn(t |Ht), de-
pends on the spike history, but here the spike history contains the spikes of all neurons through
time t. The multi-neuronal generalization also allows for different background rates for each neu-
ron, λ(0)n , and different impulse responses for each pair of neurons. For example, the impulse re-
sponse from neuron n to neuron n′, which we now call hn→n′(∆t), may differ from that of the
reverse connection. As before, we do require that the impulse responses be causal and have bounded
support. Putting it all together, the rate of the n-th neuron is,

λn(t |Ht) = λ(0)n +
M∑
m=1

hcm→n(t− sm). (3.2)

After augmenting the data with auxiliary variables denoting the origin of each spike, the multi-

40

neuronal Hawkes process likelihood reduces to a product of Poisson process likelihoods for each
background rate and each impulse response:

p({(sm, cm, ωm)}Mm=1 | {λ(0)n }, {{hn→n′(∆t)}}) =
N∏
n=1

PP
(
{sm : cm = n ∧ ωm = 0} |λ(0)n

)
×

M∏
m=1

N∏
n′=1

PP
(
{sm′ : cm′ = n′ ∧ ωm′ = m} |hcm→n′(t− sm)

)
.

Combining this with Eq. 3.1, we can write the augmented likelihood as,

p({sm, cm, ωm}Mm=1 | {λ(0)n }, {{hn→n′(∆t)}}) =
N∏
n=1

[
exp

{
−
∫ T

0
λ(0)n dt

} M∏
m=1

(λ(0)n)I[cm=n]I[ωm=0]

]

×
M∏
m=1

N∏
n′=1

[
exp

{
−
∫ T

sm

hcm→n′(t− sm)dt
}

M∏
m′=1

hcm→cm′ (sm′ − sm)I[cm′=n′]I[ωm′=m]

]
. (3.3)

The second line corresponds to the likelihood of the background processes; the third and fourth
correspond to the likelihood of the induced processes triggered by each spike.

Figure 3.3 illustrates a causal cascades of spikes for a simple network of three processes (I-III). The
first spike is caused by the background rate (ω1 = 0), and it induces impulse responses on processes
II and III. Spike 2 is spawned by the impulse on the third process (ω2 = 1), and feeds back onto
processes I and II. In some cases a single parent spike induces multiple children, e.g., spike 4 spawns
spikes 5a-c. In this simple example, processes excite one another, but do not excite themselves.

3.3 The Network Hawkes Model

In order to combine Hawkes processes and random network models, we decompose the Hawkes
impulse response hn→n′(∆t) as follows:

hn→n′(∆t) = an→n′ · wn→n′ · ℏ(∆t; θn→n′). (3.4)

41

Here, an→n′ is an entry in the binary adjacency matrix,A ∈ {0, 1}N×N , andwn→n′ is the cor-
responding entry in the nonnegative weight matrix,W ∈ RN×N+ . Together these specify the
sparsity structure and strength of the interaction network, respectively. The nonnegative func-
tion ℏ(∆t; θn→n′) captures the temporal aspect of the interaction. It is parameterized by θn→n′

and satisfies two properties: a) it has bounded support for∆t ∈ [0,∆tmax], and b) it integrates to
one. In other words, ℏ is a probability density with compact support.

Decomposing the impulse response as in Equation 3.4 has many advantages. It allows us
to express our separate beliefs about the sparsity structure of the interaction network and the
strength of the interactions by using probabilistic network models as priors onA andW . The
empty graph model recovers independent background processes, and the complete graph re-
covers the standard Hawkes process introduced by Hawkes (1971). Making ℏ a probability den-
sity endowsW with units of “expected number of spikes” and allows us to compare the relative
strength of interactions. The form suggests an intuitive generative model: for each impulse response
draw k ∼ Poisson(wn→n′) number of induced spikes and draw the k child spike times i.i.d. from ℏ.
As we will see, this enables computationally tractable conjugate priors.

We can now write down the joint probability of the probabilistic model,

p({sm, cm, ωm},A,W , {{θn→n′}}, {λ(0)n }, {zn},ϑ) =

p(ϑ)×
latent variables︷ ︸︸ ︷
p({zn} |ϑ)×

network︷ ︸︸ ︷
p(A,W | {zn},ϑ)×

background︷ ︸︸ ︷
p({λ(0)n })×

impulses︷ ︸︸ ︷
p({θn→n′})

×

augmented likelihood︷ ︸︸ ︷
p
(
{sm, cm, ωm} |A,W , {θn→n′}, {λ(0)n }

)
. (3.5)

Before deriving inference algorithms for this model, however, we pause to consider some of its theo-
retical properties.

3.3.1 Stability of Network Hawkes Processes

Due to their recurrent, mutually-excitatory nature, Hawkes processes can easily be unstable and give
rise to an infinite number of spikes. A stable system must satisfy *

λmax = max | eig(A⊙W) | < 1

*In this context, λmax refers to an eigenvalue rather than a rate.

42

0 0.5 1

p
(λ

m
a
x
)

λmax

0 0.5 1

p
(λ

m
a
x
)

λmax

0 1 2
0

2

4

6

G(1,5)
G(2,5)
G(4,8)
G(8,12)

p
(w

)

w
4 64 1024

10−2

10−1

100

N

ρ

(a) (b) (c) (d)

Figure 3.4: Empirical and theoretical distribution of themaximum eigenvalue for independent Bernoulli graphs with

gammaweights. (a) Four gammaweight distributions. The colors correspond to the curves in the remaining panels.

(b) Sparsity that theoretically yields 99% probability of stability as a function of p(w) andN . (c) and (d) Theoretical

(solid) and empirical (dots) distribution of themaximum eigenvalue. Color corresponds to the weight distribution in (a)

and intensity indicatesN and ρ shown in (b).

(c.f. Daley and Vere-Jones (2003)). For the generative model, we would like to set our hyperparame-
ters such that the prior distribution places little mass on unstable networks. In order to do so, we use
tools from random matrix theory.

The circular law describes the asymptotic eigenvalue distribution forN × N random matrices
with entries that are i.i.d. with zero mean and variance σ2. AsN grows, the eigenvalues are uni-
formly distributed over a disk in the complex plane centered at the origin and with radius σ

√
N . In

our case, however, the mean of the entries, µ = E[an→n′ · wn→n′], is not zero. Silverstein (1994)
has analyzed such “non-central” random matrices and shown that the largest eigenvalue is asymptot-
ically distributed as λmax ∼ N (µN, σ2).

In the simple case ofwn→n′ ∼ Gamma(κ, ν) and an→n′ ∼ Bern(ρ), we have µ = ρκ/ν and
σ =

√
ρ((1− ρ)κ2 + κ)/ν. We are using the rate parameterization of the gamma density,

Gamma(w |κ, ν) = νκ

Γ(κ)
wκ−1e−νw.

For a givenN , κ and ν, we can tune the sparsity parameter ρ to achieve stability with high probabil-
ity. We simply set ρ such that the minimum of σ

√
N and, say, µN + 3σ, equals one. Figures 3.4a

and 3.4b show a variety of weight distributions and the maximum stable ρ. Increasing the network
size, the mean, or the variance will require a concomitant increase in sparsity.

This approach relies on asymptotic eigenvalue distributions, and it is unclear how quickly the
spectra of random matrices will converge to this distribution. To test this, we computed the em-
pirical eigenvalue distribution for random matrices of various size, mean, and variance. We gen-
erated 104 random matrices for each weight distribution in Figure 3.4a with sizesN = 4, 64,

43

and 1024, and ρ set to the theoretical maximum indicated by dots in Figure 3.4b. The theoretical
and empirical distributions of the maximum eigenvalue are shown in Figures 3.4c and 3.4d. We find
that for small mean and variance weights, for exampleGamma(1, 5) in the Figure 3.4c, the empir-
ical results closely match the theory. As the weights grow larger, as inGamma(8, 12) in 3.4d, the
empirical eigenvalue distributions have increased variance and lead to a greater than expected prob-
ability of unstable matrices for the range of network sizes tested here. We conclude that networks
with strong weights should be counterbalanced by strong sparsity limits, or additional structure in
the adjacency matrix that prohibits excitatory feedback loops.

3.4 Bayesian Inference with Gibbs Sampling

We present a Gibbs sampling procedure for inferring the model parameters,A,W , {λ(0)n },
{θn→n′}, and the parameters of the network, {zn} andϑ. In order to simplify our Gibbs updates,
we will also sample a set of parent assignments for each spike {ωm}. Incorporating these parent
variables enables conjugate prior distributions and a simple and efficient Gibbs sampling algorithm.

Sampling weightsW . To derive the updates for weights, recall from (3.4) thatwn→n′ only
appears in the impulse responses for which cm = n and cm′ = n′, so the likelihood is proportional
to,

p({sm, cm,ωm}Mm=1 | an→n′ , wn→n′ , θn→n′)

∝
M∏
m=1

[
exp

{
−
∫ T

sm

an→n′ · wn→n′ · ℏ(t− sm; θn→n′) dt

}]I[cm=n]

×
M∏
m=1

M∏
m′=1

[
wn→n′

]I[cm=n]I[cm′=n′]I[ωm′=m]

.

If an→n′ = 0, the impulse response is deterministically zero and, as a result, none of the
spikes on neuron n′ will be attributed to spikes on neuron n. Thus, the likelihood does not
depend onwn→n′ . If an→n′ = 1, the likelihood is more complicated. Note, however, that
if sm < T −∆tmax,

−
∫ T

sm

an→n′ · wn→n′ · ℏ(t− sm; θn→n′) dt = −wn→n′

∫ T

sm

ℏ(t− sm; θn→n′) dt

= −wn→n′ ,

44

since ℏ is a density defined on [0,∆tmax]. In general, it is safe to ignore the impulse responses from
spikes that occur in the time after T − ∆tmax since this will be quite small compared to the total
recording duration. With this approximation, the conditional distribution ofwn→n′ reduces to,

p({sm, cm, ωm}Mm=1 | an→n′ = 1, wn→n′) ∝ e−Mn·wn→n′ (wn→n′)Mn→n′ .

where

Mn =
M∑
m=1

I[cm = n],

Mn→n′ =

M∑
m=1

I[cm = n] I[cm′ = n′] I[ωm′ = m].

These sufficient statistics count the number of spikes caused by an connection n→ n′ and the total
unweighted rate induced by spikes on neuron n.

Now that we have simplified the augmented log likelihood, we see that it is conjugate with a
gamma prior on the weights,wn→n′ ∼ Gamma(κn→n′ , νn→n′). In Section 3.1 the weight mod-
els specified the mean, µn→n′ . For a gamma distribution, µn→n′ =

κn→n′
νn→n′

. The simplest way to
reconcile these is to fix the shape parameter κn→n′ ≡ κ, then we can compute the mean for any rate
parameter, νn→n′ .

Assuming κ and νn→n′ are given, the conditional distribution of the weights is,

p(wn→n′ | {sm, cm, ωm}Mm=1, an→n′ = 1, κ, νn→n′) = Gamma(wn→n′ | κ̃n→n′ , ν̃n→n′),

where

κ̃n→n′ = κ+Mn→n′ ,

ν̃n→n′ = νn→n′ +Mn.

Sampling constant background rates. Similarly, the likelihood of a constant background
rate, λ(0)n , is conjugate with a gamma prior λ(0)n ∼ Gamma(α0, β0). The conditional distribution

45

is,

p(λ(0)n | {sm, cm, ωm}Mm=1, α0, β0) = Gamma(λ(0)n | α̃0,n, β̃0,n),

α̃0,n = α0 +
∑
m

I[cm = n] I[ωm = 0]

β̃0,n = β0 + T

Sampling impulse response parameters θn→n′ . The logistic-normal density with parame-
ters θn→n′ = {µn→n′ , τn→n′} provides a flexible model for the impulse response:

ℏ(∆t; µn→n′ , τn→n′) =
1

Z
exp

{
−τn→n′

2

(
σ−1

(
∆t

∆tmax

)
− µn→n′

)2
}

σ−1(x) = ln(x/(1− x))

Z =
∆t(∆tmax −∆t)

∆tmax

(τn→n′

2π

)− 1
2
.

Given the auxiliary parent variables, the likelihood is conjugate with a normal-gamma
prior µn→n′ , τn→n′ ∼ NG(µµ, κµ, ατ , βτ). The sufficient statistics are,

xm→m′ ≜ ln(sm′ − sm)− ln(tmax − (sm′ − sm)),

x̄n→n′ =
1

Mn→n′

M∑
m=1

M∑
m′=1

I[cm = n] I[cm′ = n′] I[ωm′ = m]xm→m′ ,

vn→n′ =

M∑
m=1

M∑
m′=1

I[cm = n] I[cm′ = n′] I[ωm′ = m] (xm→m′ − x̄)2.

Intuitively, these correspond to the number of spikes attributed to a connection and the mean and
variance of their (transformed) delays. The parameters of the normal-gamma conditional distribu-
tion are,

µ̃n→n′ =
κµµµ +Mn→n′ x̄n→n′

κµ +Mn→n′
, κ̃n→n′ = κµ +Mn→n′ ,

α̃n→n′ = ατ +
Mn→n′

2
, β̃n→n′ =

vn→n′

2
+

Mn→n′κµ
Mn→n′ + κµ

(x̄n→n′ − µµ)2

2
.

46

Collapsed Gibbs samplingA andω. With Aldous-Hoover graph priors, the entries in the
binary adjacency matrixA are conditionally independent given the parameters of the prior. The
likelihood introduces dependencies between the rows ofA, but each column can be sampled in
parallel. This allows us to parallelize over columns and achieve anO(N) speedup.

Gibbs updates are complicated, however, by the strong dependencies between the graph and the
parent variables. Specifically, if ωm′ = m, then we must have acm,cm′ = 1. To improve the perfor-
mance of our sampling algorithm, first we updateA | {sm, cm},W , θn→n′ by marginalizing the
parent variables. By the Poisson superposition principle, the marginal distribution is still a Poisson
process:

p(an→n′ | {sm, cm},A¬n→n′ ,W ,θ, {zn},ϑ)

∝ PP
(
{sm : cm = n′}

∣∣λn′(t |Ht)
)
× p(an→n′ | zn, zn′ ,ϑ)

= exp

{
−
∫ T

0
λn′(t |Ht) dt

} M∏
m=1

[
λn′(sm |Ht)I[cm=n′]

]
× p(an→n′ | zn, zn′ ,ϑ),

where λn′(t |Ht) depends onA,W , and θ through (3.2). Importantly, the integral of the rate
function appearing in the likelihood can be computed without numerical quadrature,

∫ T

0
λn′(t |Ht) dt = λ

(0)
n′ T +

M∑
m=1

acm→n′ · wcm→n′

∫ T

0
ℏ(t− sm; θcm→n′) dt

≈ λ(0)n′ T +

M∑
m=1

acm→n′ · wcm→n′

= λ
(0)
n′ T +

N∑
n=1

an→n′ · wn→n′ ·Mn.

Again, the approximation stems from ignoring spikes that occur in the final interval of the record-
ing, (T −∆tmax, T]. For each column, we iterate over incoming edges, an→n′ and sample from its
collapsed distribution, holding all other parameters fixed.

Once the adjacency matrix has been updated, the parent variables are updated by Poisson thin-
ning — that is, by sampling from their discrete conditional distribution. Again, these are all condi-
tionally independent, so theM auxiliary variables can be sampled in parallel.

47

Sampling Network Variables and Parameters Given the network and the spike train, the
conditional distributions for the latent variables, {zn}, and the parameters,ϑ are easy by design.

Latent class updates: If a stochastic block model is used for either the adjacency matrix or the
weights, then it is necessary to sample the class assignments from their conditional distribu-
tion. We iterate over each neuron and update its assignment given the rest by sampling from
the conditional distribution. For example, if zn governs a stochastic block model for the adja-
cency matrix, the conditional distribution of the label for neuron n is given by,

p(zn = k | z¬n,A,ϑ) ∝ πk
N∏

n′=1

p(an′→n | ρzn′→k) p(an→n′ | ρk→zn′), (3.6)

whereϑ = {π, {ρk→k′}}. For stochastic block models of the weight matrix,W , the condi-
tional distribution depends onwn′→n andwn→n′ instead.

Given the class assignments and the network, the parameters ρk→k′ , µk→k′ , andπ are easily
updating according to their conditional distributions, since the model is conjugate.

Latent location updates: We resample the locations using hybrid Monte Carlo (HMC) (Neal,
2010). Since the latent variables are continuous and unconstrained, this method is quite effec-
tive.

In addition to the locations, the latent distance model is parameterized by a location scale, η.
Given the locations and an inverse gamma prior, the inverse gamma conditional distribution
can be computed in closed form.

The remaining parameters include the log-odds, γ0, if the distance model applies to the ad-
jacency matrix, and the baseline mean, µ0, if it applies to the weight matrix. These can be
sampled alongside the locations with HMC.

Computational concerns. The complexity of inference is primarily driven by the num-
ber of spikes,M . We must update the auxiliary variable of each spike, and in the worst case there
arem potential parents for them-th spike. Hence, this operation can be at worstO(M2) com-
plexity. In practice, compact impulse responses limit the number of potential spike parents and
significantly reduce the memory requirements and running time of our algorithm. If we could
bound the maximum firing rate at λmax, the complexity of resampling parent variables would

48

be∼M N λmax∆tmax. However, these auxiliary variables are conditionally independent so we
can save a factor ofM by parallelizing their updates, as we do in our parallel implementation.

The second most computationally expensive operation is updating the adjacency matrix and
the weights. Note, however, that the columns of the weighted adjacency matrix are conditionally
independent. Thus, we can save a factor ofN by using block parallel Gibbs sampling. In order to
perform these updates, we must compute sufficient statistics that involve sums overM spikes. We
have implemented a multithreaded inference algorithm in Python and C that capitalizes on these
opportunities for parallelism.†

3.5 Synthetic Results

First, we test our inference algorithm on synthetic data generated from the network Hawkes model.
We perform two tests: (i) a link prediction task where the process identities are given and the goal is
to simply infer whether or not an interaction exists, and (ii) a spike prediction task where we mea-
sure the probability of held-out spike sequences.

The network Hawkes model can be used for link prediction by considering the posterior proba-
bility of interactions p(an→n′ | {sm, cm}). By thresholding at varying probabilities we compute a
ROC curve. A standard Hawkes process assumes a complete set of interactions (an→n′ ≡ 1), but
we can similarly threshold its inferred weight matrix to perform link prediction.

Cross correlation provides a simple alternative measure of interaction. By binning the data and
summing the cross-correlation over offsets∆t ∈ [0,∆tmax), we obtain a measure of directed in-
teraction. A probabilistic alternative is offered by the generalized linear model for point processes
(GLM), a popular model for spiking dynamics in computational neuroscience (Paninski, 2004).
The GLM allows for constant background rates and both excitatory and inhibitory interactions.
Impulse responses are modeled with linear basis functions. Area under the impulse response pro-
vides a measure of directed excitatory interaction that we use to compute a ROC curve. In Chap-
ter 5, we will discuss generalized linear models for spike trains in great detail.

We sampled ten network Hawkes processes of 30 nodes each with independent Bernoulli graph
models, constant background rates, and the conjugate priors described above. The Hawkes pro-
cesses were simulated for T = 1000 seconds. We used the models above to predict the presence or
absence of interactions. The results of this experiment are shown in the ROC curves of Figure 3.5a.
The network Hawkes model accurately identifies the sparse interactions, outperforming all other

†https://github.com/slinderman/pyhawkes

49

https://github.com/slinderman/pyhawkes

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FP rate

T
P

 r
a

te

Synthetic Link Prediction ROC

Net. Hawkes

Std. Hawkes

GLM

XCorr

(b)

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

Network

P
re

d
.

lo
g

 l
k
h

d
.

(b
it
s
/s

)

Synthetic Predictive Log Likelihood

Net Hawkes

Std Hawkes

GLM

Figure 3.5: (a)Comparison of models on a link prediction test averaged across ten randomly sampled synthetic net-

works of 30 nodes each. The network Hawkesmodel with the correct independent Bernoulli graph prior outperforms

a standard Hawkesmodel, GLM, and simple thresholding of the cross-correlationmatrix. (b)Comparison of predictive

log likelihoods, compared to a baseline of a Poisson process with constant rate. Improvement in predictive likelihood

over baseline is normalized by the number of spikes in the test data to obtain units of “bits per spike.” The network

Hawkesmodel outperforms the competitors in all sample networks.

models. With the Hawkes process and the GLM we can evaluate the log likelihood of held-out test
data. On this task, the network Hawkes outperforms the competitors for all networks. On average,
the network Hawkes model achieves 2.2 ± .1 bits/spike improvement in predictive log likelihood
over a homogeneous Poisson process. Figure 3.5b shows that on average the standard Hawkes and
the GLM provide only 60% and 72%, respectively, of this predictive power.

3.6 Modeling Hippocampal Place Cells

Our first real dataset consists of a simultaneously recorded population of 49 hippocampal place
cells from a rat freely foraging in a circular arena roughly 120cm in diameter. The data is courtesy
of the lab of Prof. Matthew Wilson at MIT.‡ The recording duration was roughly 25minutes. The

‡ The experiments were conducted under the supervision of the Massachusetts Institute of Technology
(MIT) Committee on Animal Care and followed the NIH guidelines. The micro-drive arrays containing mul-
tiple tetrodes were implanted above the right dorsal hippocampus of male Long-Evans rats. The tetrodes were
slowly lowered into the brain reaching the cell layer of CA1 two to four weeks following the date of surgery.
Recorded spikes were manually clustered and sorted to obtain single units using custom software.

50

(a)

40 20 0 20 40

x [cm]

40

20

0

20

40
y

[c
m

]

True place fields (b) Inferred Weights

p
re

post

0.0

0.1

0.2

0.3

(c) Inferred Probability

p
re

post

0.0

0.5

1.0

(d)

2 0 2

2

0

2

Mean Locations

0.4 0.0 0.4

0.4

0.0

0.4

PCA Locations

(e)

40 20 0 20 40

40

20

0

20

40

True Place Fields

2 0 2

2

0

2

Locations Samples

(f)

40 20 0 20 40

40

20

0

20

40

True Place Fields

2 0 2

2

0

2

Locations Samples

(g)

40 20 0 20 40

40

20

0

20

40

True Place Fields

2 0 2

2

0

2

Locations Samples

Figure 3.6: Inferredweights and locations of hippocampal place cells using a latent distancemodel as a prior distribu-

tion over the adjacencymatrix. (a): True place field centers. Marker size is proportional to the size of the place field.

Neurons are false colored for identification. (b): Expected weights under posterior. Neurons are sorted by location,

and colorbars onx and y axesmap to colors in (a). (c): Expected connection probability under posterior according to

latent distancemodel. (d):Mean posterior locations under the latent distancemodel. For comparison, the embedding

found by PCA is plotted below. (e-g): Posterior distribution over locations shown four cells at a time. top: True loca-

tions of the cells. bottom: 250 samples from the posterior distribution over neuron locations for the four cells colored

above.

first 20minutes were used for model fitting and the last 5were reserved for predictive tests. Over the
entire 25minute recording, each neuron fired on average 1979±4117 spikes (min: 48, max: 27572)
for a total of 97000 spikes. This corresponds to a firing rate of 1.35 ± 2.82Hz (min: 0.32Hz,
max: 18.88Hz). The rat’s location, x(t), was recorded along with the corresponding spike times.

51

From this, the place field of the n-th neuron is computed as,

x̄n =
1

Mn

M∑
m=1

x(sm) · I[cm = n],

where, again,Mn is the number of spikes fired by neuron n. Likewise, the covariance of the place
field is given by,

V n =

[
1

Mn

M∑
m=1

x(sm)x(sm)
T · I[cm = n]

]
− x̄nx̄T

n .

This gives us an estimate of the size of the place field. LetX = {xn} denote the 49× 2matrix of
place fields.

We compare a few different models for this data. Our baseline is a set of independent Poisson
processes with constant firing rates set by maximum likelihood. Next, we consider a standard,
densely connected Hawkes process. Third, we fit a network Hawkes process with an independent
Bernoulli prior on the adjacency matrix and an independent gamma prior on the weight matrix.
This induces sparsity in the connectivity. Finally, we fit a network Hawkes model with a latent dis-
tance prior on the adjacency matrix and an independent gamma prior on the weights. In fitting this
last model, we infer a distribution over sets of locations,Z = {zn}, for the population. Intuitively,
we expect these locations to mirror the true place fields since nearby cells are likely to have correlated
firing rates, which should be captured by excitatory impulse responses between nearby cells.

Figure 3.6 shows the posterior distribution from the network Hawkes model with a latent dis-
tance model prior. Figure 3.6a shows the true place fields of the 49 neurons. The marker size is pro-
portional to the size of the place field, as measured by the largest eigenvalue ofV n. The neurons
are false colored for identification. Figure 3.6b and 3.6c show the expected weights,E[W], and the
matrix of expected connection probabilities, E[ρn→n′], respectively. The colorbars on the axes map
to colors in Figure 3.6a. Nearby neurons have higher probability of connection, as expected. This is
reflected in the inferred locations.

Since the latent distance model is invariant to rotation, for each sampleZ(ℓ), we find the orthog-
onal matrix,R(ℓ), that minimizes ||X −R(ℓ)Z(ℓ)||F and apply it to obtain a rotated set of loca-
tions, Z̃

(ℓ)
= R(ℓ)Z(ℓ). Doing this for each sample yields a set of locations {Z̃

(ℓ)
}Lℓ=1. Figure 3.6d

(top) shows the mean posterior locations, E[Z̃], and we see that it is qualitatively very similar to the

52

Hippocampal Model Pred. log lkhd. (bits/spike)
Standard Hawkes 0.750± 9.7× 10−5

Net. Hawkes (A ∼ Bernoulli Model) 0.768± 9.2× 10−5

Net. Hawkes (A ∼ Latent Distance Model) 0.766± 9.4× 10−5

Table 3.3: Comparison of hippocampal models on a spike prediction task relative to a homogeneous Poisson process

baseline.

true locations. In contrast, the two dimensional PCA embedding is highly skewed.§

Finally, panels (e-g) show the samples from the posterior distribution of Z̃ . Since this is difficult
to visualize, we show the marginal distribution of four neurons at a time. The true location of the
four place fields is identified in the upper panel, and the sampled locations are scattered in the lower
panel. Importantly, the relative arrangement of locations is well preserved in the inferred locations.
Moreover, cells with larger place fields tend to have larger posterior variance in their locations. This
is to be expected since large place fields imply imprecise coding of space and higher correlation with
other cells. This illustrates how Hawkes processes combined with latent variable models can pro-
vide interpretable portraits of complex datasets and find low-dimensional embeddings that recover
intuitive structure.

Table 3.3 lists the predictive likelihoods of the various models relative to a homogeneous Poisson
process baseline in units of bits per spike. We see that the sparsity of the network Hawkes model
leads to improved predictive performance. In this case, however, the simple independent Bernoulli
model and the latent distance model both have similar predictive likelihoods. When the network is
largely determined by the training data, the prior has little effect. Thus, the two sparse priors may
yield similar predictive performance, even though the latent distance model identifies meaningful
latent structure. We will consider additional ways of disambiguating different network models in
Chapter 5.

3.7 Trades on the S&P 100

While the focus of this thesis is on modeling neural spike trains, these models have broad applicabil-
ity outside neuroscience as well. Here we present one example in which we study the trades on the

§First, we binned the spikes into 250ms bins, then we smoothed the spike counts with a Gaussian kernel
of width 1s to estimate the firing rate. Finally, we applied PCA to the firing rate matrix and used the top two
principal components as the embedding.

53

τ

Latent Dimension 1

L
a

te
n

t
D

im
e

n
s
io

n
 2

Inferred Embedding of Financial Stocks

IT

Financials

Energy

Health Care

Consumer

Industrials

A
A

P
L

J
N

J

J
P

M

C
V

S

P
G

W
A

G

X
O

M

Top 4 eigenvectors of A ⋅W

Figure 3.7: Top: A sample from the posterior distribution over embeddings of stocks from the six largest sectors of the

S&P100 under a latent distance graphmodel with two latent dimensions. Scale bar: the characteristic length scale of

the latent distancemodel. The latent embedding tends to embed stocks such that they are nearby to, and hencemore

likely to interact with, others in their sector. Bottom: Hinton diagram of the top 4 eigenvectors. Size indicates magni-

tude of each stock’s component in the eigenvector and colors denote sectors as in the top panel, with the addition of

Materials (aqua), Utilities (orange), and Telecomm (gray). We show the eigenvectors corresponding to the four largest

eigenvaluesλmax = 0.74 (top row) toλ4 = 0.34 (bottom row).

S&P 100 index collected at 1s intervals during the week of Sep. 28 through Oct. 2, 2009. Every time
a stock price changes by±0.1% of its current price a spike is logged on the stock’s process, yielding a
total ofN = 100 processes andM = 182, 037 spikes.

Trading volume varies substantially over the course of the day, with peaks at the opening and
closing of the market. Rather than attempting to model this background fluctuation with a constant
background rate, here we use a log Gaussian Cox process (LGCP) (Møller et al., 1998) with a peri-
odic kernel instead. Complete details of inference are given in Linderman and Adams (2014). We
look for short-term interactions on top of this background rate with time scales of∆tmax = 60s.

In Figure 3.4 we compare the predictive performance of independent LGCPs, a standard Hawkes

54

Financial Model Pred. log lkhd. (bits/spike)
Independent LGCP 0.594
Standard Hawkes 0.912
Net. Hawkes (A ∼ Bernoulli Model) 0.903
Net. Hawkes (A ∼ Latent Distance Model) 0.888

Table 3.4: Comparison of financial models on a spike prediction task, relative to a homogeneous Poisson process base-

line.

process with LGCP background rates, and the network Hawkes model with LGCP background
rates under two graph priors. The models are trained on four days of data and tested on the fifth.
Though the network Hawkes is slightly outperformed by the standard Hawkes, the difference is
small relative to the performance improvement from considering interactions, and the inferred net-
work parameters provide interpretable insight into the market structure.

In the latent distance model forA, each stock has a latent embedding zn ∈ R2 such that nearby
stocks are more likely to interact, as described in Section 3.1. Figure 3.7 shows a sample from the
posterior distribution over embeddings inR2. We have plotted stocks in the six largest sectors, as
listed on Bloomberg.com. Some sectors, notably energy and financials, tend to cluster together,
indicating an increased probability of interaction between stocks in the same sector. Other sectors,
such as consumer goods, are broadly distributed, suggesting that these stocks are less influenced
by others in their sector. For the consumer industry, which is driven by slowly varying factors like
inventory, this may not be surprising.

The Hinton diagram in the bottom panel of Figure 3.7 shows the top 4 eigenvectors of the in-
teraction network. All eigenvalues are less than 1, indicating that the system is stable. The top row
corresponds to first eigenvector (λmax = 0.74). Apple (AAPL), J.P. Morgan (JPM), and Exxon Mo-
bil (XOM) have notably large entries in the eigenvector, suggesting that their activity will spawn cas-
cades of self-excitation.

3.8 Gangs of Chicago

As a second example of applications outside neuroscience, we study spatiotemporal patterns of
gang-related homicide in Chicago. Sociologists have suggested that gang-related homicide is medi-
ated by underlying social networks and occurs in mutually-exciting, retaliatory patterns (Papachris-
tos, 2009). This is consistent with a spatiotemporal Hawkes process in which processes correspond

55

(a)

Communities Clusters
0

0.1

0.2

0.3

0.4

Process ID Model

P
re

d
.

L
o

g
 L

k
h

d
 (

b
it
s
/s

)

Empty

Complete

Erdos−Renyi

Distance

(b)

Receiving Cluster

In
it
ia

ti
n

g
 C

lu
s
te

r

Cluster Interactions

1 2 3 4

1

2

3

4

0

20

40

(c)

−87.9 −87.8 −87.7 −87.6 −87.5
41.6

41.65

41.7

41.75

41.8

41.85

41.9

41.95

42

42.05

42.1
Inferred Gang Regions

Cluster 1

Cluster 2

Cluster 3

Cluster 4

(d)

1980 1985 1990 1994
 0

 1

 2

 3

λ
1
(t

)

1980 1985 1990 1994
 0

 1

 2

 3

λ
2
(t

)

1980 1985 1990 1994
 0

 1

 2

 3

λ
3
(t

)

1980 1985 1990 1994
 0

 1

 2

 3

λ
4
(t

)
[H

o
m

/D
a
y
/k

m
2
]

×
1
0

−
3

Offset

Background

Interactions

Figure 3.8: Inferred interactions among clusters of community areas in the city of Chicago. (a) Predictive log likeli-

hood for “communities” and “clusters” process identity models and four graphmodels. Panels (b-d) present results for

themodel with the highest predictive log likelihood: an independent Bernoulli graphwithN = 4 clusters. (b) The
weighted interaction network in units of induced homicides over the training period (1980-1993). (c) Inferred cluster-

ing of the 77 community areas. (d) The intensity for each cluster, broken down into the offset, the shared background

rate, and the interactions (units of 10−3 homicides per day per square kilometer).

to gang territories and homicides incite further homicides in rival territories.
We study gang-related homicides between 1980 and 1995 (Block et al., 2005). Homicides are la-

beled by the community in which they occurred. Over this time-frame there wereM = 1637 gang-
related homicides in the 77 communities of Chicago.

We evaluate our model with a spike-prediction task, training on 1980-1993 and testing on 1994-
1995. We use a LGCP temporal background rate in all model variations. Our baseline is a single pro-
cess with a uniform spatial rate for the city. Here, however, the analogous “neurons” are not so clear.
We consider two models: (i) the “community” model, which considers each community a separate
“neuron,” or process, and (ii) the “cluster” model, which groups communities into processes. The
number of clusters is chosen by cross-validation (again, see Linderman and Adams (2014)). For each
process identity model, we compare four graph models: (i) independent LGCPs (empty), (ii) a stan-
dard Hawkes process with all possible interactions (complete), (iii) a network Hawkes model with
a sparsity-inducing independent Bernoulli graph prior, and (iv) a network Hawkes model with a

56

latent distance model that prefers short-range interactions.
The community process identity model improves predictive performance by accounting for

higher rates in South and West Chicago where gangs are deeply entrenched. Allowing for interac-
tions between community areas, however, results in a decrease in predictive power due to overfitting
(there is insufficient data to fit all 772 potential interactions). Interestingly, sparse graph priors do
not help. They bias the model toward sparser but stronger interactions which are not supported
by the test data. These results are shown in the “communities” group of Figure 3.8a. Clustering the
communities improves predictive performance for all graph models, as seen in the “clusters” group.
Moreover, the clustered models benefit from the inclusion of excitatory interactions, with the high-
est predictive log likelihoods coming from a four-cluster independent Bernoulli graph model with
interactions shown in Figure 3.8b. Distance-dependent graph priors do not improve predictive per-
formance on this dataset, suggesting that either interactions do not occur over short distances, or
that local rivalries are not substantial enough to be discovered in our dataset. More data is necessary
to conclusively say which.

Looking into the inferred clusters in Figure 3.8c and their rates in 3.8d, we can interpret the clus-
ters as “safe suburbs” in gold, “buffer neighborhoods” in green, and “gang territories” in red and
blue. Self-excitation in the blue cluster (Figure 3.8b) suggests that these regions are prone to bursts
of activity, as one might expect during a turf-war. This interpretation is supported by reports of “a
burst of street-gang violence in 1990 and 1991” in West Englewood (41.77◦N,−87.67◦W) (Block
and Block, 1993).

Figure 3.8d also shows a significant increase in the homicide rate between 1989 and 1995, consis-
tent with reports of escalating gang warfare (Block and Block, 1993). In addition to this long-term
trend, homicide rates show a pronounced seasonal effect, peaking in the summer and tapering in
the winter. An LGCP with a quadratic kernel point-wise added to a periodic kernel captures both
effects.

3.9 Related Work

Hawkes processes and latent network discovery have been a subject of recent interest in the machine
learning community. Much of this interest stems from the growth of social networking applications
which produce massive amounts of spiking data. Gomez-Rodriguez et al. (2010) introduced one
of the earliest algorithms for discovering latent networks from cascades of spikes in social network
data. They developed a highly scalable approximate inference algorithm, but they did not explore

57

the potential of random network models or emphasize the point process nature of the data. Simma
and Jordan (2010) studied this problem from the context of Hawkes processes and developed an
expectation-maximization inference algorithm that could scale to massive datasets, like the inter-
actions between authors on Wikipedia. We have adapted their latent variable formulation in our
fully-Bayesian inference algorithm and introduced a framework for prior distributions over the la-
tent network.

Others have considered special cases of the model we have proposed. Blundell et al. (2012) com-
bine Hawkes processes and the Infinite Relational Model (a specific exchangeable graph model with
an Aldous-Hoover representation) to cluster processes and discover interactions in email networks.
Cho et al. (2013) applied Hawkes processes to gang incidents in Los Angeles. They developed a spa-
tial Gaussian mixture model (GMM) for process identities, but did not explore structured network
priors. We experimented with this process identity model but found that it suffers in predictive log
likelihood tests.

Iwata et al. (2013) developed a stochastic EM algorithm for Hawkes processes, leveraging similar
conjugacy properties, but without network priors. Zhou et al. (2013) have developed a promising
optimization-based approach to discovering low-rank networks in Hawkes processes, similar to
some of the network models we explored. Guo et al. (2014) have developed a similar model to ours.
They focus on applying Hawkes processes to language modeling and incorporating features of the
discrete events. DuBois et al. (2013) also explored the use of infinite relational models as a prior in
conjunction with a point process observation model build on a Gibbs sampling algorithm.

Perry and Wolfe (2013) derived a partial likelihood inference algorithm for Hawkes processes with
a similar emphasis on structural patterns in the network of interactions. They provide an estimator
capable of discovering homophily and other network effects. Our fully-Bayesian approach gener-
alizes this method to capitalize on recent developments in random network models (Lloyd et al.,
2012).

Finally, generalized linear models (GLMs) are widely used in computational neuroscience (Panin-
ski, 2004). GLMs allow for both excitatory and inhibitory interactions, but, as we have shown,
when the data consists of purely excitatory interactions, Hawkes processes outperform GLMs in
link- and spike-prediction tests. We will discuss these models in Chapter 5

58

3.10 Conclusion

This chapter developed a framework for discovering latent network structure from spiking data
with mutually excitatory interactions. Our auxiliary variable formulation of the multivariate
Hawkes process supports a broad class of prior distributions on latent network structure. This al-
lows us to connect interpretable latent variables, like neuron types and features, to a dynamic model
for spike trains. Our parallel MCMC algorithm allowed us to reason about uncertainty in the latent
network in a fully-Bayesian manner. We leveraged results from random matrix theory to analyze
the conditions under which random network models will be stable, and our applications uncovered
interpretable latent networks in a variety of synthetic and real-world problems.

Hawkes processes are the point process analogue of linear autoregressive models. The firing rate
is a sum of nonnegative impulse responses induced by preceding spikes. As we generalize these mod-
els in the following chapters, we will exploit this relationship and consider natural extensions like
discrete time, nonlinear, and nonstationary versions of the model.

59

4
Discrete-Time Linear Autoregressive Poisson

Models

This chapter builds on the network Hawkes model introduced in the Chapter 3. We introduce linear
autoregressive Poisson models — the discrete time analogue of the Hawkes process — and we de-
rive efficient Gibbs sampling and stochastic variational inference algorithms, leveraging the Poisson
superposition principle as before. This chapter marks the transition from continuous time models
to the discrete time models that occupy this and subsequent chapters. As we will see, these discrete
time formulations are in some ways easier to work with. We can easily extend them to non-Poisson
spike count models, and we can interface with a diverse array of probabilistic matrix decomposition
models. However, the discrete nature of spike counts still poses some serious inferential hurdles,
which this thesis aims to overcome.

In addition to bridging from continuous to discrete, this chapter also addresses issues of compu-
tational complexity. The complexity of our Hawkes process inference algorithm scaled, in the worst
case, quadratically with the number of spikes, since we had to sample a “parent” for each spike. By
designing block parallel Gibbs updates, we were able to obtain linear complexity in the number of
spikes. However, when the firing rates are high, this is still the bottleneck of our algorithm. Here,
we reduce this complexity to be independent of the number of spikes by adopting a discrete time
approach. Moreover, we derive efficient stochastic variational inference algorithms (Hoffman et al.,
2013) that work with subsets of time bins in each iteration and thereby scale to massive datasets.

60

4.1 Probabilistic Model

The fundamental limitation of the previously developed continuous time models is that the domain
of the auxiliary variable, ωm, grows with the number of events which occurred before time sm. For
datasets with high rates of activity, this can quickly become the limiting factor of the inference algo-
rithm. At the same time, it is often reasonable to assume that events do not interact on time scales
shorter than∆t. This motivates a discrete time formulation in which we group events into bins of
width∆t and ignore potential interactions between events in the same bin. Then the rate becomes,

λt,n = λ(0)n +
N∑

n′=1

D∑
d=1

st−d,n′ · hn′→n[d], (4.1)

st,n ∼ Poisson(λt,n ·∆t),

where st,n is the number of spikes fired by neuron n in the t-th time bin and hn′→n[d] is an impulse
response function describing the influence that events on neuron n′ have on the rate of process n
at discrete time lag d. As we will show, under this formulation the auxiliary variables only assume a
fixed set of values independent of the rate.

As in the last chapter, we introduce a network model as a prior distribution over the impulse
response weights. Following the approach of the previous chapter, we decompose the impulse re-
sponse function into the product of a binary variable that specifies whether or not a connection
exists, a scalar weight that specifies the strength of the interaction if present, and a probability mass
function that specifies the time course of interaction:

hn→n′ [d] = an→n′ · wn→n′ · ℏ[d; θn→n′]

for d ∈ {1, . . . , D}. The function ℏ[d] : {1, . . . , D} → [0, 1] is now a probability mass function,

61

which we model as a convex combination of normalized basis functions,ϕb,

ℏ[d; θn→n′] ≜
B∑
b=1

θ
(b)
n→n′ · ϕb[d],

D∑
d=1

ϕb[d] ·∆t = 1,

B∑
b=1

θ
(b)
n→n′ = 1.

We enforce the latter constraint with a Dirichlet prior θn→n′ ∼ Dir(γ). The basis functions are
typically taken to be normalized Gaussian bumps or rectified cosine functions spaced over the inter-
val 1, . . . , D. For example, in the following experiments we used,

ϕ̃b[d] = exp

{
− 1

2σ2
(d− µb)2

}
,

ϕb[d] =
ϕ̃b[d]

∆t
∑D

d′=1 ϕ̃b[d
′]
,

with means, µb, evenly spaced on [1, D], and σ = D
B−1 .

Plugging this impulse response model into Eq. 4.1 yields,

λt,n′ = λ
(0)
n′ +

N∑
n=1

B∑
b=1

an→n′ · wn→n′ · θ(b)n→n′

t−1∑
t′=1

st′,n · ϕb[d]

= λ
(0)
n′ +

N∑
n′=1

B∑
b=1

an→n′ · wn→n′ · θ(b)n→n′ · ŝt,n,b,

where

ŝt,n,b ≜ (sn ∗ ϕb) [t]

is the discrete convolution of the n-th spike train with the b-th basis function evaluated at the t-th
time bin. Since both the spike trains and the basis functions are given, these can be precomputed.

62

4.2 Inference with Gibbs Sampling

As before, we begin by introducing auxiliary parent variables for each entry st,n. By the superpo-
sition theorem for Poisson processes, each event can be attributed to either the background rate or
one of the impulse responses.

Let ω(n,b)
t,n′ ∈ {0, . . . , st,n′} denote how many of the events that occurred in the t-th time bin

on the n′-th neuron are attributed to the b-th basis function of the n-th neuron. Similarly, let ω(0)
t,n′

denote the number of events attributed to the background process. We combine these auxiliary
variables into vectors,ωt,n′ ≜

[
ω
(0)
t,n′ , ω

(1,1)
t,n′ , . . . , ω

(N,B)
t,n′

]
.

Due to the Poisson superposition principle, these parent variables are conditionally multinomial
distributed. For time t and neuron n′, we resample

ωt,n′ ∼ Mult
(
st,n′ ,ut,n′

)
u
(0)
t,n′ =

λ
(0)
n′ [t]

λn′ [t]
, u

(n,b)
t,n′ =

ŝt,n,b · an→n′ · wn→n′ · θ(b)n→n′

λn′ [t]
.

Given this attribution, the likelihood factorizes into a product of Poisson distributions,

p(ω |λ) =

[
T∏
t=1

N∏
n′=1

Poisson(ω
(0)
t,n′ |λ(0)n′ ∆t)

]

×

[
T∏
t=1

N∏
n=1

N∏
n′=1

B∏
b=1

Poisson(ω
(n,b)
t,n′ | ŝt,n,b · an→n′ · wn→n′ · θ(b)n→n′ ·∆t)

]
.

Gibbs sampling the background rates. We use conjugate priors for the constant back-
ground rates, weights, and impulse responses. For the constant background rates we have,
λ
(0)
n′ ∼ Gamma(αλ, βλ), which results in the conditional distribution

λ
(0)
n′ | {ω(0)

t,n′} ∼ Gamma(α
(n)
λ , β

(n)
λ),

α
(n)
λ = αλ +

T∑
t=1

ω
(0)
t,n′ ,

β
(n)
λ = βλ + T∆t .

63

Gibbs sampling impulse responses. The likelihood of the impulse responses, θn→n′ is pro-
portional to a Dirichlet distribution. Combined with a Dirichlet(γ) prior this yields

θn→n′ | {ω(n′,b)
t,n },γ ∼ Dir (γn→n′) ,

γ
(b)
n→n′ = γb +

T∑
t=1

ω
(n,b)
t,n′ .

Gibbs sampling the weighted adjacency matrix. As before, the weights are conjugate
with a gamma prior,Gamma(κ, νn→n′), where the scale is presumed to be given by the network
prior. Given the adjacency matrixA and the auxiliary parent variables, the conditional distribution
is,

wn→n′ | an→n′ =1 ∼ Gamma(κ̃(n,n
′), ν̃(n,n

′)),

κ̃(n,n
′) = κ+

T∑
t=1

B∑
b=1

ω
(n,b)
t,n′ ,

ν̃(n,n
′) = νn→n′ +

T∑
t=1

st,n.

As in the previous chapter, in order to resampleA, we iterate over each entry and sample from the
conditional distribution after integrating out the parents. We assume the parameters of the network
prior can be sampled efficiently — a reasonable assumption for many exchangeable random network
models.

The continuous time representation introduces a latent “parent” variable for each event in the
dataset, and the parent can be any one of the events that occurred in the preceding window of influ-
ence. Call the number of potential parentsM . The discrete time representation has a multinomial
random variable for each time bin that contains at least one event, and the support of this multino-
mial is always a fixed size,NB + 1. When the rate of events is high,NB + 1 ≪ M , allowing for
dramatic improvements in efficiency in the discrete case.

Figure 4.1 shows the time per full Gibbs sweep as a function of the number of events per discrete
time bin for the discrete and continuous formulations. The discrete formulation incurs a constant
penalty whereas the continuous formulation quickly grows with the event rate. For low rates, the
continuous formulation can be advantageous, but the discrete model is vastly superior in many real-
istic settings. For example, in Chapter 3 we worked with trades on the S&P100, which occur tens or

64

0 1 2 3 4 5 6

Events per bin

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

ti
m

e
 p

e
r

it
e
r

[s
e
c]

Discrete

Continuous

Figure 4.1: Comparison of run time per Gibbs sweep for the discrete and continuous network Hawkes formulations.

Best fit lines added.

hundreds of times per second for each stock. Since the complexity of our continuous time algorithm
grew with the number of events, we had to downsample the data to consider only the times when
stock prices changed significantly. However, we were also looking for interactions on time scales of
one minute, very large compared to the rate of trades. Thus, it is reasonable to consider a discrete
time model in which the number of trades is counted in, say, 1sec bins instead. The discrete time
methods of this chapter would allow us to work directly with this type of trade-level activity and still
scale to days or weeks of data.

4.3 Stochastic Variational Inference

The discrete time formulation offers advantageous complexity compared to the continuous ana-
logue, but in order to maintain the invariance of the posterior distribution, we must still work with
the entire set of parents each iteration. In many cases, a subset, or “mini-batch,” of time bins can
provide substantial information about the global parameters of the model, and rapid progress can
be made by iterating quickly over subsets of the data. This motivates our derivation of a stochastic
variational inference algorithm (Hoffman et al., 2013) for this discrete time model.

Variational methods optimize a lower bound on the marginal likelihood by minimizing the KL-
divergence between a tractable approximating distribution and the true posterior. Since the local
parents variables,ω, are conditionally independent given the global parameters (A,W , θ, etc.),

65

our variational approach will easily extend to the stochastic setting in which we compute unbiased
estimates of the gradient of the variational objective using mini-batches of data.

The primary impediment to deriving a variational approximation is the non-conjugacy of the
spike-and-slab prior on the weights. To overcome this, we approximate the spike-and-slab prior with
a mixture of gamma distributions, as has previously explored by Grabska-Barwinska et al. (2013):

p(A,W | {zn},ϑ) =
∏
n,n′

p(an→n′ | zn, zn′ ,ϑ) p(wn→n′ | an→n′ , zn, zn′ ,ϑ)

p(an→n′ | zn, zn′ ,ϑ) = Bern(an→n′ | ρn→n′),

p(wn→n′ | an→n′ , zn, zn′ ,ϑ) =

Gamma(wn→n′ |κ, νn→n′ , an→n′ = 1),

Gamma(wn→n′ |κ0, ν0, an→n′ = 0),

where, as before, ρn→n′ and νn→n′ are functions of the latent variables, zn and zn′ , and the param-
etersϑ. We have approximated the “spike” in the spike-and-slab model with a gamma distribution
parameterized by κ0 and ν0. As κ0 → 0 and ν0 → ∞, the gamma distribution approaches a spike
at zero.

This approximate probabilistic model is now amenable to mean field variational inference. We
use a fully-factorized variational approximation, with the exception of a joint factor for each connec-
tion, (an→n′ , wn→n′).

q(an→n′) = Bern(an→n′ | p̃n→n′),

q(wn→n′ | an→n′) =

Gamma(wn→n′ | κ̃(n,n
′)

1 , ν̃
(n,n′)
1 , an→n′ = 1),

Gamma(wn→n′ | κ̃(n,n
′)

0 , ν̃
(n,n′)
0 , an→n′ = 0) .

Since the model is fully conjugate, the factors are easily derived.

Variational updates for parent variables, q(ωt,n′) For the parent variables, the varia-
tional updates are

q(ωt,n′) = Mult(ωt,n′ | st,n′ , ũt,n′),

ũ
(0)
t,n′ =

1

Z
exp

{
Eλ[lnλ

(0)
n′]
}
,

ũ
(n,b)
t,n′ =

1

Z
ŝt,n,b exp

{
Eθ[ln θ

(b)
n→n′] + EW [lnwn→n′]

}
,

66

whereZ is the normalization constant.

Variational updates for background rates, q(λ(0)n) The variational form parameters of
the gamma distribution over background rates are

q(λ(0)n) = Gamma(λ(0)n | α̃
(n)
λ , β̃

(n)
λ),

α̃
(n)
λ = αλ +

T∑
t=1

Eω

[
ω
(0)
t,n

]
,

β̃
(n)
λ = βλ + T∆t .

Variational approximation for impulse response parameters, q(θn→n′) With the
conjugate prior formulation the variational parameter updates for the Dirichlet distributed impulse
response parameters are

q(θn→n′) = Dir(nn→n′ | γ̃(n,n′)),

γ̃
(n,n′)
b = γb +

T∑
t=1

Eω

[
ω
(n,b)
t,n′

]
.

Variational approximation for the weighted adjacency matrix. The primary mo-
tivation for adopting a weakly sparse mixture of gamma distributions is to derive an efficient vari-
ational inference algorithm. The mixture-of-gammas prior is conjugate with the Poisson observa-
tions, and hence the variational distribution is also a mixture of gammas:

q(wn→n′ | an→n′ = 1) = Gamma(wn→n′ | κ̃(n,n
′)

1 , ν̃
(n,n′)
1)

κ̃
(k,k′)
1 = κ+

T∑
t=1

B∑
b=1

Eω

[
ω
(n,b)
t,n′

]
ν̃
(n,n′)
1 = Eν [νn→n′] +

T∑
t=1

st,n ,

67

and likewise for the “spike” factor,

q(wn→n′ | an→n′ = 0) = Gamma(wn→n′ | κ̃(n,n
′)

0 , ν̃
(n,n′)
0)

κ̃
(k,k′)
0 = κ0 +

T∑
t=1

B∑
b=1

Eω

[
ω
(n,b)
t,n′

]
ν̃
(n,n′)
0 = ν0 +

T∑
t=1

st,n .

This leaves us with q(an→n′), which is Bernoulli distributed with parameter p̃n→n′ . The optimal
parameter is given by,

p̃n→n′

1− p̃n→n′
=

exp{E[ln ρn→n′]}
exp{E[ln(1− ρn→n′)]}

×

(exp{E[ln νn→n′]})κ

Γ(κ)
× Γ(κ̃

(n,n′)
1)

(ν̃
(n,n′)
1)κ̃

(n,n′)
1

× Γ(κ0)

(ν0)κ0
× (ν̃

(n,n′)
0)κ̃

(n,n′)
0

Γ(κ̃
(n,n′)
0)

.

As with Gibbs sampling, we assume a variational approximation for the network model can be
derived, and provide access to the necessary expectations, E[ln ρn→n′], E[ln(1− ρn→n′)], E[νn→n′]

andE[ln νn→n′].
The spike counts in each time bin are conditionally independent given the network weights and

the adjacency matrix — a common pattern exploited by stochastic variational inference (SVI) al-
gorithms (Hoffman et al., 2013). These methods optimize the variational objective using stochastic
gradient methods that work with mini-batches of data. Often, a mini-batch of data can provide
valuable information about the global parameters, in our case the network and background rates.
Quickly iterating over these global parameters allows us to reach good modes of the posterior dis-
tribution in a fraction of the time that standard variational Bayes and Gibbs sampling require, since
those methods must process the entire dataset before making an update. SVI does require some tun-
ing, however. In particular, we must set a mini-batch size and a step size schedule. In this work, we
fix the mini-batch size to Tmb = 1024 and set the step size at iteration i to (i+ 1)−0.5. These pa-
rameters may be tuned with general purpose hyperparameter optimization techniques (Snoek et al.,
2012).

68

(a) Short dataset: T = 104

0.00 0.01 0.10 1.00 10.00

Time (103 s)

-12.998

-12.996

-12.994

-12.992

-12.990

-12.988

-12.986

-12.984

P
re

d
.
LL

 (
×1

04
)

SVI VB Gibbs MAP

(b) Long dataset: T = 105

0.00 0.01 0.10 1.00 10.00

Time (103 s)

-12.998

-12.996

-12.994

-12.992

-12.990

-12.988

-12.986

-12.984

P
re

d
.
LL

 (
×1

04
)

SVI VB Gibbs MAP

Figure 4.2: Predictive log likelihood versus wall clock time for three Bayesian inference algorithms on a dataset

ofN = 50 neurons andT = 104 andT = 105 time bins on the left and right, respectively.

4.4 Synthetic Results

We assess the performance of the proposed inference algorithms on a synthetic dataset generated by
a strongly sparse Hawkes process withN = 50 neurons. We used a stochastic block model network
prior withK = 5 clusters, each consisting of ten densely connected processes (pk→k = 0.4), with
sparse connections to processes in other clusters (pk→k′ = 0.01). All weights share the same scale
of ν = 5.0, though this information is not provided a priori. We simulate T = 105 time bins in
steps of size∆t = 1. The neurons have an mean background rate of 1.0 event per time bin and, due
to the network interactions, the average total rate of the processes is 16.7 ± 12.0 events per bin.
Referring to Figure 4.1, this is a regime that favors the discrete model. We initialized by performing
MAP estimation on the first Tinit = 104. Then we trained the model using Gibbs sampling, batch
variational Bayesian inference, and stochastic variational inference,

We trained the models on only the first 104 time bins, the same that were used for initializa-
tion. We evaluated the algorithms in terms of their predictive log likelihood on a held-out dataset
of length Ttest = 103. Figure 4.2a shows the results as a function of wall-clock time. We find that
SVI obtains competitive predictive log likelihood in a matter of minutes. Batch VB and Gibbs con-
verge at a considerably slower rate, though they eventually match the SVI predictive likelihood after
hours of computation. The MAP estimate, even with cross validated regularization, underperforms
the other competing algorithms.

This trend is exaggerated when we consider the entire training set of size T = 105. Figure 4.2b il-

69

(a)

0 10 20 30 40 50 60

0.0

0.5

1.0

F
1
(t

)

F F̂ S

0 10 20 30 40 50 60

Time t [sec]

0.0

0.5

1.0

F
2
(t

)
(b)

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
re

ci
si

o
n

Network 6

xcorr

MAP

SVI

(c)

5 10 15 20

postsynaptic

5

10

15

20

p
re

sy
n
a
p
ti

c

[A]/std[A]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 4.3: Application of the network Hawkesmodel to a connectomics challenge. (a) The data is in the form of a

calcium fluorescence trace, which we preprocess to extract neural spike times. (b)Wemeasure performance on a link

prediction task using a precision-recall curve and find that the posterior estimates of SVI provide the best estimates

on some networks. In addition to an estimate of the connection probability andweight, SVI provides an estimate of the

posterior uncertainty. (c) InferredEq[A]/stdq[A] for the first 20 neurons. True connections are outlined in black.

lustrates the power of SVI in handling these large time datasets. Considerable information about the
global parameters (e.g., the network) can be gained from just a mini-batch of time points. Hence,
we can make rapid improvements in predictive log likelihood very quickly. By contrast, each step
of the Gibbs and batch VB algorithms is approximately 10 times slower, and even after computing
sufficient statistics over the entire dataset, the algorithm is only able to make limited progress per
iteration.

4.5 Connectomics Results

We tested these inference algorithms on the data from the Chalearn neural connectomics challenge*

(Stetter et al., 2012). The data consist of calcium fluorescence traces,F , from six networks ofN =

100 neurons each. We use ten minutes of data at 50Hz sampling frequency to yield T = 3 × 106

entries inS. In this case, the networks are purely excitatory, and each action potential, or spike,
increases the probability of the downstream neurons firing as a result. This matches the underlying
intuition of the Hawkes process model, making it a natural choice.

In order to apply the Hawkes model, we first convert the fluorescence traces into a spike count

*http://connectomics.chalearn.org

70

http://connectomics.chalearn.org

Network 1 Network 2 Network 3 Network 4 Network 5
Algorithm ROC PRC ROC PRC ROC PRC ROC PRC ROC PRC

xcorr 0.596 0.139 0.591 0.133 0.701 0.198 0.745 0.296 0.798 0.359
MAP 0.607 0.174 0.619 0.143 0.698 0.178 0.790 0.334 0.859 0.408
SVI 0.649 0.184 0.605 0.141 0.673 0.176 0.774 0.342 0.844 0.410

Table 4.1: Comparison of inference algorithms on link prediction for five networks from the Chalearn connectomics

challenge. Performance is measured by area under the ROC curve and area under the precision recall curve (PRC). In

four of the five networks a Hawkes process model provides the best results.

matrix using OOPSI, a Bayesian inference algorithm based on a model of calcium fluorescence (Vo-
gelstein et al., 2010). The output is a filtered fluorescence trace, F̂ , and a probability of spike for each
time bin. We threshold this at probability 0.7 to get a T × N binary spike matrix,S. This prepro-
cessing is shown in Figure 4.3a.

Figure 4.3b shows the precision-recall curve we used to evaluate the algorithms’ performance on
network recovery. As a baseline, we compare against simple thresholding of the cross correlation
matrix. On Network 6, SVI offers the best network inference. Table 4.1 shows the results on the
other five networks using the same model parameters. On 4/5 of these networks, the Bayesian meth-
ods offer the best performance.

Figure 4.3c illustrates one of the main advantages of the fully Bayesian inference algorithm –
calibrated estimates of posterior uncertainty. Here we show the SVI algorithm’s estimate of the pos-
terior mean ofA normalized by the posterior standard deviation for a subset of 20 neurons from
Network 6. We also outline the true connections to show that the most confident predictions are
more likely to correspond to true connections. Such estimates of the posterior uncertainty are not
available with standard heuristic methods or point estimates.

4.6 Conclusion

This brief chapter provided a link between the ideas introduced in Chapter 3 — namely the com-
bination of network models and point process observations — to the discrete time autoregressive
models of the next few chapters. We also showed how the conditional independence of the spike
counts could be leveraged in a stochastic variational inference algorithm that scales to long recording
durations. The key, again, was the Poisson superposition principle, which allowed a simple auxiliary
variable formulation. Combining this formulation with an approximate spike-and-slab model led to
a fully-conjugate model that admitted an efficient inference algorithm.

In the next chapter, we will continue to build on these ideas, but we will address a major limita-

71

tion of this approach. The Poisson superposition principle only applies to linear models. Since the
rate must be nonnegative, linear models cannot have inhibitory interactions with negative weights.
We will show how this limitation can be overcome with another clever auxiliary variable trick.

72

5
Networks with Nonlinear Autoregressive Dynamics

The last two chapters combined network models and Hawkes processes to construct probabilistic
models for dynamic neural spike trains. The key assumption of Hawkes processes, the assumption
we leveraged to derive efficient inference algorithms, was that the firing rate was the sum of non-
negative impulse responses from preceding spikes. In other words, the interactions in Hawkes pro-
cesses were additive and purely excitatory. While this led to interpretable network models for some
systems, in many cases it is more natural to expect a mix of excitatory and inhibitory interactions.
Unfortunately, we cannot have inhibitory interactions within a simple additive model because they
could yield negative firing rates. Instead, we need to revisit the assumption of linear dynamics.

As we discussed in Chapter 2, there is a simple way to generalize the linear autoregressive dynam-
ics. We retain the linear combination of impulse responses from preceding events, but then we apply
a rectifying nonlinear function to obtain a firing rate. Formally, we assume the following model:

ψt,n = ψ(0)
n +

N∑
n′=1

D∑
d=1

st−d,n′ · hn′→n[d],

λt,n = g(ψt,n),

where ψt,n is a real-valued signal called the activation, and g : R→ R+ is a rectifying nonlinear
function that converts the activation into a firing rate. Once this nonlinearity has been introduced,
the impulse response functions, hn′→n[d], are free to be both positive and negative.

73

As before, we assume the spike count is randomly drawn from a discrete distribution parameter-
ized by λt,n. In this chapter, however, we consider a more general class of observation distributions
with neuron-specific global parameters νn,

st,n ∼ p(st,n |λt,n, νn).

This nonlinear autoregressive model is also known as a generalized linear model (GLM), and it
is widely used in neuroscience (Paninski, 2004; Truccolo et al., 2005). For example, these models
have proven useful in elucidating correlated patterns of activity in simultaneously recorded popula-
tions of retinal ganglion cells (RGCs) (Pillow et al., 2008). By elaborating upon the basic generalized
linear model, more sophisticated structure of the underlying bipolar cells has been revealed from
RGC activity (Freeman et al., 2015). While the weights of the GLM cannot typically be interpreted
as synaptic connections (Vidne et al., 2012), these models have nevertheless had some success ex-
tracting underlying synaptic connectivity from spike trains (Gerhard et al., 2013; Fletcher et al., 2011;
Soudry et al., 2015). As we move toward larger and more complete recordings of neural circuits, gen-
eralized linear models are likely to play a major role in guiding our understanding of neural systems.

If the spike counts are Poisson distributed, then under general conditions (Paninski, 2004) the
likelihood of the spike counts will be log concave and amenable to efficient, exactmaximum a pos-
teriori (MAP) estimation. Moreover, fully Bayesian estimation procedures based on expectation-
propagation (Gerwinn et al., 2008) and Hamiltonian Monte Carlo (Ahmadian et al., 2011) have
given some insight into the posterior distribution of network weights. Unfortunately, once we in-
troduce nontrivial prior distributions, like network models, the posterior becomes multimodal and
Bayesian inference becomes more challenging. However, see Soudry et al. (2015) for some recent
advances in approximate MAP estimation in models that combine network priors and generalized
linear models of spike trains.

This chapter develops efficient MCMC algorithms for approximating the posterior distribution
of weights in a GLM with prior distributions on the impulse responses that are derived from prob-
abilistic network models. Unfortunately, the augmentation scheme developed for linear Hawkes
processes is no longer viable due to the nonlinear interactions. Instead, we develop an inference al-
gorithm based on a recently developed scheme known as Pólya-gamma augmentation (Polson et al.,
2013). A recent application of these methods to factor analysis models for neural spike trains pro-
vided the motivation for the work in this chapter (Pillow and Scott, 2012). The basic idea behind the
Pólya-gamma augmentation is to introduce a set of auxiliary variables conditioned upon which the

74

Name Parameters p(s |ψ, ν) E[s] Var(s)

Gaussian N (ψ, ν) 1√
2πν

e−
1
2ν

(s−ψ)2 ψ ν

Bernoulli Bern(σ(ψ)) (eψ)s

1+eψ
σ(ψ) σ(ψ) σ(−ψ)

Binomial Bin(ν, σ(ψ))
(
ν
s

)
(eψ)s

(1+eψ)ν
νσ(ψ) νσ(ψ) σ(−ψ)

Neg. Binomial NB(ν, σ(ψ))
(
ν+s−1
s

) (eψ)s

(1+eψ)ν+s
νeψ νeψ/σ(−ψ)

Table 5.1: List of observation distributions.

discrete spike counts actually “look” like Gaussian observations. Once we have reduced the problem
to inference in a linear Gaussian model, a host of efficient inference algorithms are at our disposal.

5.1 Probabilistic Model

The underlying model is very similar to the linear autoregressive models of the preceding chapter.
Rather than considering Poisson distributed spike counts, however, here we work with other dis-
crete observation models that are amenable to Pólya-gamma augmentation. As we generalize to
allow both excitatory and inhibitory interactions, we revisit the form of our impulse response and
introduce a simpler form. Finally, we outline a variety of network models that provide multivariate
Gaussian prior distributions on the interaction weights.

5.1.1 Spike count models

The spike counts are stochastically drawn from a distribution parameterized by an underlying, real-
valued activation, ψt,n, and a static parameter, νn. The Pólya-gamma augmentation can be applied
to observation models that depend on a logistic transformation of the activation,

σ(ψ) =
eψ

1 + eψ
,

which has the property σ(−ψ) = 1 − σ(ψ). The Bernoulli, binomial, and negative binomial dis-
tributions are all natural choices. While the Gaussian distribution is not a proper model for discrete
spike counts, we include it in our list since our inference procedure will reduce the other models to
the Gaussian case. Table 5.1 lists the basic properties of these observation distributions.

The Bernoulli distribution is appropriate for binary spike counts, whereas the binomial and neg-
ative binomial have support for integer s ∈ {0, . . . , ν} and s ∈ {0, 1, . . .}, respectively. Notably

75

missing from this list is the Poisson distribution, which is not amenable to the Pólya-gamma aug-
mentation. Nevertheless, both the binomial and negative binomial distributions converge to the
Poisson under certain limits. For example, limr→∞NB(r, σ(ψ − log r)) = Poisson(eψ).
Moreover, the binomial and negative binomial distributions afford the added flexibility of modeling
under- and over-dispersed spike counts. Specifically, while the Poisson has unit dispersion (its mean
is equal to its variance), the binomial distribution is always under-dispersed, with variance less than
its mean, and the negative binomial is always over-dispersed, with variance greater than its mean.

5.1.2 Linear Gaussian Activation Model

As in the Chapters 3 and 4, we model the impulse response as a weighted sum of basis functions,

hn′→n[d] = an′→n

B∑
b=1

w
(b)
n′→n · ϕb[d]. (5.1)

We dispense with the normalized basis function, ℏ[d], because, in the nonlinear model, the normal-
ized basis functions can no longer be seen as distributions over child spike times. Indeed the notion
of “parent” and “child” spikes is no longer warranted since the Poisson superposition principle does
not apply to nonlinear models. Moreover, in some cases, we may wish to model interactions that are
both excitatory and inhibitory — for example, the effect of a spike may be inhibitory at short time
scales and excitatory after a delay. While these types of interactions may not correspond to actual
biological synapses, they can still capture salient correlations in neural spike trains.

Plugging Eq. 5.1 into the activation model, we have,

ψt,n ≜ ψ(0)
n +

N∑
n′=0

B∑
b=1

an′→nw
(b)
n′→n

(
D∑
d=1

ϕb[d] · st−d,n′

)

= ψ(0)
n +

N∑
n′=0

B∑
b=1

an′→nw
(b)
n′→n ŝ

(b)
t,n′

= (an ⊙wn)
T ŝt, (5.2)

where ψ(0)
n is the baseline activation of neuron n,ϕb is a basis function that weights the previous

spike counts for offsets d ∈ {1, . . . , D} , the binary variable an′→n ∈ {0, 1} indicates whether or
not there exists a directed connection from neuron n′ to neuron n, andw(b)

n′→n captures the influ-
ence that spikes on neuron n′ exert on neuron n at offsets weighted by the b-th basis function. Since

76

the basis function and the signal are assumed to be fixed, we precompute the inner sum, which is
simply the convolution of the signal with the basis function, to get ŝ(b)t,n. Since this is a linear func-
tion, we combine the connections, weights, and filtered spike trains into vectors to get the linear
form in (5.2). Here, we have,

an =

[
1, a1→n, . . . , a1→n, . . . , aN→n, . . . , aN→n

]T
,

wn =

[
ψ(0)
n , w

(1)
1→n, . . . , w

(B)
1→n, . . . , w

(1)
N→n, . . . , w

(B)
N→n

]T
,

ŝt =

[
1, ŝ

(1)
t,1 , . . . , ŝ

(B)
t,1 , . . . , ŝ

(1)
t,N , . . . , ŝ

(B)
t,N

]T
,

and⊙ denotes the elementwise product. Note that each an′→n is repeatedB times in the vector an.
For convenience, we letA andW refer to theN ×NB + 1matrices obtained by stacking the vec-
tors aTn andwT

n , and we let Ŝ denote the T ×NB + 1matrix with rows given by ŝTt . The major
difference between this formulation and that of the standard GLM is that here we have explicitly
modeled the sparsity of the weights via the “adjacency matrix”A. Under the standard formulation,
all weights are present, that is, an′→n ≡ 1.

Consider a model with one basis function (B = 1) defined by, ϕ1,d = e−d/τ . Then ŝ(1)t,n is a
weighted sum of spikes in the window [t − D, t − 1], where the weights decay according to an
exponential function with time constant τ . If an′→n = 1, indicating a connection from neuron n′

to neuron n, and the weight,w(1)
n′→n, is positive, the influence will be excitatory. If it is negative, the

effect will be inhibitory. Together, the weightsW define a functional network of interactions.

5.1.3 Network Models

With this new impulse response model, each edge of the network is now associated with aB-
dimensional weight vector. We can use the same adjacency matrix models as in the previous chap-
ters, but we need to consider new models for the weight matrix. A multivariate Gaussian prior is a
natural choice. We consider weight models of the form,

p(wn | {zn},ϑ) = N (ψ(0)
n |µ0, σ20)

N∏
m=1

N (wn′→n |µn′→n, Σn′→n),

= N (wn |µn,Σn),

77

Name dom(zn) µn′→n Σn′→n
Gaussian Model — µ Σ

Stochastic Block Model {1, . . . , K} µzn′→zn Σzn′→zn
Latent Distance Model (B = 1) RK −||zn − zn′ ||22 + γ0 σ2

Table 5.2: GaussianWeightModels

whereµn′→n andΣn′→n are the mean and covariance, and they implicitly depend on the latent
variables, zn′ and zn, and the parameters of the network model,ϑ. The last line combines the
Gaussian factors into single multivariate Gaussian prior with parameters,

µn =


µ0

µ1→n
...

µN→n

 , and Σn =


σ20

Σ1→n
. . .

ΣN→n

 . (5.3)

Table 5.2 defines the three weight models considered in this chapter. Each model defines the mean
and variance of a multivariate normal distribution,wn′→n ∼ N (µn′→n,Σn′→n). In the Gaussian
model, all weights are independent and identically distributed. The stochastic block model, has
parameters for each pair of classes, each drawn from a normal inverse-Wishart prior. Finally, we
consider a latent distance model, but only for the case where the weights are scalar, i.e.B = 1. In
this case, the distance between points is inversely proportional to the mean weight. For higher order
weights, additional assumptions would be required in order to relate distance to vector weights. In
this model, we assume standard normal priors on the parameters zn and γ0. The variance is given
an inverse gamma prior, σ2 ∼ IGa(α, β).

5.2 Inference via Gibbs Sampling

Inference is the process of evaluating the posterior distribution over latent variables given the ob-
served signal, which is related to the joint distribution by Bayes’ rule:

p({νn,an,wn, zn}Nn=1,ϑ |S) =
p(S, {νn,an,wn, zn}Nn=1,ϑ)

p(S)
.

78

It is computationally intractable to compute this posterior exactly and it has no simple closed form
solution, so we must instead resort to approximate methods. We use Markov chain Monte Carlo
(MCMC) methods to collect samples from this posterior distribution.

5.2.1 Collapsed Gibbs Network Updates

The most challenging aspect of inference is sampling the posterior distribution over connections,A.
In the dense model, where an′→n ≡ 1, the posterior distribution over weights is often log concave,
which makes it easy to find themaximum a posteriori (MAP) estimate and characterize the local
uncertainty around the most likely weights. When the connectivity matrix is sparse, there are instead
many modes corresponding to different patterns of connectivity. While this makes inference more
challenging, sparse connectivity is an important feature that contributes to the interpretability of the
model.

Fortunately, we can make posterior inference of the network considerably more efficient by in-
tegrating over possible weights and sampling the binary adjacency matrix from its marginal distri-
bution. First, consider the Gaussian observation model. Since ψt,n is linear inwn, the likelihood
is conjugate with the Gaussian prior, and hence the posterior is Gaussian as well. We compute the
posterior distribution in closed form:

p(wn |S,an, {zn},ϑ) ∝ N (wn |µn,Σn)

T∏
t=1

N (st,n | (an ⊙wn)
T ŝt, νn)

= N (wn |µn,Σn)N (sn | (an ⊙wn)
T Ŝ, νnI)

∝ N (wn | µ̃n, Σ̃n), (5.4)

where

Σ̃n =
[
Σ−1n +

(
Ŝ

T
(ν−1n I)Ŝ

)
⊙ (ana

T
n)
]−1

,

µ̃n = Σ̃n

[
Σ−1n µn +

(
Ŝ

T
(ν−1n I)sn

)
⊙ an

]
.

Given this closed-form Gaussian conditional, we can also compute the conditional distribution

79

over just an, integrating out the corresponding weights,wn:

p(an | Ŝ,ρn, {zn},ϑ) =
∫
p(an,wn |S, {zn},ϑ) dwn

∝ p(an | {zn},ϑ)
∫
p(wn |S,an, {zn},ϑ) dwn

= p(an | {zn},ϑ)

∣∣Σn

∣∣− 1
2 exp

{
− 1

2µ
T
nΣ
−1
n µn

}
∣∣Σ̃n

∣∣− 1
2 exp

{
− 1

2 µ̃
T
nΣ̃
−1
n µ̃n

} . (5.5)

Thus, we can efficiently sample from the conditional distribution of an andwn by first iterating
over each neuron n′ ∈ {1, . . . , N} and sampling a new value of an′→n, fixing the values of an′′→n

for n′′ ̸= n′ and integrating out the value ofwn. To do so, we simply evaluate the marginal prob-
ability in Eq. 5.5 for both values of an′→n and sample accordingly. Moreover, note that Σ̃n reduces
to the prior where an′→n = 0. This will lead toB ×B diagonal blocks that are equal in both the
numerator and the denominator. Thus, the terms for which an′→n = 0will cancel in the log deter-
minant and quadratic form of 5.5. As a result, ifA is p-sparse (i.e. each neuron has at most p incom-
ing edges) evaluating the marginal probability of an has complexity anO(p3). Once an has been
completely resampled, we can sample a new value ofwn from its multivariate Gaussian conditional
distribution, given by Eq. 5.4.

5.2.2 Pólya-gamma augmentation for discrete observations

When the observations are not Gaussian, the conditional distribution ofwn cannot be computed
in closed form and the collapsed updates are intractable. To circumvent this problem, we leverage
recently developed augmentation schemes for Gaussian models with discrete observations (Polson
et al., 2013; Pillow and Scott, 2012). The idea is to augment the observations, st,n, with auxiliary
variables, ωt,n, such that conditioned upon the auxiliary variables, the discrete likelihood appears
Gaussian.

First, notice that the discrete likelihoods in Table 5.1 can all be put into a “standard” form in
which the probability mass function can be written,

p(s |ψ, ν) = c(s, ν)
(eψ)a(s,ν)

(1 + eψ)b(s,ν)
,

for some functions, a, b, and c that do not depend on ψ. The integral identity at the heart of the

80

Pólya-gamma augmentation scheme is

(eψ)a

(1 + eψ)b
= 2−beκψ

∫ ∞
0

e−ωψ
2/2 pPG(ω | b, 0) dω, (5.6)

where κ = a− b/2 and p(ω | b, 0) is the density of the Pólya-gamma distributionPG(b, 0), which
does not depend on ψ.

Using Eq. 5.6 along with priors p(ψ) and p(ν), we can write the joint density of (ψ, s, ν) as

p(s, ν, ψ) = p(ν) p(ψ) c(s, ν)
(eψ)a(s,ν)

(1 + eψ)b(s,ν)

=

∫ ∞
0

p(ν) p(ψ) c(s, ν) 2−b(s,ν)eκ(s,ν)ψe−ωψ
2/2 pPG(ω | b(s, ν), 0) dω. (5.7)

The integrand of Eq. 5.7 defines a joint density on (s, ν, ψ, ω)which admits p(s, ν, ψ) as a marginal
density. Conditioned on these auxiliary variables ω, we have that the likelihood as a function of ψ is,

p(s |ψ, ν, ω) ∝ eκ(s,ν)ψe−ωψ2/2 ∝ N
(
κ(s, ν)

ω

∣∣∣∣ψ, 1

ω

)
.

Thus, we effectively have a Gaussian likelihood for ψ, after conditioning on s and ω. Now we
can apply this augmentation scheme to the full model, introducing auxiliary variables, ωt,n for each
spike count, st,n. Given these variables, the conditional distribution ofwn can be computed in
closed form, as before. Let,

κn =
[
κ(s1,n, νn), . . . , κ(sT,n, νn)

]T
,

and

Ωn = diag
([
ω1,n, . . . , ωT,n

])
.

Then we have p(wn |S,an, {zn},ϑ,ωn, νn) ∝ N (wn | µ̃n, Σ̃n), where

Σ̃n =
[
Σ−1n +

(
Ŝ

T
ΩnŜ

)
⊙ (ana

T
n)
]−1

,

µ̃n = Σ̃n

[
Σ−1n µn +

(
Ŝ

T
κn

)
⊙ an

]
.

81

Having introduced auxiliary variables, we must now also derive Markov transitions to update
them as well. Fortunately, the Pólya-gamma distribution is designed such that the conditional den-
sity of the auxiliary variables is just a “tilted” Pólya-gamma density,

p(ωt,n | st,n, νn, ψt,n) = pPG(ωt,n | b(st,n, νn), ψt,n).

These auxiliary variables are conditionally independent and hence can be updated in parallel. More-
over, efficient algorithms are available to generate Pólya-gamma random variates (Windle et al.,
2014), and we have ported these to Python.*

5.2.3 Observation Parameter Updates

The observation parameter updates depend on the particular distribution. For Gaussian observa-
tions, νn is the observation variance, and it is conjugate with an inverse gamma prior. Bernoulli
observations have no parameters. In the binomial model, νn corresponds to the maximum number
of possible spikes — this may be treated as a hyperparameter. For negative binomial spike counts,
the shape parameter νn can be sampled as in (Zhou et al., 2012).

5.2.4 Sampling Network Variables and Parameters

As before, the latent variables and parameters of the network are relatively easy to resample for
a given network. The stochastic block model priors are conjugate with the Gaussian distributed
weights. The locations of the latent distance model are not conjugate, but we can update them with
hybrid Monte Carlo (Neal, 2010).

5.2.5 Model Selection

We have constructed a probabilistic model that supports a variety of network models, including the
four adjacency models and the three weight models described above. How can we compare these
models in a principled manner? We argue that the typical approach of measuring predictive log like-
lihood on held-out time bins is insufficient because it relies only on having accurately estimated the
network,A andW . It does not matter how likely that network is under the latent variable model,
predictive likelihood on held-out time bins only measures the quality of the network at making pre-
dictions. Instead, we advocate for an alternative measure based on predicting the activity of held-out

*https://github.com/slinderman/pypolyagamma

82

https://github.com/slinderman/pypolyagamma

neurons. To perform well on this task, we must first learn an accurate model for the structure under-
lying the network so that we can sample latent variables for the new neuron, which in turn allow us
to sample a weighted set of functional connections for that neuron and finally compute the predic-
tive log likelihood.

The objective we measure is the probability of a new spike train sn∗ = [s1,n∗ , . . . , sT,n∗],
given the observed spike train. To compute this, we must integrate over the latent variables and
parameters underlying the observed spike train, as well as those underlying the new spike train.
LetΘ = {{wn,an, νn, zn}Nn=1,ϑ}, and let θn∗ = {νn∗ ,wn∗ ,an∗ , zn∗}. This objective can
be written,

p(sn∗ |S) ≈
∫
p(sn∗ |θn∗ ,S) p(θn∗ |Θ) p(Θ |S) dθn∗ dZ

≈ 1

L

L∑
ℓ=1

p(sn∗ |θ(ℓ)n∗ ,S),

where

θ
(ℓ)
n∗ ∼ p(θn∗ |Θ(ℓ)), and Θ(ℓ) ∼ p(Θ |S).

The samples {Θ(ℓ)}Lℓ=1 are the posterior samples generated by the MCMC algorithm presented
above. For each sample, we generate a new set of latent variables and connections for neuron n∗,
given the parameters included inΘ(ℓ). These, combined with the spike train, enable us to compute
the likelihood of sn∗ .

This approach constitutes a minor approximation: the new spike train and the original spike
train are not conditionally independent. It is possible that there are significant connections from n∗

to neurons in the training population, and if we had known those connections, we would have in-
ferred different latent variables and parameters for the training population. We assume that these
effects are small, i.e. we would find similar class assignments even without observing n∗. This is rea-
sonable if we are only considering a single neuron n∗ and the training population is relatively large.
In fact, this assumption is fundamental to the generalized linear model. Without it, the inferred
weights and predictions would be highly sensitive to the addition of a single neuron. In practice this
is rarely the case.

83

5.3 Results

We demonstrate the efficacy of this approach by applying our framework to two neural popula-
tions for which we have longstanding experimental evidence in favor of a particular latent variable
representation. First, we consider a population of simultaneously recorded retinal ganglion cells
(RGCs), which can be characterized by their type (either on or off in this dataset) and by the location
of their receptive field centers. We then consider a population of hippocampal place cells, which en-
code positions in a two dimensional environment. In both cases, our approach recovers these latent
representations given only the neural spike trains, without any knowledge of the stimulus or the
true location. Finally, we assess the advantages of our Bayesian approach and the scalability of our
algorithm with synthetic data.

5.3.1 Retinal Ganglion Cells

We applied our model to simultaneously recorded multi-neuronal spike trains from a population
of 27 primate retinal ganglion cells (RGCs). This dataset was previously analyzed with a standard
generalized linear model by Pillow et al. (2008). In this dataset, the population is presented with a
Gaussian white noise video with pixel sizes tuned to approximately the width of a receptive field.
We trained our models on one minute of spiking activity, binned at one millisecond time resolution.
There were approximately 50,000 spikes in this recording. We also held out one minute of data for
model evaluation.

Retinal ganglion cells respond to light (or the absence thereof) shown upon their receptive field.
The cells are roughly evenly distributed across the two-dimensional retinal plane. Thus, it is natural
to characterize these cells by the location of their receptive field center. Moreover, this population
is comprised of two types of cells, on and off cells, characterized by their response to visual stimuli.
On cells increase their firing when light is shone upon their receptive field; off cells decrease their
firing rate in response to light in their receptive field. Cell types are identified by similarity in their
response properties as well as morphological and physiological properties (Sanes and Masland, 2015).
With knowledge of the stimulus, these cells can be clearly separated into their respective types by
clustering the spike-triggered average stimulus. This characterization in terms of latent locations
and cell types has been validated through decades of experiments (Kuffler, 1953), and has been made
possible by the relative ease with which relevant stimuli can be identified and controlled. To what
extent can these latent representations be discovered from the spike trains alone?

We fit our model to the measured spike trains for each of the twelve probabilistic network priors

84

(a)

Dist. SBM BernDense

Adjacency Model

0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.11
0.12

P
re

d
.
LL

 [
n
a
t/

s] Dist.
SBM
Gauss.

(b)

0 1 2 3 4

True dist. [px]

0

1

2

3

4

In
f.

 d
is

t.
 [

a
.u

.] Dist.
PCA

(c)

2 1 0 1 2

`1 [a.u.]

2

1

0

1

2

` 2
 [

a
.u

.]

ON Cell Locations

(d)

OFF ONpost

OFF

ON

p
re

Inferred Network

12 6 0 6 12

(e)

OFF ONpost

OFF

ON

p
re

ρn←m

0.0 0.2 0.4 0.6 0.8 1.0

(f)

OFF ONpost

OFF

ON

p
re

µn←m

5.0 2.5 0.0 2.5 5.0

Figure 5.1: Retinal ganglion cell types and locations can be inferred from spike trains alone. (a) The combined distance

model and blockmodel yields the highest predictive log likelihood (units: nats/spike), compared to other combinations

of adjacencymodels (groups of bars) andweight models (blue: latent distance weight model, yellow: stochastic block

model for weights, green: Gaussian weights). (b) The inferred distances under the latent distancemodel are highly

correlated with the true distances, as measured by stimulus sensitivity, whereas inferred embeddings under PCA are

not. (c)Moreover, the inferred locations (semi-transparent markers) recover the true receptive field centers (solid

markers with black outline). Shown here only for ON cells. (d) Inferred network,A⊙W , under a latent distance

model of connection probability and a stochastic blockmodel for connection weight, averaged over 500 posterior

samples. (e) Expected probability of connection under the latent distancemodel. (f) Expected connection strength

under the stochastic blockmodel. The inferred cell classes perfectly match the trueON andOFF types, and reflect

within-class excitation and between-class inhibition.

shown in Fig. 3.2 — three weight models and four adjacency models. Predictive likelihood com-
parisons on the held-out data reveal that the adjacency matrix, i.e. the pattern of connectivity, is
well-characterized by a two-dimensional latent distance model (Fig. 5.1c), as expected given the lo-
calized receptive fields of RGCs. Moreover, the pairwise distances between the latent locations are
highly correlated with the true distances between receptive field centers (Fig. 5.1b), even though the
stimulus was never used during training. By contrast, the inferred locations given by the top two

85

principal components of the spike trains are highly uncorrelated, indicating that PCA does not re-
cover a meaningful spatial embedding. Finally, the inferred locations can be rotated and scaled such
that they match the true locations almost perfectly (Fig. 5.1c). Rotation does not change the pair-
wise distances and scaling simply changes the units. This matching is highly unlikely for randomly
distributed locations. In Fig. 5.1c, the true locations are shown as solid markers with black outlines,
and the inferred locations sampled from the posterior distribution are shown as semi-transparent
markers of the same color and shape.

For the weight matrix, a latent distance model (Dist) and a stochastic block model (SBM) both
yield similar predictive likelihoods. Looking into the inferred types under the SBM, we find that the
neurons are grouped according to their true on and off cells, again without any knowledge of the
stimulus. These types determine the expected interaction weight for each pair of neurons.

Figure 5.1d shows the inferred functional network under the latent distance adjacency model
and stochastic block model for weights. The neurons are sorted first by their type (off then on)
and then by their x-location. This yields the three bands in the matrix of connection probabili-
ties 5.1e. Nearby cells have much higher probability of connection. The mean connection strength
(Fig. 5.1f) shows the characteristic pattern of positive weights between cells of the same type and
negative weights between cells of opposite types. The diagonal of this matrix shows the weights of
self-connections, which are typically negative due to refractory effects.

Together, these inferred types and locations provide compelling evidence for a highly structured
pattern of functional connectivity. Given the extensive work on characterizing retinal ganglion cell
responses, we have considerable evidence that the representation we learn from spike trains alone
is indeed the optimal way to characterize this population of cells. This lends us confidence that we
may trust the representations learned from spike trains recorded from deeper brain areas, where
traditional stimulus-response correlations are less valuable.

5.3.2 Hippocampal Place Cells

We also applied our framework to simultaneously recorded multi-neuronal spike trains from the
hippocampal recordings studied in Chapter 3. Here, however, we preprocess the data by binning
the spikes into 250ms time bins. Furthermore, we only consider the spike counts from time bins
in which the rat was moving at a velocity of at least 10cm/s, since these hippocampal place cells fire
primarily during locomotion. The resulting dataset is almost ten minutes long. Finally, we only
consider the 25 neurons with the most precise place fields.

As in the retina, we have strong intuitions about the latent structure underlying hippocampal

86

(a)

True Locations
(b)

Inferred Locations
(c)

0 20 40 60 80

True distance [cm]

0

2

4

6

In
fe

rr
e
d
 d

is
ta

n
ce

 [
a
.u

.]

Dist.
LDS
PCA

Pairwise Distances

(d)

Dist. SBM BernDense

Adjacency Model

0.45
0.50
0.55
0.60
0.65
0.70

P
re

d
.
LL

 [
n
a
t/

s] Dist.
SBM
Gauss.

(e)

post

p
re

Inferred Network

2 1 0 1 2

Figure 5.2: Hippocampal place fields are inferred from population spike trains.

place cell activity, namely, we expect cells representing nearby locations to be correlated and cells
with disjoint place fields to be anti-correlated. Can we extract the spatial layout of place fields from
spike trains alone?

We apply our framework, fitting all twelve network models and evaluating them on the basis of
predictive likelihood. We use a negative binomial observation model to allow multiple spikes per
time bin. We find that the distance dependent weight models yield the highest predictive likelihood
(Fig. 5.2d). The stochastic block model yields the highest predictive likelihood, but upon further in-
vestigation we find that almost all neurons are connected in this model. There is one outlier, neuron
#1, which is only sparsely connected. The SBM assigns 24 neurons are assigned to one cluster, and
assigns neuron #1 to its own group. Thus, the stochastic block model is quite similar to an indepen-
dent Bernoulli model, as is evident from the similar predictive likelihood of these two models.

87

Looking into the inferred locations under the latent distance model for the weight matrix, we
find that the inferred locations (Fig 5.2b) are (up to rotation and scale) highly similar to the true
place field centers (Fig 5.2a) measured using the rat’s true location. This is quantified by plotting
the pairwise distances between inferred locations against the pairwise distances between place field
centers. The latent distance model’s pairwise distances are highly correlated with the ground truth,
whereas distances between PCA embeddings are very uncorrelated (Fig. 5.2c).

For further comparison, we fit a Poisson linear dynamical system (PLDS) (Macke et al., 2011) with
a two dimensional latent state space, and used the rows of the N×2 emission matrix as the locations
of the neurons. Chapter 8 will discuss this class of models in more detail. The PLDS yields pairwise
distances that are quite correlated with the true distances, but we find that the variance of this fit
grows with the true distance. This reflects the fact that the PLDS does not explicitly parameterize
interaction as a function of distance, but rather induces correlation due to similarity in the emission
matrix as well as shared dynamics.

Finally, we investigated the expected network under the posterior and found that upon sorting
the neurons by their inferred locations, an intuitive banded structure emerges (Fig. 5.2e). The posi-
tive diagonal indicates strong autocorrelation between a neurons spiking in consecutive 250ms bins.
Over these time scales, self-refractory effects are not evident. The primary connections are inhibitory
in nature, such that active cells suppress the activity of cells with distal place fields.

These inferred representations again confirm our intuitive beliefs about the structure of hip-
pocampal place cell responses. The inferred latent variables recover meaningful structure in the neu-
ral activity, without any access to the location. Instead, these representations arise from the neural
activity alone.

5.3.3 Synthetic Data

To assess the robustness and scalability of our framework, we apply our methods to simulated data
with known ground truth. First, we show that our Bayesian approach can recover structure in larger
populations of neurons than those studied above. Moreover, we show that our approach outper-
forms alternative methods that separate the problems of finding the network and discovering the
underlying structure. Then, we show that for sparse networks, our approach only scales quadrati-
cally with the number of neurons — a significant improvement over naïve methods that incur an
additionalO(N3) cost per potential connection.

88

(a) Synthetic Network

ON

OFF

Inhib.

Excit.

(b)

1 2 3 4 5 6

Time Bins (×104)

0.10

0.11

0.12

0.13

0.14

0.15

0.16

P
re

d
.
LL

 [
n
a
ts

/s
]

True

MCMC

MAP

(c)

0 2 4 6 8 10 12 14

True dist. [px]

0
2
4
6
8

10
12
14

In
f.

 d
is

t.
 [

p
x
]

True

MCMC

MAP

Figure 5.3: Synthetic results based on the retinal ganglion cell population studied above. (a) Locations of the 200 neu-

rons (100 on and 100 off cells) along with a subset of the connections. For clarity, 15% of the connections are randomly

chosen. Though the network is not symmetric, arrowheads are dropped for clarity. (b) Predictive likelihood on 10,000

held-out time bins as a function of the number of time bins in the training dataset. “MCMC” denotes our Bayesian

approachwith a latent distance adjacencymodel and a SBMweight model. “MAP” denotes theL1-regularized stan-

dard GLM. (c) Inferred locations found by ourmodel (MCMC) and by fitting a latent distancemodel to the thresholded

standard GLMnetwork (MAP).

Advantages of being Bayesian

For these analyses, we simulate a population of 200 neurons with structure that mimics that of the
retinal ganglion cell population analyzed in Section 5.3.1. Figure 5.3a illustrates the underlying net-
work. As before, we have on cells and off cells, each centered at a location in the 2D retinal plane.
Nearby cells are more likely to be functionally connected, and cells of the same type will excite each
other whereas cells of different types will inhibit one another. Again, these functional connections
reflect correlations and anti-correlations between cells that arise from common input. We simulate
60000 time bins and tune the network parameters such that if each time bin were one millisecond,
the firing rates would range from 10Hz to 70Hz with a mean of about 30Hz. Rather than simulat-
ing an external white noise stimulus, here we simulate spontaneous activity of the network.

Since we know the generative model that gave rise to the data, we can quantify the improvement
from using our fully Bayesian approach rather than a standard GLM, and compare these improve-
ments to the upper bound provided by the true model. Figure 5.3b shows the predictive log like-
lihood for 10000 bins of held-out data as a function of the number of time bins of training data.
For shorter training datasets, our Bayesian approach yields considerably higher predictive likeli-
hood than the standard,L1-regularized GLM. As the length of the training data increases, both our

89

method and the standard GLM improve, and ultimately approach the likelihood of the true model
that generated the data. With more data, the network inference is driven less by the prior and more
by the observations. Thus, in the limit of infinite data,the GLM will converge to the same network,
and hence the same predictive likelihood, as our Bayesian method. However, with hundreds of neu-
rons and tens of thousands of time bins, these results suggest that the Bayesian approach can yield
substantial benefits.

Rather than simultaneously fitting the network and the underlying latent variables, one may in-
stead fit the network with anL1-regularized GLM and then fit a probabilistic network model to the
GLM connection weights. This is the approach taken by Stevenson et al. (2009). The advantage
is that the network is only fit once, and since this is usually the most expensive aspect of inference,
it can save considerable time. However, when the data is limited, both the network and the latent
variables are uncertain. Our Bayesian approach finds joint assignments with high posterior probabil-
ity, whereas the standard GLM finds a single network that does not account for prior beliefs about
structure underlying the network. In this example, subsequently fitting a latent distance model to
the adjacency matrix of a thresholded GLM network finds an embedding that differs considerably
from the embedding found by our Bayesian approach. This is illustrated by the decreased correla-
tion between true and inferred pairwise distances under the standard GLM compared to that of our
joint, Bayesian approach, as shown in Figure 5.3c.

Figure 5.4 further illustrates this point. Here, the true network is shown as a weighted adjacency
matrix (Fig. 5.4a), along with its binary adjacency matrix (Fig. 5.4d). The inferred network and con-
nection probabilities from our fully Bayesian method with a latent distance model prior are shown
in Fig. 5.4b and Fig. 5.4e, respectively. Our MCMC algorithm does a good job recovering the under-
lying locations, as shown by the diagonally banded connection probabilities reflecting the distance
dependence. By contrast, the MAP network found via anL1-regularized standard GLM is consid-
erably noisier (Fig. 5.4c), since it knows nothing of the underlying distance dependent connectivity.
A latent distance model fit to a thresholded copy of this network fails to capture the distance de-
pendence (Fig. 5.4f), since the spurious connections force otherwise well-separated neurons to lie
close in the embedding. By jointly fitting the network and the latent locations, we weed out these
spurious connections.

Scalability Analysis

Finally, we address the scalability of our Bayesian inference algorithms. With large-scale recordings
becoming the norm, efficiency is paramount. There are three major parameters that govern the com-

90

(a)

OFF ONpost

OFF

ON

p
re

Synthetic Network

11 0 11

(b)

OFF ONpost

OFF

ON

p
re

MCMC Network

1 0 1

(c)

OFF ONpost

OFF

ON

p
re

MAP Network

1 0 1

(d)

OFF ONpost

OFF

ON

p
re

Synthetic Network

0.0 0.2 0.4 0.6 0.8 1.0

(e)

OFF ONpost

OFF

ON

p
re

MCMC ρn←m

0.0 0.2 0.4 0.6 0.8 1.0

(f)

OFF ONpost

OFF

ON

p
re

MAP ρn←m

0.0 0.2 0.4 0.6 0.8 1.0

Figure 5.4: (a)Weighted adjacencymatrix for the synthetic RGC network shown in Fig. 5.3a. (b)Network inferred by

our fully Bayesian approach. (c) Thresholded network found by anL1-regularized GLM. (d)Adjacencymatrix corre-

sponding to the true network in Fig. 5.4a. (e) Inferred connection probability found by ourmodel with a latent distance

prior. The diagonal bands reflect the increased probability for nearby neurons.. (f) Inferred connection probability

found by fitting a latent distancemodel to the network in Fig. 5.4c. Noise in this network leads to poor location esti-

mates and nearly uniform connection probabilities.

plexity of inference: the number of time bins, T ; the number of neurons,N ; and the level of spar-
sity, ρ. The natural unit of measure is the wall-clock time required to perform one iteration of our
MCMC algorithm. The following experiments were run on a quad-core Intel i5 with 6GB of RAM.
We break down the wall-clock time into time spent updating the auxiliary variables of the obser-
vation model and time spent updating the network. Resampling the latent variables incurs a lesser
cost.

The wall clock time scales linearly with T , as shown in Figure 5.5a. Recall that the observation

91

(a)

1 2 3 4 5 6

T (×104)

0

10

20

30

40

50

60

70

80

ti
m

e
/i
te

r
[s

e
c]

N=200

ρ=.05

Obs.

Net.

(b)

50 100 150 200

N

0

10

20

30

40

50

60

70

80

ti
m

e
/i
te

r
[s

e
c]

T=60K

ρ=.05

(c)

.05 .25 .45

ρ

0

10

20

30

40

50

60

70

80

ti
m

e
/i
te

r
[s

e
c]

N=200

T=60K

Figure 5.5: Scalability of our inference algorithm as a function of: (a) the number of time bins,T ; (b) the number of

neurons,N ; and (c) the average sparsity of the network, ρ. The complexity grows linear withT and quadratically

withN (for fixed ρ). The cost is broken down into the cost of resampling the Pólya-gamma auxiliary variables (“Obs.”)

and the cost of resampling the sparse network (“Net.”). Color scheme shared across all panels.

model containsNT auxiliary variables, each of which must be resampled. Additionally, each neu-
ron must compute its sufficient statistics, which involves a rectangular matrix multiplication cost-
ingO(TN2) time.

Since there areO(N2) possible connections in a network ofN neurons, there is no way to avoid
at least a quadratic cost inN (unless some connections can be ruled out a priori). Figure 5.5b shows
that this quadratic penalty is indeed evident. The cost of updating the auxiliary variables is only
linear inN , but the cost of updating the network is quadratic. In Section 5.4, we discuss potential
strategies for ruling out connections and limiting this cost.

The total cost could actually be worse than quadratic because the cost of updating each connec-
tion could depend onN . Fortunately, the complexity of our collapsed Gibbs sampling algorithm
only depends on the number of incident connections received by each neuron, p. Specifically, we
must invert a p × pmatrix, which incurs anO(p3) cost. Figure 5.5c illustrates this for a Bernoulli
network withN = 200 neurons. The expected number of incoming connections is related to the
probability of connection by E[p] = ρN . If we increased the number of neurons but kept the
average in-degree constant, the total cost would scale asO(TN +N2p3).

5.4 Discussion

We have shown that the functional networks underlying spike trains may provide insight into the
low-dimensional structure of neural populations. Looking forward, there are two main concerns
that we would like to address. First, ideally we would like algorithms that scale better than quadrat-

92

ically with the number of neurons. Second, we would like to automate the process of relating the
latent structure to simultaneously measured environmental cues, stimuli, and behavioral correlates.

5.4.1 Further scalability improvements

For large populations, the bulk of the running time is spent sampling the network variables,A
andW . As the number of neurons grows, this complexity scales asO(N2). To what extent can
we minimize this complexity? As we have shown, naïvely applying clustering algorithms and PCA
directly to spike trains does not necessarily yield meaningful features. These results can be somewhat
improved by smoothing the spike trains (e.g. by taking a moving average), but they are still funda-
mentally limited when the low-dimensional structure lies in the pattern of functional connectivity.

Moreover, our results in Section 5.3.3 show that separating the problem of inferring the network
and discovering its latent structure may yield to inferior results. This is particularly common for
large neural populations, where there is substantial posterior uncertainty. In practice, we initialize
our method with a standard GLM and find that a small number of iterations of our MCMC algo-
rithm can yield large improvements in the predictive likelihood of our model. These improvements
come from pruning connections that are weakly supported by the data, but which are very unlikely
under the prior. This improvement in predictive likelihood is consistent with existing literature on
Bayesian spike-and-slab modeling (Mohamed et al., 2012).

An alternative approach is to consider models that explicitly limit the dimensionality of the net-
work. For example, if we know the physical location of neurons (or their approximate location
from electrode number), we may rule out long-range connections. Alternatively, we may con-
strain the weighted adjacency matrix to be low rank, that isW ⊙A ≡ UV T, whereU andV
are rankK < N . The effect is similar to that of a linear dynamical system model (Paninski et al.,
2010; Macke et al., 2011). Unfortunately, it is less clear how to incorporate interpretable structure
into this type of model, although see Buesing et al. (2014) for some initial steps in this direction.

Finally, we have developed a Markov chain Monte Carlo inference algorithm, and while we have
shown reasonable performance on recordings of hundreds of neurons over tens of thousands of
time bins, as we scale to larger recordings alternative algorithms may be preferable. When the com-
plexity is dominated by the number of time bins, stochastic variational inference (SVI) (Hoffman
et al., 2013) provides an attractive alternative. Since the time bins are conditionally independent
given the network, we can get unbiased estimates of sufficient statistics frommini-batches of time
bins and use them to inform stochastic mean field updates. While we have not derived this mean
field algorithm here, it is relatively straightforward to derive these algorithms for Pólya-gamma aug-

93

mented models (Pillow and Scott, 2012; Zhou et al., 2012). Still, the limiting factor will often be the
number of neurons, in which case SVI is not immediately applicable. Developing approximate in-
ference algorithms that only consider subsets of neurons is an active area of research (Soudry et al.,
2015).

5.4.2 Relating circuit structure to stimuli and behavior

So far we have reserved the externally measured covariates for validation. We used the white noise
stimulus in the retinal ganglion cell experiment to determine the neurons’ receptive fields, and we
used the measured location in the hippocampal experiment to determine the place cell locations. We
did not, however, attempt to jointly model the neural activity and the external covariates, as is often
done in GLM analyses. The simplest way to incorporate these external covariates,Y = {yt}, into
the model is via a linear term in the activation. That is, let,

ψt,n ≜ ψ(0)
n + uT

nyt + (an ⊙wn)
T ŝt,

whereun is the “stimulus filter.” Just as we modeled an andwn with hierarchical network models,
we may modelun in terms of a set of neuron-specific latent variables.

As we explore deeper brain circuits that are further removed from sensory inputs or motor out-
puts, the relationship between neural activity and external covariates becomes less clear. In these
cases, the unsupervised methods for extracting structured representations can provide useful hints
as to how neural activity may be understood. That the representations found in these well-studied
circuits of the retina and the hippocampus match our expectations provides reason to believe that
they can be fruitfully applied to more enigmatic circuits as well.

5.5 Conclusion

This chapter extended the linear autoregressive models of previous chapters to include both excita-
tory and inhibitory interactions by developing a nonlinear firing rate model. We derived an efficient,
fully-conjugate Gibbs sampling algorithm that integrate out the weights in order to sample sparsity
patterns. The key was the Pólya-gamma augmentation, which makes discrete observations appear as
Gaussian likelihoods. This led to dramatic improvements in performance and allowed us to discover
interesting structure in a variety of real and synthetic datasets.

Nevertheless, these methods are still limited in that they are parameterized in terms of stationary
network. There is no aspect of the model that captures time-varying properties of the neural circuit

94

under study. In the next chapter, we consider extensions of this model that capture dynamics in the
network itself. This provides a step toward dynamical systems models that attempt to explain data
in terms of a latent state that evolves over time.

95

6
Dynamic Network Models

Synaptic plasticity is believed to be the fundamental building block of learning and memory in the
brain (Dayan and Abbott, 2001). Its study is of crucial importance to understanding the activity and
function of neural circuits. With innovations in neural recording technology providing access to the
simultaneous activity of increasingly large populations of neurons, statistical models are promising
tools for formulating and testing hypotheses about the dynamics of synaptic connectivity. Advances
in optical techniques (Packer et al., 2012; Hochbaum et al., 2014), for example, have made it possible
to simultaneously record from and stimulate large populations of synaptically connected neurons.
Armed with statistical tools capable of inferring time-varying synaptic connectivity, neuroscientists
could test competing models of synaptic plasticity, discover new learning rules at the mono-synaptic
and network level, investigate the effects of disease on synaptic plasticity, and potentially design
stimuli to modify neural networks.

Despite the popularity of autoregressive models for spike data, like the GLM (Paninski, 2004;
Truccolo et al., 2005; Pillow et al., 2008), relatively little work has attempted to model the time-
varying nature of neural interactions. Here we model interaction weights as a dynamical system gov-
erned by parametric synaptic plasticity rules. Building on the work of preceding chapters, we show
how synaptic plasticity rules can be modeled as dynamics rules that govern how weights evolve in
an activity-dependent manner. In doing so, we imbue the weights with a biophysical interpretation
that we explicitly avoided in previous chapters. We discuss when this interpretive leap is warranted.

96

To perform inference in this model, we use particle Markov chain Monte Carlo (pMCMC) (An-
drieu et al., 2010), a recently developed inference technique for time series with nonlinear dynamics.
We use this new modeling framework to examine the problem of using recorded data to distinguish
between proposed variants of spike-timing-dependent plasticity (STDP) learning rules. On syn-
thetic data generated from the biophysical simulator NEURON, we show that we can recover the
weight trajectories, the pattern of connectivity, and the underlying learning rules.

6.1 A Biophysical Interpretation of the GLM

The nonlinear autoregressive models of the previous chapter treat the spike count, st,n, as a random
variable whose distribution depends on a nonnegative firing rate, λt,n. The firing rate is modeled
as a nonlinear function of an activation, ψt,n, which is taken to be a linear function of the spike
history. This linear-nonlinear cascade is often called a generalized linear model (GLM) (Paninski,
2004; Truccolo et al., 2005).

From a biophysical perspective, the activation can be thought of as analogous to the cell’s mem-
brane potential. The nonlinearity that links the activation to the firing rate approximates the spiking
threshold of the neuron. When the membrane potential exceeds the spiking threshold potential of
the cell, λt,n rises to reflect the rate of the cell’s spiking, and when the membrane potential decreases
below the spiking threshold, λt,n decays to zero.

As before, we model the activation, or membrane potential, as a linear function of the spike his-
tory,

ψt,n = ψ(0)
n +

N∑
n=1

D∑
d=1

hn′→n[d] · st−d,n′ . (6.1)

where ψ(0)
n is now the resting potential and hn′→n[d] is a post-synaptic potential that preceding

spikes on neuron n′ induce on the membrane potential of neuron n at lag d.
From this semi-biophysical perspective it is clear that one shortcoming of the models developed

thus far is that they do not account for time-varying connectivity, despite decades of research show-
ing that changes in synaptic weight occur over a variety of time scales and are the basis of many fun-
damental cognitive processes. This absence is due, in part, to the fact that this direct biophysical
interpretation is not warranted in most traditional experimental regimes, e.g., in multi-electrode ar-
ray (MEA) recordings where electrodes are relatively far apart. However, as high resolution optical
recordings grow in popularity, this assumption must be revisited; this is a central motivation for the

97

time

Figure 6.1: A simple network of four sparsely connected neurons whose synaptic weights are changing over time.

Here, the neurons have inhibitory self connections tomimic refractory effects, and are connected via a chain of ex-

citatory synapses, as indicated by the nonzero entriesa1→2,a2→3, anda3→4. The corresponding weights of these

synapses are strengthening over time (darker entries inW), leading to larger impulse responses in the firing rates and

a greater number of induced post-synaptic spikes (black dots), as shown below.

model developed in this chapter.
There have been a few efforts to incorporate dynamics into the GLM. Stevenson and Koerding

(2011) extended the GLM to take inter-spike intervals as a covariates and formulated a generalized
bilinear model for weights. Eldawlatly et al. (2010) modeled the time-varying parameters of a GLM
using a dynamic Bayesian network (DBN). However, neither of these approaches accommodate the
breadth of synaptic plasticity rules present in the literature. For example, parametric STDP models
with hard bounds on the synaptic weight are not congruent with the convex optimization tech-
niques used by (Stevenson and Koerding, 2011), nor are they naturally expressed in a DBN. Here
we model time-varying synaptic weights as a potentially nonlinear dynamical system and perform
inference using particle MCMC.

Nonstationary, or time-varying, models of synaptic weights have also been studied outside the
context of GLMs. For example, Petreska et al. (2011) applied hidden switching linear dynamical sys-
tems models to neural recordings. This approach has many merits, especially in traditional MEA
recordings where synaptic connections are less likely and nonlinear dynamics are not necessarily
warranted. Outside the realm of computational neuroscience and spike train analysis, there exist a
number of dynamic statistical models, such as the dynamic generalized linear models of West et al.

98

(1985). However, the types of models we are interested in for studying synaptic plasticity are charac-
terized by domain-specific transition models and sparsity structure, and until recently, the tools for
effectively performing inference in these models have been limited.

6.2 A Sparse Time-Varying Generalized Linear Model

In order to capture the time-varying nature of synaptic weights, we extend the standard GLM by
first factoring the impulse responses in the firing rate of (6.1) into a product of three terms:

hn′→n[d, t] ≜ an′→n · wn′→n[t] · ℏn′→n[d]. (6.2)

Here, an′→n ∈ {0, 1} is a binary random variable indicating the presence of a direct synapse
from neuron n′ to neuron n, wn′→n[t] ∈ R is a non stationary synaptic “weight” trajectory
associated with the synapse, and ℏn′→n[d] is a nonnegative, normalized impulse response, i.e.∑D

d=1 ℏn′→n[d] ·∆t = 1. Requiring ℏn′→n[d] to be normalized gives meaning to the synaptic
weights: otherwisew would only be defined up to a scaling factor. For simplicity, we assume ℏ[d]
does not change over time, that is, only the amplitude and not the duration of the PSPs is time-
varying. This restriction could be adapted in future work.

As in previous chapters, we model the normalized impulse responses as a linear combination of
basis functions. In order to enforce the normalization of ℏ[d], however, we use a convex combina-
tion of normalized, nonnegative basis functions. That is,

ℏn′→n[d] ≡
B∑
b=1

θ
(b)
n′→n ϕb[d],

where
∑D

d=1 ϕb[d] ·∆t = 1 and
∑B

b=1 θ
(b)
n′→n = 1.

The binary random variables an′→n, which can be collected into anN ×N binary matrixA,
model the connectivity of the synaptic network. Similarly, the collection of weight trajecto-
ries {{wn′→n[t]}}n′,n, which we will collectively refer to asW [t], model the time-varying synaptic
weights. This factorization is often called a spike-and-slab prior (Mitchell and Beauchamp, 1988),
and it allows us to separate our prior beliefs about the structure of the synaptic network from those
about the evolution of synaptic weights. For example, in the most general case we might incorporate
the probabilistic network models of previous chapters as prior distributions forA, but here we limit
ourselves to the simplest network model, the independent Bernoulli, or Erdős-Rényi model. Under

99

this model, each an′→n is an independent identically distributed Bernoulli random variable with
sparsity parameter ρ.

Figure 6.1 illustrates how the adjacency matrix and the time-varying weights are integrated into
the GLM. Here, a four-neuron network is connected via a chain of excitatory synapses, and the
synapses strengthen over time due to an STDP rule. This is evidenced by the increasing amplitude
of the impulse responses in the firing rates. With larger synaptic weights comes an increased prob-
ability of post-synaptic spikes, shown as black dots in the figure. In order to model the dynamics
of the time-varying synaptic weights, we turn to a rich literature on synaptic plasticity and learning
rules.

6.2.1 Learning Rules for Time-Varying Synaptic Weights

Decades of research on synapses and learning rules have yielded a plethora of models for the evolu-
tion of synaptic weights (Caporale and Dan, 2008). In most cases, this evolution can be written as a
dynamical system,

W [t+ 1] =W [t] + ℓ (W [t], S≤t,ϑ) + ϵ(W [t],ϑ)

where ℓ is a potentially nonlinear learning rule that determines how synaptic weights change
as a function of previous spiking,S≤t. This framework encompasses rate-based rules such as
the Oja rule (Oja, 1982) and timing-based rules such as STDP and its variants. The additive
noise, ϵ(W [t],ϑ), need not be Gaussian, and many models require truncated noise distributions.

Following biological intuition, many common learning rules factor into a product of simpler
functions. For example, STDP (defined below) updates each synapse independently such that the
learning rule for wn′→n only depends on the current weight,wn′→n[t], and the pre- and post-
synaptic spike history,S≤t. Biologically speaking, this means that plasticity is local to the synapse.
More sophisticated rules allow dependencies among the columns ofW . For example, the incoming
weights to neuron nmay depend upon one another through normalization, as in the Oja rule (Oja,
1982), which scales synapse strength according to the total strength of incoming synapses.

Extensive research in the last fifteen years has identified the relative spike timing between the pre-
and post-synaptic neurons as a key component of synaptic plasticity, among other factors such as
mean firing rate and dendritic depolarization (Feldman, 2012). STDP is therefore one of the most
prominent learning rules in the literature today, with a number of proposed variants based on cell
type and biological plausibility. In the experiments to follow, we will make use of two of these pro-

100

posed variants. First, consider the canonical STDP rule with a “double-exponential” function pa-
rameterized byϑ = {τ−, τ+, A−, A+} (Song et al., 2000), in which the effect of a given pair of
pre-synaptic and post-synaptic spikes on a weight may be written:

ℓ (wn′→n[t],S≤t;ϑ) = ℓ+(S≤t, A+, τ+)− ℓ−(S≤t, A−, τ−), (6.3)

where,

ℓ+(S≤t, A+, τ+) = st,n

t∑
t′=1

st′,n′ ·A+ · e(t−t
′)/τ+ ,

ℓ−(S≤t, A−, τ−) = st,n′

t∑
t′=1

st′,n ·A− · e(t−t
′)/τ− .

This rule states that weight changes only occur at the time of pre- or post-synaptic spikes, and that
the magnitude of the change is a nonlinear function of inter-spike intervals.

A slightly more complicated model known as the multiplicative STDP rule extends this by
bounding the weights above and below byWmax andWmin, respectively (Morrison et al., 2008).
Then, the magnitude of the weight update is scaled by the distance from the threshold:

ℓ (wn′→n[t],S≤t,ϑ) = ℓ̃+(S≤t, A+, τ+) (Wmax − wn′→n[t]),

− ℓ̃−(S≤t, A−, τ−) (wn′→n[t]−Wmin). (6.4)

Here, by setting ℓ̃± = min(ℓ±, 1), we enforce that the synaptic weights always fall
within [Wmin,Wmax]. With this rule, it often makes sense to setWmin to zero.

Similarly, we can construct an additive, bounded model which is identical to the standard addi-
tive STDP model except that weights are thresholded at a minimum and maximum value. In this
model, the weight never exceeds its set lower and upper bounds, but unlike the multiplicative STDP
rule, the proposed weight update is independent of the current weight except at the boundaries. In
the canonical STDP model it is sensible to use Gaussian noise, but in the bounded multiplicative
model we use truncated Gaussian noise to respect the hard upper and lower bounds on the weights.
Note that this noise is dependent upon the current weight,wn′→n[t].

The nonlinear nature of this rule, which arises from the multiplicative interactions among the
parameters,ϑ = {A+, τ+, A−, τ−,Wmax,Wmax}, combined with the potentially non-Gaussian
noise models, pose substantial challenges for inference. However, the computational cost of these

101

detailed models is counterbalanced by dramatic expansions in the flexibility of the model and the
incorporation of a priori knowledge of synaptic plasticity. These learning models can be interpreted
as strong regularizers of models that would otherwise be highly under-determined, as there areN2

weight trajectories and onlyN spike trains. In the next section we will leverage powerful new tech-
niques for Bayesian inference in order to capitalize on these expressive models of synaptic plasticity.

6.3 Inference via Particle MCMC

The traditional approach to inference in the standard GLM is penalized maximum likelihood esti-
mation. For a model with Poisson observations and a nonlinear link function, g : R→ R+, the log
likelihood is,

log p(S |Λ) =

N∑
n=1

T∑
t=1

−λt,n∆t+ st,n log λt,n (6.5)

=
N∑
n=1

T∑
t=1

−g(ψt,n)∆t+ st,n log g(ψt,n) (6.6)

and the log likelihood of a population of non-interacting spike trains is simply the sum of each of
the log likelihoods for each neuron. The likelihood depends upon the network through the defini-
tion of the activation given in Eq. 6.1 and Eq. 6.2.

Due to the potentially nonlinear and non-Gaussian nature of STDP, these existing techniques
are not applicable here. Instead we use particle MCMC (Andrieu et al., 2010), a powerful technique
for inference in time series. Particle MCMC samples the posterior distribution over weight trajecto-
ries,W [t], the adjacency matrixA, and the model parameters θ(n→n

′) andϑ, given the observed
spike trains, by combining particle filtering with MCMC. We represent the conditional distribu-
tion over weight trajectories with a set of discrete particles, {W (p)}Pp=1. Each particle represents
a sequence of weight matrices,W (p) ∈ RN×N×T , and has an associated nonnegative particle
weight v(p)T . Note that the particle weights are not the same as the synaptic weights. Together, these
define an atomic distribution over weight trajectories,

p(W) ≈
∑P

p=1 v
(p)
T δW (p)(W)∑P
p=1 v

(p)
T

, (6.7)

where δw∗(w) is the Dirac delta function located atw∗.

102

6.3.1 Particle Filtering

Particle filtering (Andrieu et al., 2003) or sequential Monte Carlo is a method of inferring a distribu-
tion over weight trajectories by iteratively propagating forward in time and re-weighting according
to how well the new samples explain the data. We build up the collection of weight trajectories iter-
atively, one bin at a time. We start by sampling the initial synaptic weights from the prior distribu-
tion,

W (p)[1] ∼ p(W [1] |ϑ),

computing their likelihoods, α(p)
1 = p(s1 |A,W (p)[1], {θn→n′}, {ψ(0)

n }), and initializing the
particle weights to v(p)1 = α

(p)
1 . Then, we iteratively proceed, updating the synaptic weights accord-

ing to the learning rule and updating the particle weights according to the likelihood of the spikes.
That is, for t = 2, . . . , T , we perform the following steps:

1. Sample the next synaptic weight given the weight in the preceding time bin, the learning rule,
the spike history, and the global parameters,

W (p)[t] ∼ p(W [t] |W (p)[t− 1],S≤t−1,ϑ).

2. Compute the likelihood of the current spikes,

α
(p)
t = p(st |A,W (p)[t], {θn→n′}, {ψ(0)

n },S≤t)

3. Update the particle weight according to the likelihood of the current spikes,

v
(p)
t ← v

(p)
t−1 · α

(p)
t .

This is, in fact, a special case of sequential importance sampling where our synaptic weights are sam-
pled from the model’s learning rule.

The problem with this simple algorithm is that the weights will rapidly decay to zero as particles
drift from the regions of high likelihood. To counteract this effect, we often introduce a fourth step
in which we resample the particles with replacement according to their weights.

103

4. Sample new particle indices with replacement according to the current weights,

p′ ∼ Discrete

([
v
(1)
t∑
p v

(p)
t

, . . . ,
v
(P)
t∑
p v

(p)
t

])
,

and then replace the weight trajectories with those of the new particle indices,

W (p)[1, . . . , t]←W (p′)[1, . . . , t].

5. Once we have resampled the particle indices, we can reset the weights.

v
(p)
t ←

1

P
.

This is called sequential importance resampling. At the end of T time steps we are left with a
weighted set of synaptic weight trajectories that approximates the conditional distribution over
synaptic weights for given global model parameters.

6.3.2 Collapsed Gibbs Sampling ofA andW [t]

The particle weights also provide an unbiased estimate of the marginal likelihood of entries in the
adjacency matrix,A, integrating out the corresponding weight trajectory. We have,

p(A |S, {θn→n′}, {ψ(0)
n }) ∝

T∑
t=1

∫
p(A,W [t] |S, {θn→n′}, {ψ(0)

n }) dW [t]

≈

 T∏
t=1

P∑
p=1

v
(p)
t α

(p)
t

 p(A | {zn},ϑ).
We can leverage this estimator in a particle marginal Metropolis-Hastings (Andrieu et al., 2010) up-
date. First, we propose an update toA, then we run a particle filter to estimate the marginal likeli-
hood ofA, and accept or reject the proposal accordingly. By marginalizing out the weight trajectory,
we are able to explore the space of adjacency matrices more efficiently.

Factored Learning Rules If the learning rule factors into independent updates for
eachwn′→n[t], we can update each synapse’s weight trajectory separately and reduce the particles

104

to one-dimensional trajectories. The STDP learning rules considered in this chapter all factor in this
way.

6.3.3 Particle MCMC

Particle filtering only yields a distribution over weight trajectories and implicitly assumes that the
other parameters have been specified. Particle MCMC provides a broader inference algorithm
for both weights and static parameters. The idea is to interleave conditional particle filtering steps
that sample the weight trajectory given the current model parameters and the previously sampled
weights, with traditional Gibbs updates to sample the model parameters given the current weight
trajectory. This combination leaves the stationary distribution of the Markov chain invariant and
allows joint inference over weights and parameters.

In our implementation, we also make use of a pMCMC variant with ancestor sampling (Lindsten
et al., 2012) that significantly improves convergence. Any distribution may be used to propagate the
particles forward; using the learning rule is simply the easiest to implement and understand. We
have omitted a number of details in this description; for a thorough overview of particle MCMC,
the reader should consult (Andrieu et al., 2010; Lindsten et al., 2012).

6.4 Evaluation

We evaluated our technique with two types of synthetic data. First, we generated data from our
model, with known ground-truth. Second, we used the well-known simulator NEURON to simu-
late driven, interconnected populations of neurons undergoing synaptic plasticity. For comparison,
we show how the sparse, time-varying GLM compares to a standard GLM with a group LASSO
prior on the impulse response coefficients for which we can perform efficient MAP estimation.

6.4.1 GLM-based Simulations

As a proof of concept, we study a single synapse undergoing a variety of synaptic plasticity rules and
generating spikes according to a GLM. The neurons also have inhibitory self-connections to mimic
refractory effects. We tested three synaptic plasticity mechanisms: a static synapse (i.e., no plasticity),
the unbounded, additive STDP rule given by Equation 6.3, and the bounded, multiplicative STDP
rule given by Equation 6.4. For each learning rule, we simulated 60 seconds of spiking activity at
1kHz temporal resolution, updating the synaptic weights every 1s. The baseline firing rates were
normally distributed with mean 20Hz and standard deviation of 5Hz. Correlations in the spike

105

Figure 6.2:Wefit time-varying weight trajectories to spike trains simulated from aGLMwith two neurons undergoing

no plasticity (top row), an additive, unbounded STDP rule (middle), and amultiplicative, saturating STDP rule (bottom

row). We fit the first 50 seconds with four different models: MAP for an L1-regularized GLM, and fully-Bayesian in-

ference for a static, additive STDP, andmultiplicative STDP learning rules. In all cases, the correct models yield the

highest predictive log likelihood on the final 10 seconds of the dataset.

timing led to changes in the synaptic weight trajectories that we could detect with our inference
algorithm.

Figure 6.2 shows the true and inferred weight trajectories, the inferred learning rules, and the pre-

106

9

m
V

Figure 6.3: Evaluation of synapse detection on a 60 second spike train from a network of 10 neurons undergoing

synaptic plasticity with a saturating, additive STDP rule, simulated with NEURON. The sparse, time-varying GLM

with an additive rule outperforms the fully-Bayesianmodel with static weights, MAP estimation with L1 regularization,

and simple thresholding of the cross-correlationmatrix.

dictive log likelihood on ten seconds of held-out data for each of the three ground truth learning
rules. When the underlying weights are static (top row), MAP estimation and static learning rules
do an excellent job of detecting the true weight whereas the two time-varying models must com-
pensate by either setting the learning rule as close to zero as possible, as the additive STDP does, or
setting the threshold such that the weight trajectory is nearly constant, as the multiplicative model
does. Note that the scales of the additive and multiplicative learning rules are not directly compara-
ble since the weight updates in the multiplicative case are modulated by how close the weight is to
the threshold. When the underlying weights vary (middle and bottom rows), the static models must
compromise with an intermediate weight. Though the STDP models are both able to capture the
qualitative trends, the correct model yields a better fit and better predictive power in both cases.

In terms of computational cost, our approach is clearly more expensive than alternative ap-
proaches based on MAP estimation or MLE. We developed a parallel implementation of our al-
gorithm to capitalize on conditional independencies across neurons, i.e. for the additive and mul-
tiplicative STDP rules we can sample the weightsW ∗→n independently of the weightsW ∗→n′ .
On the two neuron examples we achieve upward of 2 iterations per second (sampling all variables in
the model), and we run our model for 1000 iterations. Convergence of the Markov chain is assessed
by analyzing the log posterior of the samples, and typically stabilizes after a few hundred iterations.
As we scale to networks of ten neurons, our running time quickly increases to roughly 20 seconds
per iteration, which is mostly dominated by slice sampling the learning rule parameters. In order
to evaluate the conditional probability of a learning rule parameter, we need to sample the weight
trajectories for each synapse. Though these running times are nontrivial, they are not prohibitive for

107

networks that are realistically obtainable for optical study of synaptic plasticity.

6.4.2 Biophysical simulations

Using the biophysical simulator NEURON, we performed two experiments. First, we considered a
network of 10 sparsely interconnected neurons (28 excitatory synapses) undergoing synaptic plastic-
ity according to an additive STDP rule. Each neuron was driven independently by a hidden popula-
tion of 13 excitatory neurons and 5 inhibitory neurons connected to the visible neuron with prob-
ability 0.8 and fixed synaptic weights averaging 3.0mV. The visible synapses were initialized close
to 6.0mV and allowed to vary between 0.0 and 10.5mV. The synaptic delay was fixed at 1.0ms
for all synapses. This yielded a mean firing rate of 10Hz among visible neurons. Synaptic weights
were recorded every 1.0ms. These parameters were chosen to demonstrate interesting variations in
synaptic strength, and as we transition to biological applications it will be necessary to evaluate the
sensitivity of the model to these parameters and the appropriate regimes for the circuits under study.

We began by investigating whether the model is able to accurately identify synapses from spikes,
or whether it is confounded by spurious correlations. Figure 6.3 shows that our approach identifies
the 28 excitatory synapses in our network, as measured by ROC curve (Add. STDP AUC=0.99),
and outperforms static models and cross-correlation. In the sparse, time-varying GLM, the probabil-
ity of an edge is measured by the mean ofA under the posterior, whereas in the standard GLM with
MAP estimation, the likelihood of an edge is measured by area under the impulse response.

Looking into the synapses that are detected by the time-varying model and missed by the static
model, we find an interesting pattern. The improved performance comes from synapses that de-
cay in strength over the recording period. Three examples of these synaptic weight trajectories are
shown in the right panel of Figure 6.3. The time-varying model assigns over 90% probability to each
of the three synapses, whereas the static model infers less than a 40% probability for each synapse.

Finally, we investigated our model’s ability to distinguish various learning rules by looking at a
single synapse, analogous to the experiment performed on data from the GLM. Figure 6.4 shows
the results of a weight trajectory for a synapse under additive STDP with a strict threshold on the
excitatory post-synaptic current. The time-varying GLM with an additive model captures the same
trajectory, as shown in the left panel. The GLM weights have been linearly rescaled to align with the
true weights, which are measured in millivolts. Furthermore, the inferred additive STDP learning
rule, in particular the time constants and relative amplitudes, perfectly match the true learning rule.

These results demonstrate that a sparse, time-varying GLM is capable of discovering synaptic
weight trajectories, but in terms of predictive likelihood, we still have insufficient evidence to distin-

108

m
V12

Figure 6.4: Analogously to Figure 6.2, a sparse, time-varying GLM can capture the weight trajectories and learning

rules from spike trains simulated byNEURON. Here an excitatory synapse undergoes additive STDPwith a hard upper

bound on the excitatory post-synaptic current. The weight trajectory inferred by ourmodel with the same parametric

form of the learning rule matches almost exactly, whereas the static models must compromise in order to capture early

and late stages of the data, and themultiplicative weight exhibits qualitatively different trajectories. Nevertheless, in

terms of predictive log likelihood, we do not have enough information to correctly determine the underlying learning

rule. Potential solutions are discussed in themain text.

guish additive and multiplicative STDP rules. By the end of the training period, the weights have
saturated at a level that almost surely induces post-synaptic spikes. At this point, we cannot distin-
guish two learning rules which have both reached saturation. This motivates further studies that
leverage this probabilistic model in an optimal experimental design framework, similar to recent
work by Shababo et al. (2013), in order to conclusively test hypotheses about synaptic plasticity.

6.5 Discussion

Motivated by the advent of optical tools for interrogating networks of synaptically connected neu-
rons, which make it possible to study synaptic plasticity in novel ways, we have extended the GLM
to model a sparse, time-varying synaptic network, and introduced a fully-Bayesian inference algo-
rithm built upon particle MCMC. Our initial results suggest that it is possible to infer weight trajec-
tories for a variety of biologically plausible learning rules.

A number of interesting questions remain as we look to apply these methods to biological record-
ings. We have assumed access to precise spike times, though extracting spike times from optical
recordings poses inferential challenges of its own. Solutions like those of Vogelstein et al. (2009)
could be incorporated into our probabilistic model. Computationally, particle MCMC could be
replaced with stochastic EM to achieve improved performance (Lindsten et al., 2012), and optimal

109

experimental design could aid in the exploration of stimuli to distinguish between learning rules.
Beyond these direct extensions, this work opens up potential to infer latent state spaces with poten-
tially nonlinear dynamics and non-Gaussian noise, and to infer learning rules at the synaptic or even
the network level.

110

7
Bayesian Nonparametric Hidden Markov Models

The dynamic network models of the Chapter 6 introduced an important idea — the notion of a
time-varying latent state. While we did not explicitly frame it in these terms, the dynamic weight
matrices are an example of a latent population state. There, the state had a concrete biophysical
interpretation and was imbued with dynamics derived from synaptic plasticity, but in general, latent
state space models need not be tied to specific biophysical phenomena. In this chapter, we explore
a very common state space model, the hidden Markov model (HMM), which can model neural
spike trains as a progression of discrete latent states. By relating these states to externally measured
covariates, we can gain insight into the computations performed by neural circuits.

Hidden Markov models have found numerous applications in neural modeling. Recently, La-
timer et al. (2015) have used HMMs to argue that decision-making related activity in macaque lateral
intraparietal (LIP) area is better characterized by a discrete step between “undecided” and “decided”
states. Similarly, Miller and Katz (2010) have used HMMs to model the dynamics of neural activity
during taste processing and decision making. In modeling the activity in hippocampal place cells,
Chen et al. (2012; 2014) have used HMMs to interrogate discrete states of hippocampal activity and
reconstruct topological maps of the environment from neural activity. This chapter provides fur-
ther analysis of the same hippocampal dataset, which was also used in Chapters 3 and 5.

A major challenge with using HMMs in practice is determining the number of latent states.
It is common to fit models of varying dimensionality and compare them on the basis of a cross-

111

validation metric, such as the predictive log-likelihood assigned to held-out data. However, this
approach has a number of drawbacks. First, it can be computationally expensive to fit and compare
a sequence of models. Second, it makes inefficient use of the data since we can only use a fraction
of the data to train the model. While this is primarily a concern in the “small data” regime, it is still
relevant to neural data analysis. Third, as with basic mixture models, the standard model does not
explicitly penalize duplicate states. This penalty is only implicitly enforced through cross-validation.
In terms of interpretability, it is desirable to incorporate an explicit penalty on excess states.

Here we extend the preceding work and consider a Bayesian nonparametric approach (Orbanz
and Teh, 2011). The Bayesian nonparametric approach brings additional flexibility to the proba-
bilistic model (Teh and Jordan, 2010; Wood and Black, 2008; Shalchyan and Farina, 2014). Specifi-
cally, we use a hierarchical Dirichlet process hidden Markov model (HDP-HMM) (Teh et al., 2006),
which extends the finite-state HMM with an HDP prior that theoretically allows a countably infi-
nite number of states. The Dirichlet process provides a nonparametric prior over atomic probability
measures with support for a countably infinite number of outcomes. This is a natural way to model
distributions over infinitely many states, e.g. to model the rows of a transition matrix. The hierar-
chical part of the HDP prior allows sharing between the rows. Even though these priors support
infinitely many states, we can still perform efficient inference by leveraging truncation methods and
constructive definitions of the HDP that only instantiate variables for states that are visited in the
data.

Nevertheless, inference in Bayesian nonparametric models can be finicky. Hyperparameters of
the HDP prior can have a strong effect, as can the particular choice of inference algorithm. Here we
provide an assessment of various inference approaches. We consider both MCMC and variational
inference algorithms. For MCMC, we adapt the Gibbs sampling approach of (Teh et al., 2006), and
consider various methods of inferring hyperparameters.

We test the statistical model and inference methods with both simulation data and experimental
data. The latter consists of a recording of rat dorsal hippocampal ensemble spike activity during
open field navigation. Using a decoding analysis and predictive likelihood, we verify and compare
the performance of the proposed Bayesian inference algorithms.

7.1 Probabilistic Model

First we present a standard Bayesian hidden Markov model with a fixed, finite number of states. We
introduce notation and prior distributions for the various model parameters. Then we extend this

112

to the nonparametric case with a countably infinite number of latent states.

7.1.1 Parametric Hidden Markov Models

Consider a finiteK-state HMM applied to population spiking activity from a population ofN neu-
rons. We assume that the discrete latent state follows a first-order Markov chain z = [z1, . . . , zT]

with zt ∈ {1, . . . ,K}, and that the spike counts of individual neurons at time t follow a Poisson
distribution whose rate depends on the latent state, zt. This is summarized in the following proba-
bilistic model:

p(S, z |π(0),P ,Λ) = p(z1 |π)
T∏
t=2

p(zt | zt−1,P)
T∏
t=1

p(st | zt,Λ), (7.1)

where

p(z1 |π(0)) = Discrete(z1 |π(0)),

p(zt | zt−1,P) = Discrete(zt |π(zt−1)),

p(st | zt,Λ) =

N∏
n=1

Poisson(st,n |λzt,n).

Here,π(0) ∈ [0, 1]K is a discrete probability distribution over initial states, and

P =


— π(1) —

...
— π(K) —

 ,
is aK ×K transition matrix where the row,π(k) ∈ [0, 1]K , specifies a discrete conditional distri-
bution over zt given that zt−1 = k. The state-conditional firing rates are collected in the matrix,

Λ =


— λ(1) —

...
— λ(K) —

 =


λ1,1 . . . λ1,N
...

...
λK,1 . . . λK,N

 ,
In a Bayesian HMM, we introduce prior distributions over the parameters. We use the following

113

prior distributions,

α0 ∼ Gamma(aα0 , 1.0)

π(0) ∼ Dir(α01),

π(k) ∼ Dir(α01),

λk,n ∼ Gamma(κn, νn).

where gamma prior on firing rates has neuron-specific shape parameters, κn, and scale parame-
ters, νn.

7.1.2 Nonparametric Hidden Markov Models

Model selection is an important issue for statistical modeling and data analysis. Here we extend the
finite-state HMM to an HDP-HMM: a Bayesian nonparametric extension of the HMM that allows
for a potentially infinite number of hidden states (Teh et al., 2006; Beal et al., 2002). The HDP-
HMM treats the priors via a stochastic process. Instead of imposing a Dirichlet prior distribution
on the rows of the finite state transition matrixP , we use a HDP that allows for a countably infinite
number of states.

Specifically, we sample a distribution over latent states,G0, from a Dirichlet process (DP)
(Ferguson, 1973) prior,G0 ∼ DP(γ,H), where γ is the concentration parameter andH is
the base measure. Moreover, we place a prior distribution over the concentration parame-
ter, γ ∼ Gamma(aγ , 1.0). Given the concentration, one may sample from the DP via the “stick-
breaking construction” (Sethuraman, 1994). First, sample the stick-breaking weights, β,

β̃k ∼ Beta(1, γ), βk = β̃k

k−1∏
j=1

(
1− β̃j

)
, (7.2)

where β1 = β̃1,
∑∞

k=1 βk = 1.
The stick-breaking construction of (7.2) is sometimes denoted as β ∼ GEM(γ), after Griffiths,

Engen, and McCloskey (Ewens, 1990). The name “stick-breaking” comes from the interpretation of
βk as the length of the piece of a unit-length stick assigned to the k-th value. After the first k − 1

values having their portions assigned, the length of the remainder of the stick is broken according to
a sample β̃k from a beta distribution, and βk indicates the portion of the remainder to be assigned
to the k-th value. Therefore, the stick-breaking processGEM(γ) also defines a DP— smaller values

114

of γ will lead to larger values of β̃k, which means most of the probability mass will be allocated to
the first “sticks,” i.e. the small values of k.

After sampling β, we next sample the latent state variables, in this caseλ(k), from the base mea-
sureH . For us,H is simply a set of independent gamma distributions for each neuron. Our draw
from theDP(γ,H) prior is then given by

G0(λ) =
∞∑
k=1

βk δλ(k)(λ).

Thus, the stick breaking construction makes clear that draws from a Dirichlet process distribution
are discrete with probability one.

Given a countably infinite set of shared states, we may then sample the rows of the transition
matrix,π(k) ∼ DP(α0,β). We place the same prior overπ(0). The base measure in this case is β,
a countably infinite vector of stick-breaking weights, that serves as the mean of the DP prior over
the rows ofP . The concentration parameter, α0, governs how concentrated the rows are about the
mean. Since the base measure β is discrete, each row ofP will be able to “see” the same set of states.
By contrast, if we remove the HDP prior and treat each row ofP as an independent draw from a
DP with base measureH , each row would see a disjoint set of states with probability one. In other
words, the hierarchical prior is required to provide a discrete (but countably infinite) set of latent
states for the HMM.

7.2 Markov Chain Monte Carlo Inference

Several MCMC-based inference methods have been developed for the HDP-HMM (Teh et al.,
2006; Van Gael et al., 2008). Some of these previous works use a collapsed Gibbs sampler in which
the transition matrixP and the observation parametersΛ are integrated out (Teh et al., 2006;
Van Gael et al., 2008). In this work, however, we use a “weak limit” approximation in which the

115

DP prior is approximated with a symmetric Dirichlet prior. Specifically, we let

γ ∼ Gamma(aγ , 1), (7.3)

α0 ∼ Gamma(aα0 , 1),

β | γ ∼ Dir(γ/Kmax, . . . , γ/Kmax),

π(0) |α0,β ∼ Dir(α0β1, . . . , α0βKmax),

π(k) |α0,β ∼ Dir(α0β1, . . . , α0βKmax).

whereKmax denotes a truncation level. It can be shown that this prior will weakly converge to the
DP prior as the dimensionality of the Dirichlet distribution approaches infinity (Johnson and Will-
sky, 2014; Ishwaran and Zarepour, 2002). With this approximation we can capitalize on forward-
backward sampling algorithms to jointly update the latent states z.

Previous work has typically been presented with Gaussian or multinomial likelihood models,
with the acknowledgment that the same methods work with any exponential family likelihood
when the base measureH is a conjugate prior. Here we present the Gibbs sampling algorithm
of (Teh et al., 2006) for the HDP-HMM applied to the special case of independent Poisson ob-
servations, and we derive Hamiltonian Monte Carlo (HMC) (Neal, 2010) transitions to sample the
neuron-specific hyperparameters of the firing rate priors.

We begin by defining Gibbs updates for the neuronal firing ratesΛ. Since we are using gamma
priors with independent Poisson observations, the model is fully conjugate and simple Gibbs up-
dates suffice. Therefore, we have

λk,n |S, z ∼ Gamma

(
κn +

T∑
t=1

st,n I[zt = k], νn +
T∑
t=1

I[zt = k]

)
.

Under the weak limit approximation the priors onπ(k) andπ(0) reduce to Dirichlet distribu-
tions, which are also conjugate with the finite HMM. Hence we can derive conjugate Gibbs updates

116

for these parameters as well. They take the form:

π(0) |α0,β ∼ Dir (α0β + 1z1) ,

π(k) |α0,β ∼ Dir (α0β + nk) ,

ni,j =

T−1∑
t=1

I[zt = i] · I[zt+1 = j],

where 1k is a unit vector with a one in the k-th entry.
The Dirichlet parameters β and the concentration parameters α0 and γ can be updated as

in (Teh et al., 2006).

7.2.1 Block Gibbs updates for the latent states

Conditioned upon the firing rates, the initial state distribution, and the transition matrix, which we
collectively refer to as θ, we can jointly update the latent states of the HDP-HMM using a forward
filtering, backward sampling algorithm. Jointly sampling these latent states allows us to avoid issues
with mixing when individually sampling states that are highly correlated with one another. We pro-
vide a brief overview of this algorithm here. Complete details of this algorithm can be found in, for
example, Johnson (2014).

First, we “filter” the data to get the marginal distribution over zt given the observations up to
time t. We use “Matlab” notation to refer to a set of variables, s1:t = {s1, . . . , st}. Since zt is dis-
crete, its filtered distribution is parameterized by a probability vector, which we callmt.

We compute these filtered probability distributions iteratively. Assume that at iteration twe have
already computedmt−1. Given the Markovian structure of the probabilistic model, the conditional
distribution of zt factors into,

p(zt | s1:t,θ) ∝ p(st | zt,θ)︸ ︷︷ ︸
condition

p(zt | s1:t−1,θ)︸ ︷︷ ︸
predict

.

The prediction step involves a marginalization over the previous latent state, zt−1,

p(zt | s1:t−1θ) ∝
K∑
k=1

p(zt | zt−1 = k, θ) p(zt−1 = k | s1:t−1,θ)

= Discrete(zt |mt|t−1),

117

where

mt|t−1,k ∝
K∑
j=1

p(zt = k | zt−1 = j, θ) ·mt−1,j .

Then, we condition on the current observations, st, to get the parameters of the filtered distribution,

mt,k ∝ p(st | zt = k, θ) ·mt|t−1,k. (7.4)

Once we have computed the filtered distributions for all time bins, we can sample from the joint
distribution over z1:T by applying the chain rule,

p(z1:T | s1:T ,θ) = p(zT | s1:T ,θ)
∏
t

p(zt | zt+1:T , s1:T ,θ)

∝ p(zT | s1:T ,θ)
∏
t

p(zt | s1:t,θ) p(zt+1 | zt,θ).

Thus, we can sample in reverse order, starting with zT and ending with z1. The conditional distri-
bution of zt is,

p(zt | zt+1:T , s1:T ,θ) ∝ p(zt |mt) p(zt+1 | zt,θ), (7.5)

which is another discrete distribution. The final algorithm for block Gibbs sampling z1:T is:

Require: s1:T ,θ
for t = 1, . . . , T do

Computemt ▷ Eq. 7.4
end for

for t = T, . . . , 1 do
Sample zt | zt+1,mt,θ ▷ Eq. 7.5

end for

Algorithm 7.1: Forward filtering, backward sampling algorithm for the hiddenMarkov

model.

A single iteration of the complete Gibbs sampling algorithm consists of an update for each pa-
rameter of the model. The aforementioned updates are based upon previous work; one novel direc-
tion that we explore in this chapter is the sampling of the hyperparameters of the gamma firing rate
priors.

118

7.2.2 Setting firing rate hyperparameters

We consider three approaches to setting the hyperparameters of the gamma priors for Poisson firing
rates, namely, {κn, νn} for the n-th neuron.

In the first approach, we estimate these parameters using an empirical Bayesian (EB) proce-
dure, that is, by maximizing the marginal likelihood of the spike counts. For each neuron,
this may be easily done using standard maximum likelihood estimation for the negative bino-
mial model. In practice, we found that without regularization this approach leads to extreme
values of the hyperparameters.

Our second approach samples these hyperparameters using Hamiltonian Monte Carlo
(HMC) (Neal, 2010). We note that for fixed values of the “shape” parameter κn, the condi-
tional distribution of the “scale” parameter, νn is conjugate with a gamma prior distribution.
However, setting the shape parameter a priori is challenging because it can have a strong in-
fluence on the firing rate distribution. HMC allows us to jointly sample both the shape and
the scale parameters simultaneously.

To implement HMC we must have access to both the log probability of the parameters
as well as its gradient. Since both parameters are restricted to be positive, we instead re-
parameterize the problem in terms of their logs. For neuron n, the conditional log proba-
bility equal to,

L = log p(log κn, log νn |Λ)

=
K∑
k=1

log p(λk,n |κn, νn) + const.

=

K∑
k=1

κn log νn − log Γ(κn) + (κn − 1) log λk,n − νnλk,n.

Taking gradients with respect to both parameters yields,

∂L
∂ log κn

=

K∑
k=1

[log νn −Ψ(κn) + log λk,n]× κn,

∂L
∂ log νn

=
K∑
k=1

[
κn
νn
− λk,n

]
× νn.

119

The HMC algorithm uses these gradients to inform a stochastic walk over the posterior dis-
tribution. With knowledge of the gradients, HMC can sometimes make large updates to
parameters, especially in cases where the parameters are highly correlated under the posterior.

In the final approach, we fix the shape hyperparameter, κn, and infer the scale, νn. We place a
gamma prior on the scale, νn ∼ Gamma(µ, ν0). Given κn, the conditional distribution of
the scale is

νn |κn, {λk,n}, z ∼ Gamma

(
µ+

K∑
k=1

I[nk > 0] · κn, ν0 +
K∑
k=1

I[nk > 0] · λk,n
)

nk =

T∑
t=1

I[zt = k].

In the following experiments, we set the shape parameter be κn = 1, and we set the scale
prior parameters to µ = 1 and ν = 1. This is equivalent to an exponential prior on
rates, λk,n ∼ Exp(νn), and an exponential prior on the scale νn ∼ Exp(1). One could
perform cross validation over the shape parameter, but the exponential prior is a rather weak
assumption that enables fully-Bayesian inference.

7.2.3 Predictive log likelihood

With the parameter and hyperparameter inference complete, we evaluate the performance of our
algorithm in terms of its predictive log likelihood on held-out test data. We approximate the predic-
tive log likelihood with samples from the posterior distribution generated by our MCMC algorithm.
That is,

log p(Stest |S1:T) = log
∑
ztest

∫
Θ
p (Stest, ztest |θ) p (θ |Strain) dθ,

≈ log
1

L

L∑
ℓ=1

∑
ztest

p
(
Stest, ztest |θ(ℓ)

)
,

where θ = (Λ,P ,π(0)) and {θ(ℓ)}Lℓ=1 ∼ p(θ |Strain). The summation over latent state se-
quences for the test data is performed with the message-passing algorithm for HMMs.

120

7.3 Variational Inference

We build upon our previous work (Chen et al., 2012; 2014; Johnson and Willsky, 2014) to develop a
variational inference algorithm for fitting the HDP-HMM to hippocampal spike trains. Our objec-
tive is to approximate the posterior distribution of the HDP-HMM with a distribution from a more
tractable family. As usual, we choose a factorized approximation that allows for tractable optimiza-
tion of the parameters of the variational model. Specifically, we let,

p(z,Λ,P ,π(0),β |S1:T) ≈ q(z) q(Λ) q(P) q(π(0)) q(β).

Since the independent Poisson observations are conjugate with the gamma firing rate prior distri-
butions, choosing a set of independent gamma distributions for q(Λ) allows for simple variational
updates.

q(Λ) =
K∏
k=1

N∏
n=1

Gamma (κ̃k,n, ν̃k,n) ,

κ̃k,n ← κn +

T∑
t=1

st,nEq
[
I[zt = k]

]
,

ν̃k,n ← νn +

T∑
t=1

Eq
[
I[zt = k]

]
.

Following (Johnson and Willsky, 2014), we use a “direct assignment” truncation for the HDP
(Bryant and Sudderth, 2012; Liang et al., 2007). In this scheme, a truncation levelKmax is chosen a
priori and q(z) is limited to support only states zt ∈ {1, . . . ,Kmax}. The advantage of this approx-
imation is that conjugacy is retained withΛ,P , andπ(0), and the variational approximation q(z)
reduces to*

q(z) = HMM(P̃ , π̃(0), Λ̃),

P̃ = exp {Eq[lnP]} ,

π̃(0) = exp
{
Eq[lnπ(0)]

}
,

Λ̃ = exp {Eq[ln p(S |Λ)]} .

*In a slight abuse of notation, Λ̃ refers to the expected observation likelihood for each latent state. That
is, Λ̃ is a matrix where Λ̃t,k = exp{Eq(Λ)[ln p(st | zt = k,Λ]}.

121

Expectations Eq[zt = k] can then be computed using standard message-passing algorithms for
HMMs.

With the direct assignment truncation, the variational factors for the rowsπ(k) and the ini-
tial distributionπ(0) are Dirichlet distributions. Unlike in the finite-state HMM, however, these
Dirichlet factors are now overKmax + 1 dimensions since the final dimension accounts for all
states k > Kmax. Under the HDP prior we hadπ(k) ∼ DP(α0 · β), and under the truncation
the DP parameter becomes α0 · β1:Kmax+1. Again, leveraging the conjugacy of the model, we arrive
at the following variational updates:

q(P) =

Kmax∏
k=1

Dir(ñk),

ñi,j ← α0βj + Eq[I[zt = i] · I[zt+1 = j]].

We use an analogous update forπ(0).
The principal drawback of the direct assignment truncation is that the prior for β is no longer

conjugate. This could be avoided with the fully conjugate approach of (Hoffman et al., 2013), how-
ever, this results in extra bookkeeping and the duplication of states. Instead, following (Johnson and
Willsky, 2014; Bryant and Sudderth, 2012; Liang et al., 2007), we use a point estimate for this param-
eter by setting q(β) = δβ∗(β) and use gradient ascent to update this parameter during inference.

There are a number of hyperparameters to set for the variational approach as well. The hyper-
parameters κn and νn of gamma prior on firing rates can be set with empirical Bayes, as above. We
resort to cross validation to set the Dirichlet parameter α0 and the GEM parameter γ.

7.3.1 Predictive Log Likelihood

Finally, in order to compute predictive log likelihoods on held-out test data, we draw multiple sam-
ples, {θ(ℓ)}Lℓ=1 for θ = (Λ, z,P ,π(0),β), from the variational posterior, q, and approximate the
predictive log likelihood as

ln p(Stest |S) ≈ lnEq [p(Stest |θ)]

≈ ln
1

L

L∑
ℓ=1

p(Stest |θ(ℓ)).

The inference algorithms were implemented based upon the PyHSMM framework of (John-

122

zt+1

zt

Figure 7.1: An example of a synthetic dataset drawn from anHDP-HMM. (A) Simulated population spike trains or spike

counts. (B) Inferred latent state sequence. (C) Inferred state transitionmatrixP . (D) Inferred neuronal firing rate

matrix,Λ.

son, 2014). The code-base was written in Python with C offloads for the message passing algo-
rithms. We have extended the code-base to perform hyperparameter inference using the methods
described above, and expanded it to tailor to neural spike train analysis. Our code is publicly avail-
able (https://github.com/slinderman/pyhsmm_spiketrains).

7.4 Synthetic Data Experiments

Setup First, we simulate synthetic spike count data using an HDP-HMM withN = 50 neu-
rons, T = 2000 time bins, and Dirichlet concentration parameters α0 = 12.0 and γ = 12.0.
These configuration yield state sequences that tend to visit 30–45 states. All of neuronal firing rate
parameters are drawn from a gamma distribution: Gamma(κn = 1, νn = 1) (with mean 1.0 and
standard deviation 1.0).

An example of one such synthetic dataset is shown in Fig. 7.1. The states have been ordered ac-
cording to their occupancy (i.e., how many times they are visited during the simulation), such that
the columns of the transition matrix exhibit a decrease in probability as the incoming state num-

123

https://github.com/slinderman/pyhsmm_spiketrains

ber, zt+1, increases. This is a characteristic of the HDP-HMM, indicating the tendency of the model
to reuse states with high occupancy.

We compare six combinations of model, inference algorithm, and hyperparameter selection ap-
proaches: (i) HMM with the correct number of states, fit by Gibbs sampling with fixed κn = 1; (ii)
HMM with the correct number of states, fit by VB with hyperparameters set by empirical Bayes; (iii)
HDP-HMM fit by Gibbs sampling with fixed κn = 1; (iv) HDP-HMM fit by Gibbs sampling and
HMC for hyperparameter updates; (v) HDP-HMM fit by MCMC with hyperparameters set by em-
pirical Bayes; and (vi) HDP-HMM fit by VB with hyperparameters set by empirical Bayes. For the
MCMC methods, we set gamma priors over the concentration parameters (α0 and γ); for the VB
methods, we set α0 and γ to their true values. Alternatively, they can be selected by cross validation.
We set both the weak limit approximation for MCMC and the direct assignment truncation level for
VB toKmax = 100.

We collect 5000 samples from the MCMC algorithms and use the last 2000 for computing pre-
dictive log likelihoods. For visualization, we use the final sample to extract the transition matrix
and the firing rates. The number of samples and the amount of burn-in iterations were chosen by
examining the log probability and parameter traces for convergence. It is found that the MCMC
algorithm converges within hundreds of iterations. For further convergence diagnosis of a single
Gibbs chain, one may use the autocorrelation tools suggested in (Raftery and Lewis, 1992; Cowles
and Carlin, 1996).

We run the VB algorithm for 200 steps to guarantee convergence of the variational lower bound.
Again, this is assessed by examining the variational lower bound and is found to converge to a local
maxima within tens of iterations.

Assessment We use two criteria for result assessment with simulation data. The first criterion is
based on the Hamming error between the true and inferred state sequences. To compute this, we
first relabel the inferred states in order to maximize overlap with the true states. Let z be the true
state sequence and z′ be the inferred state sequence. We define the overlap matrixO ∈ NKmax×Kmax

whose entriesOi,j is the number of times the true state is i and the inferred state is j:

Oi,j =
T∑
t=1

I[zt = i] I[z′t = j].

We use the Hungarian method (Kuhn, 1955) to find a relabeling of the inferred states that maximizes
overlap, and then we measure the Hamming error between the true state sequence z, and the rela-

124

Dataset 1 2 3 4 5
HMM (Gibbs) 9 401 13 24 615
HMM (VB) 166 290 295 123 124
HDP-HMM (Gibbs) 2 3 5 1 6
HDP-HMM (HMC) 3 4 3 2 4
HDP-HMM (EB) 1 3 2 3 12
HDP-HMM (VB) 432 586 340 264 675

Table 7.1: Comparison of Hamming error (see Eq. 7.6) computed from the same nine simulated data sets as above. The

VB inferencemethods tend to overestimate the number of states and therefore havemuch higher Hamming error.

beled sequence of inferred states, z̃′:

err(z, z̃′) =
T∑
t=1

I[zt ̸= z̃′t]. (7.6)

Table 7.1 summarizes the Hamming error for all six models on five synthetic datasets. We see that
the HDP-HMM fit via Gibbs sampling with firing rate hyperparameters set via empirical Bayes
outperforms the other models and inference algorithms on three of five datasets, but the HDP-
HMM with hyperparameter HMC sampling are very comparable. By contrast, when the models are
fit with VB inference, the inferred state sequences tend to use more than the true number of states,
which results in very poor Hamming error. Similarly, the HMM fit via Gibbs sampling does not
factor in the penalty on additional states and instead tends to use all states equally, resulting in high
Hamming error.

The second criterion is the model’s predictive log likelihood (bits/spike) on a held-out sequence
of Ttest = 1000 time steps. We compare the predictive log likelihood to that of a set of independent
Poisson processes. Their rates and the corresponding predictive log likelihood are given by,

λ̂n =
1

Ttrain

Ttrain∑
t=1

st,n,

log p(Stest |Strain) =

N∑
n=1

[
−Ttestλ̂n +

Ttest∑
t=1

st,n log λ̂n

]
.

The improvement obtained by a model is measured in bits, and is normalized by the number of
spikes in the test dataset in order to obtain comparable units for each of the test datasets.

125

Dataset 1 2 3 4 5
HMM (Gibbs) 0.315 0.300 0.312 0.310 0.250
HMM (VB) 0.298 0.290 0.313 0.306 0.252
HDP-HMM (Gibbs) 0.323 0.307 0.321 0.318 0.259
HDP-HMM (HMC) 0.323 0.306 0.320 0.318 0.259
HDP-HMM (EB) 0.322 0.306 0.321 0.318 0.259
HDP-HMM (VB) 0.312 0.291 0.309 0.305 0.244

Table 7.2: Comparison of predictive log likelihood (bits/spike) computed from 9 simulated data sets, measured in bits

per spike improvement over a baseline of independent, homogeneous Poisson processes (the best result in each data

set is marked in bold font).

Table 7.2 summarizes the predictive log likelihood comparison. For all five datasets, the HDP-
HMM fit via Gibbs sampling with fixed κn performs best, though in general the increase over fitting
the HDP-HMM when using HMC or EB for hyperparameter selection is small. By contrast, the im-
provement compared to fitting with VB inference or using a parametric HMM is quite significant.

Though computation cost is often a major factor with Bayesian inference, with the optimized
PyHSMM package, the models can be fit to the synthetic data in under 10minutes on an Apple
MacBook Air. The runtime necessarily grows the number of neurons and the truncation limit on
the number of latent states. As the model complexity grows, we must also run our MCMC algo-
rithm for more iterations, which often motivates the use of variational inference algorithms instead.
Given our optimized implementation and the performance improvements yielded by MCMC, we
opted for a fully-Bayesian approach using MCMC with HMC for hyperparameter sampling in our
subsequent experiments.

Figure 7.2 shows example traces from the MCMC combined with HMC algorithm for the HDP-
HMM running on synthetic dataset 1. This is the same data from which Fig. 7.1 is generated. The
first 5Markov chain iterations have been omitted to highlight the variation in the latter samples (the
first few iterations rapidly move away from the initial conditions). We see that the log likelihood of
the data rapidly converges to nearly that of the true model (horizontal dotted line), and the number
of states quickly converges to aroundK = 35. Note that the nuisance parameters α0 and γ do not
converge to the true values — this is due to the fact that the solution is insensitive to these parame-
ters or the presence of local optimal. However, even the concentration parameters are different from
the true values, they are still consistent with the inferred state transition matrix.

126

zt

zt+1

Figure 7.2:MCMC state trajectories for an HDP-HMMfit to the synthetic dataset shown in Fig. 7.1. True values are

shown by the dotted black lines. The first five iterations of theMarkov chain are omitted since they differ greatly from

the final states. The chain quickly converges to nearly the correct number of states (A) and achieves close to the true

log likelihood (B). (C, D) The chain trajectories of hyperparametersα0 and γ . (E, F) Inferred state transitionmatrix and

neuronal firingmap drawn from the last iteration.

Sensitivity of the number of latent states To test the sensitivity of the number of in-
ferred states to changes in the data, we vary a number of parameters and plotted the number of in-
ferred states in Fig. 7.3. In all cases, we use synthetic dataset 1, shown in Fig. 7.1, and HDP-HMMs
fit via Gibbs sampling with fixed κn. First, we vary the number of observed neurons,N , and find
that the number of inferred states was relatively stable around the true number of states (K = 35).
By contrast, as we increase the observed recording length, T , the number of inferred states increases

127

N

N
um

be
r o

f S
ta

te
s

N
um

be
r o

f S
ta

te
s

N
um

be
r o

f S
ta

te
s

N
um

be
r o

f S
ta

te
s

Figure 7.3: In a synthetic data experiment, we generated a spike train for a population ofN = 50 neurons
andTtrue = 2000 time bins. Thenwe varied the number of observed neuronsN , recording durationT , scale of

the firing rateλ, temporal bin size∆t, andmeasured the number of inferred latent states. Horizontal dashed lines

indicate the ground truth.

as well. This is because the true underlying data actually does visit more states as we simulate it for
longer time. In general, we expect the number of inferred states to grow with the complexity of
the data. Next, we vary the scale of the firing rate by multiplying the true model’s firing rate by a
factor of 0.1, 0.5, 1.0, 2.0, or 10.0, and sampling a new spike count. When the rates are very low,
most bins do not contain any spikes, and hence it is not possible to resolve as many states. By con-
trast, when the rate is increased, the number of inferred states is slightly lower than the true number,
which is likely the result of a slight mismatch with the prior on the firing rate scale (parameters µ
and ν0 in Section 7.2.2). Finally, we considerate the effect of time bin size by scaling up the bin sizes
by factors of 2 through 10. For example, when scaling by a factor of 2, we add the spike counts in
each pair of adjacent bins. This has a similar effect to decreasing the recording length by a factor of
2, and hence we see the number of inferred states decrease with bin size.

7.5 Hippocampal Place Cells

Next, we apply the proposed methods to experimental data of the rat hippocampus. This is the
same dataset studied in previous chapters, but here we applied additional preprocessing. We bin

128

Figure 7.4: One rat’s behavioral trajectory (left) and spatial occupancy (right) in the open field environment.

Pred. log likelihood (bits/spike) Decoding error (cm)
HMM (K = 25) 0.712 10.85± 6.43
HMM (K = 45) 0.706 10.71± 6.67
HMM (K = 65) 0.717 11.01± 6.93
HDP-HMM (Gibbs) 0.722 9.56± 5.31
HDP-HMM (HMC) 0.646 9.96± 6.05
HDP-HMM (EB) 0.579 10.81± 6.78
HDP-HMM (VB) 0.602 10.93± 6.24

Table 7.3: A comparison of HMMs, HDP-HMMs, and inference algorithms on the rat hippocampal data. Performance is

measured in predictive log likelihood andmean decoding error on twominutes of held-out test data (the best result is

marked in bold font).

the ensemble spike activity with a bin size of 250ms and obtain the population vector z in time.
To identify the period of rodent locomotion during spatial navigation, we use a velocity threshold
(> 10 cm/s) to select the RUN epochs and merge them together. The result is a recording that is
9.8minutes in duration. One animal’s RUN trajectory and spatial occupancy are shown in Fig. 7.4
(left and right panels, respectively). The empirical probability of a location, p(ℓ), is determined by
dividing the arena into 220 bins of equal area (11 angular bins and 20 radial bins) and counting the
fraction of time points in which the rat is in the corresponding bin.

In experimental data analysis, we focus on Bayesian nonparametric inference for HDP-HMM.
For all methods, we increase the truncation level to a large value ofKmax = 100. To discover the
model order of the variational solutions, we use the number of states visited by the most likely state
sequence under the variational posterior. The MCMC algorithms yield samples of state sequences
from which the model order can be directly counted.

129

Figure 7.5: Estimation result fromHDP-HMM (Gibbs) for the rat hippocampal ensemble spike data. (A) Estimated

state spacemap, where themean value of the spatial position for each latent state is shown by a black dot. The size of

the dot is proportional to the occupancy of the state. (B) Probability distributions over location corresponding to the

top three latent states, measured by state occupancy. The small black dots indicate the location of the animal while in

that state, and are used to compute the empirical distribution over location indicated by colored shading. (C) The true

and reconstructed trajectories in Cartesian coordinate. The true trajectory is shown in black and the reconstructed

trajectory is shown in blue. For each time bin, we use themean location of the latent states to determine an estimate of

the animal’s location.

We perform a quantitative comparison between HMMs, HDP-HMMs, inference algorithms,
and hyperparameter setting algorithms, where performance is measured in terms of both decoding
error and predictive log likelihood. For both metrics, we train the models on the first 7.8minutes
of data and test on the final two minutes of data for prediction. The results are summarized in Ta-
ble 7.3. We find that the HDP-HMM fit by Gibbs sampling with fixed firing rate scale (κn = 1)
again outperforms the competing models in both measures.

For the purpose of result assessment, we plot the state-space or state-location map (Fig. 7.5A),
which shows the mean value of the spatial position that each state represented. The size of the black
dot is proportional to the occupancy of the state. To compute an “empirical” distribution over lo-
cations for a given state, we first compute the posterior distribution over latent states with our in-
ference algorithms. This gives us a set of probabilitiesPr(zt = k) for all time bins t and states k.
Then we compute the average location for each state k by weighting the animal’s location, (xt, yt)

130

zt+1

zt

Figure 7.6: Estimation result fromHDP-HMM (Gibbs) for the rat hippocampal ensemble spike data. (A) The total num-

ber of states (solid blue) slowly increases as states are allocated for a small number of time bins. The number of states

converges after 2500 iterations. (B) The log likelihood of the training data grows consistently as highly specific states

are added. (C, D) The concentration parameters,α0 and γ also converge after 2500 iterations. (E, F) The inferred state

transitionmatrix and firing rate samples drawn from the last iteration.

by the probability that the animal was in state k at time t. Summing over time yields a weighted set
of locations, which we then bin into equal-area arcs and normalize to get an empirical distribution
over locations for each state k.

The empirical location distribution for the top three states as measured by occupancy are shown
in Fig. 7.5B). In Fig. 7.5C, we show the estimated animal’s spatial trajectories in black, along with
the reconstructed location in from the HDP-HMM with Gibbs sampling in blue. To reconstruct

131

Figure 7.7:Measuring the effect of concentration hyperparameters on the number of inferred latent states. We find

that the concentration hyperparameters of the gamma priors on the concentration parameters,α0 and γ , have a
minimal effect.

the position, we use the mean of each latent state’s location distribution weighted by the marginal
probability of that state under the HDP-HMM. That is,

x̂t =
K∑
k=1

x̄k Pr(zt = k), ŷt =
K∑
k=1

ȳk Pr(zt = k),

where x̄k and ȳk denote the average location of the rat while in inferred state k (corresponding to
the black dots in Fig. 7.5A). Note that the animal’s position is not used in model inference, only
during result assessment. In the illustrated example (HDP-HMM with MCMC+HMC), the mean
reconstruction error in Euclidean distance is 9.07 cm.

As the parameter sample traces in Fig. 7.6 show, the Markov chain converges in around 2500
iterations. After this point, the total number of states stabilizes to around 65. The concentration
parameters α0 and γ converge within a similar number of iterations. Finally, we show the transition
matrixP and firing rate matrixΛ obtained from the final Markov chain sample.

We again evaluated the sensitivity of these model fits to the choice of hyperparameters. For
the HDP-HMM fit via Gibbs sampling with fixed κn, the primary hyperparameters of interest
are the concentration hyperparameters, aα0 and aγ in Eq. 7.3, where we have assumed α0 ∼
Gamma(aα0 , 1) and γ ∼ Gamma(aγ , 1). Figure 7.7 shows the inferred number of states as
we vary these two hyperparameters over orders of magnitude. We found that the number of inferred
states is stable around 65, indicating the performance robustness to the choice of these hyperparam-
eters.

Looking into the inferred states, we can reconstruct the “place fields” or “state fields” of hip-
pocampal neurons. To do so, we combine the state-location maps (Fig. 7.5B) with the firing rate of

132

Figure 7.8: Comparison of inferred and true place fields for four randomly selected hippocampal neurons. The inferred

place field (top row) for neuronn is a combination of location distributions for each statek weighted by the inferred

firing ratesλk,n, whereas the true place field (bottom row) for neuronn is a histogram of locations in which neuronn
fires. The black dots show the rat’s locations used for each histogram. The inferred place fields closely match the true

place fields. With adequate spike data recording, we expect a higher latent state dimensionality to yield higher spatial

resolution in the inferred place fields.

the individual neuron in those states (Fig. 7.6F) and weight by the marginal probability of the latent
state. Together, these give rise to the inferred neuron’s place field. Note that, again, the position data
was only used in reconstruction but not in the inference procedure. Four pairs of inferred and true
place fields are shown in Fig. 7.8. On the top row is the inferred place field; on the bottom is the true
place field computed using the locations of the rat when neuron n fired shown by black dots.

7.6 Extensions

Hidden Semi-Markovian Models A striking feature of the inferred state transition matrix in
Fig. 7.6E is that the first 40 states exhibit strong self-transitions. This is a common feature of time

133

series and has been addressed by a number of augmented Markovian models. In particular, hidden
semi-Markovian models (HSMMs) explicitly model the duration of time spent in each state sepa-
rately from the rest of the state transition matrix (Johnson and Willsky, 2013). Building this into the
model allows the Dirichlet or HDP prior over state transition vectors to explain the rest of the tran-
sitions, which are often more similar. Alternatively, “sticky” HMMs and HDP-HMMs accomplish
a similar effect (Fox et al., 2008).

Dependent Observation Models The HMMs in this chapter used conditionally indepen-
dent Poisson observations. Given the latent state, each neuron fires independently of the others, and
also independently of its previous spike counts. One way to extend these models is by introducing
dependencies in the observation models. For example, we can combine the autoregressive models of
previous chapters with the discrete latent states of an HMM with a model of the form,

p(st | zt) =
N∏
n=1

Poisson(st,n |λt,n),

λt,n = g
(
ψ(zt)
n +w(zt)

n st−1

)
.

As in previous chapters, this can easily be extended to higher-order autoregressive models.
Expectation-maximization algorithms for this type of model were developed by Escola et al. (2011).
Alternatively, we can use the Pólya-gamma augmentation schemes of Chapter 5, and we have pre-
sented a preliminary versions of this approach in Johnson et al. (2015).

Input-Output HMMs Hidden Markov models are “open loop” systems: the next state de-
pends only on the previous state. In practice, it is natural to expect that transitions are not only
state-dependent but also a function of some external variables. For example, in the hippocampus
where states correspond to actual locations, whether or not the rat transitions into a state may de-
pend on instantaneous properties of that location. If more complex experimental setups there may
be food or obstacles in the environment that affect where the rat goes next.

These types of external variables can be modeled with an input-output HMM (IOHMM) (Ben-
gio and Frasconi, 1995). Suppose we have an external input, ut ∈ RD. We can model the transition

134

probability as,

π(k) ∝ exp{ψ(k) +Wut},

that is, as a “soft-max” function of a baseline probability plus a weighted combination of input
covariates. Performing inference in this type of model is not much more challenging than in the
standard HMM. When sampling the latent states, we simply compute the instantaneous transi-
tion probabilities for each time step. In order to update the transition weights,W , and the baseline
probabilities,ψ(k), we can either use HMC or our recently developed Pólya-gamma augmentation
scheme for multinomial models (Linderman and Johnson, 2015).

7.7 Conclusion

This chapter explored the idea of dynamic latent states underlying neural activity. Specifically, we
developed Bayesian nonparametric hidden Markov models (HDP-HMMs) and corresponding
MCMC and variational inference algorithms. Since these models can be quite sensitive to hyper-
parameter settings, we performed a thorough assessment of inference results on both synthetic data
and real recordings from rat hippocampal place cells. In the next chapter, we will build on these
ideas, developing more sophisticated latent state space models with a mix of discrete and continuous
latent states. As we will see, HMMs are only one in a hierarchy of state space models.

135

8
Switching Linear Dynamical Systems with Count

Observations

The past two chapters have explored different notions of latent state: a dynamic network in Chap-
ter 6 and a discrete latent state in Chapter 7. These states are a powerful addition to the autoregres-
sive models of the earlier chapters. In this chapter, we consider one final extension — a continuous
latent state that evolves over time. These continuous latent state space models are one of the most
common methods in computational neuroscience (Smith and Brown, 2003; Paninski et al., 2010;
Macke et al., 2011; Buesing et al., 2012a; Petreska et al., 2011; Cunningham and Yu, 2014).

The simplest form of continuous state space model assumes that the latent state obeys linear dy-
namics. Here, however, we will consider a more general case in which the dynamics are only condi-
tionally linear given a dynamic discrete latent state (Petreska et al., 2011). This is known as a switching
linear dynamical system (Murphy, 2012; Fox, 2009). By switching between different linear dynam-
ical regimes, we obtain highly nonlinear patterns of dynamics. Moreover, this switching linear dy-
namical system will recover a number of common models as special cases.

The challenge, as should be expected by now, is in performing efficient inference in the face of
discrete observations. The aforementioned existing methods have relied upon a Laplace approxima-
tion, which approximates the conditional distribution with a Gaussian. Given the tools developed
in previous chapters, we can now develop asymptotically exact Gibbs sampling algorithms. In par-
ticular, the Pólya-gamma augmentations introduced in Chapter 5 will make it easy to develop effi-

136

cient algorithms that leverage many of the standard tools that exist for Gaussian observation models.
Once we have augmented our observations with Pólya-gamma auxiliary variables, the observations
are conditionally Gaussian distributed. Thus, all of our tools for efficient Bayesian inference in lin-
ear Gaussian models are at our disposal.

Finally, we will consider a problem that we have given little consideration thus far, namely, the
problem of model comparison. We have tacitly assumed that predictive likelihoods provide a suffi-
cient means of comparing two models. In practice, this has led to some difficulty, as we encountered
with the network model comparison in Chapters 3 and 5. The root of the problem is that predictive
likelihood comparisons only implicitly depend on model complexity. More complex models are
more prone to overfitting, which should manifest itself in decreased predictive performance. How-
ever, there are more direct means of assessing the balance between model complexity and predictive
capability. In theory, the marginal likelihood — the denominator in Bayes’ rule — should provide a
better estimate of the trade-off between how well a model fits the data and the size of the hypothesis
class (MacKay, 1992; Kass and Raftery, 1995).

We will show how the conditionally conjugate models derived via Pólya-gamma augmentation
enable principled marginal likelihood estimation with annealed importance sampling (AIS) (Neal,
2001). In order to make this practically feasible, however, we must dive into the inner workings of
the Pólya-gamma distribution and develop a novel sampling algorithm capable of efficiently gener-
ating random variates in the “small shape” regime required by AIS.

8.1 A Hierarchy of Latent State Space Models

Consider a general class of models with a continuous latent state, xt ∈ RD, that obeys affine, but
potentially nonstationary, dynamics at discrete time t,

xt ∼ N (Atxt−1 + bt, Σt).

Let the initial state distribution have meanµ1. Furthermore, assume a linear activation model
ψt = Cxt, where the mean spike count, st,n is a nonlinear function of the activation, ψt,n, and
neuron-specific parameters, νn. We refer to the collection of model parameters as,

θ =
{
{At, bt,Σt}Tt=1,µ1,C, {νn}Nn=1

}

137

Given these parameters, we can summarize this probabilistic model. In keeping with standard texts
(e.g. Murphy, 2012, Chapter 18), we use “Matlab” notation to refer to a sequence of spike count
vectors, s1:T , and a sequence of latent state vectors, x1:T . We have,

p(s1:T ,x1:T |θ) = p(θ) p(x1:T |θ) p(s1:T |x1:T ,θ)

where

p(x1:T |θ) = N (x1 |µ1,Σ1)
T∏
t=2

N (xt |Atxt−1 + bt,Σt)

p(s1:T |x1:T ,θ) =

T∏
t=1

p(st |Cxt, {νn})

=
T∏
t=1

N∏
n=1

p(st,n |ψt,n, νn). (8.1)

Now consider the special case where there are onlyK < T unique dynamics and covariance
matrices, {Ak, bk,Σk}Kk=1, and that at any instant in time, the chosen dynamics are specified by
the discrete latent variable zt ∈ {1, . . . ,K}. Moreover, suppose this discrete latent variable follows
a Markov model with initial state distributionπ0 and transition probabilities {πk}Kk=1, as in the
last chapter. Then the dynamics for z1:T and x1:T are,

p(z1:T |θ) = Discrete(z1 |π0)

T∏
t=2

Discrete(zt |πzt−1).

p(x1:T | z1:T ,θ) = N (x1 |µ1,Σz1)

T∏
t=2

N (xt |Aztxt−1 + bzt ,Σzt),

This is a switching linear dynamical system (SLDS) model (Murphy, 2012; Fox, 2009). At any point
in time, the latent state obeys linear dynamics. The particular choice of dynamics switches be-
tweenK discrete values according to a Markov model.

The SLDS contains a number of other models as special cases:

When there is only one discrete latent state (K = 1), this reduces to a standard linear dynam-
ical system (LDS).

When there is one discrete latent state and no continuous dynamics (Ak ≡ 0), this reduces

138

Figure 8.1: Special cases of the switching linear dynamical system. Adapted from Figure 2.2.

to factor analysis (FA).

When (i) the state dimensionality is equal to the number of neurons (D = N); (ii) there are
no continuous dynamics (Ak ≡ 0); and (iii) the emission matrix is the identity (C ≡ I), the
SLDS reduces to a hidden Markov model. At each point in time, the firing rate is determined
solely by bzt .

When the the conditions of the HMM are met and the discrete transition matrix,P , has
identical rows (πk ≡ π0), the SLDS further reduces to a simple mixture model. At each
point in time, the discrete latent state is drawn from zt ∼ Discrete(π0).

The graphical models corresponding to these special cases are shown in Figure 8.1, with the omis-
sion of some model parameters to conserve space. This figure is adapted from Figure 2.2. The only
model that is not captured here is the autoregressive model since, here, all interaction between spike
counts arises through the latent state. Next we show how a single, unified algorithm can support
efficient inference in the SLDS and all its special cases.

8.2 Markov Chain Monte Carlo Inference

First we show how the continuous latent states, x1:T , can be updated with a block Gibbs sampler
when the observations are conditionally Gaussian distributed. The key elements of the inference

139

algorithm will be conserved when we move to discrete count observations. Given the Gaussian in-
ference algorithm, we will show how the Pólya-gamma augmentation explored in Chapter 5 enables
efficient Bayesian inference in discrete models as well.

8.2.1 Block Gibbs Sampling Latent States with Gaussian Observations

Suppose the spike counts, st are conditionally distributed according to a Gaussian distribution.
Moreover, assume the distribution has nonstationary precision,Ωt, such that

p(st |xt,θ) = N (st |Cxt,Ω−1t). (8.2)

In this case, the conditional density over continuous latent states, p(x1:T | s1:T , z1:T ,θ), is jointly
Gaussian as well. We perform a block Gibbs update for the entire latent state sequence, x1:T , using a
forward filtering-backward sampling algorithm, just as we did for the HMM in Section 7.2.1.

The marginal “filtered” distribution given observations up to time t is a Gaussian, which we will
denote by,

p(xt | s1:t, z1:t,θ) = N (xt |mt,V t),

wheremt andV t are the filtered mean and covariance, respectively. Kalman filtering is an iterative
for computing the filtered means and variances of a Gaussian linear dynamical system, and it is anal-
ogous to the HMM filtering algorithms of the previous chapter. Here, we follow the presentation
of Murphy (2012, Chapter 18). Kalman filtering consists of iterating forward in time from t = 1

to t = T . Assume that at iteration twe have already computedmt−1 andV t−1. As with the
HMM, given the Markovian structure of the probabilistic model, the conditional distribution of xt
factors into,

p(xt | s1:t, z1:t,θ) ∝ p(st |xt,θ)︸ ︷︷ ︸
condition

p(xt | s1:t−1, z1:t,θ)︸ ︷︷ ︸
predict

.

We will show that both of these factors are Gaussian distributions, and hence their product is as
well.

The first step is to predict xt given observations s1:t−1. To do so, we marginalize over the previ-

140

ous latent state, xt−1,

p(xt | s1:t−1, z1:t,θ) ∝
∫
p(xt |xt−1, zt,θ) p(xt−1 | s1:t−1, z1:t−1,θ) dxt−1

= N (xt |mt|t−1,V t|t−1),

where

mt|t−1 ≜ Atmt−1 + bt,

V t|t−1 ≜ AtV t−1A
T
t +Σt.

Then, we condition on the current observations, st, to get the parameters of the filtered distribution,

mt =mt|t−1 +Kt(st −Cmt|t−1),

V t = (I −KtC)V t|t−1, (8.3)

whereKt is the “Kalman gain” matrix,

Kt ≜ V t|t−1C
T
[
CV t|t−1C

T +Ω−1t

]−1
.

Once we have computed the filtered means and covariances for all time bins, we can sample from
the joint distribution over x1:T by applying the chain rule,

p(x1:T | s1:T , z1:T ,θ) = p(xT | s1:T , z1:T ,θ)
∏
t

p(xt |xt+1:T , s1:T , z1:T ,θ)

∝ p(xT | s1:T , z1:T ,θ)
∏
t

p(xt | s1:t, z1:t,θ) p(xt+1 |xt, zt+1,θ).

Thus, we can sample in reverse order, starting with xT and ending with x1. The conditional distri-
bution of xt

p(xt |xt+1:T , s1:T , z1:T ,θ) ∝ N (xt |mt,V t)N (xt+1 |At+1xt + bt+1,Σt+1), (8.4)

which is yet another Gaussian distribution. Now we can write the complete algorithm for block
Gibbs sampling the continuous latent states, x1:T .

141

Require: s1:T ,z1:T ,θ
for t = 1, . . . , T do

Computemt andV t ▷ Eq. 8.3
end for

for t = T, . . . , 1 do
Samplext |xt+1,mt,V t,θ ▷ Eq. 8.4

end for

Algorithm 8.1: Forward filtering-backward sampling (FFBS) algorithm for the Gaussian

linear dynamical system. Note the similarity to the FFBS algorithm for HMMs in Alg. 7.1.

8.2.2 Pólya-gamma Augmentation for Discrete Observations

The conditional distribution of the latent states is only Gaussian if the observations are as well. For-
tunately, the observations become conditionally Gaussian after augmenting the data with Pólya-
gamma auxiliary variables. Recall from Chapter 5 that the Pólya-gamma augmentation is an auxil-
iary variable scheme that applies to models with logistic link functions (Polson et al., 2013). Specifi-
cally, this augmentation can be used to develop Gibbs for models with likelihoods of the form,

p(s |ψ, ν) = c(s, ν)σ(ψ)a(s,ν) (1− σ(ψ))d(s,ν)

= c(s, ν)
(eψ)a(s,ν)

(1 + eψ)b(s,ν)
.

These are called logistic likelihoods because the latent variables are transformed by a logistic func-
tion, σ(ψ) = eψ/(1 + eψ). Bernoulli, binomial, negative binomial, and multinomial likelihoods
can all be put in this form. For example, in the Bernoulli case,

Bern(s |ψ) = σ(ψ)s(1− σ(ψ))1−s = (eψ)s

(1 + eψ)
.

Thus, a(s, ν) = s, b(s, ν) ≡ 1, and c(s, ν) ≡ 1. We refer the reader back to Table 5.1 for the for-
mulation of other count distributions.

The augmentation is based on an integral identity derived from the Laplace transform of the
Pólya-gamma density. If pPG(ω | b, 0) is the density of the Pólya-gamma distribution,PG(b, 0),
then,

(eψ)a

(1 + eψ)b
= 2−beκψ

∫ ∞
0

e−ωψ
2/2 pPG(ω | b, 0) dω, (8.5)

142

where κ = a− b/2. The integral on the right-hand side is the Laplace transform of the Pólya-
gamma density evaluated at ψ2/2, and the left-hand side is the same form found in discrete distribu-
tions with logistic link functions. Importantly, viewed as a function of ψ for fixed ω, the right-hand
side is an unnormalized Gaussian density. Thus, the identity in (8.5) transforms a logistic likelihood
to a Gaussian likelihood conditioned on an auxiliary variable, ω.

Now, let us return to the likelihood of (8.1), where ψt,n = [Cxt]n = cTnxt is the activation of
neuron n at time t. As a function of xt, the likelihood is proportional to,

p(st |xt,θ) ∝
N∏
n=1

(eψt,n)a(st,n,νn)

(1 + eψt,n)b(st,n,νn)

∝
N∏
n=1

eκ(st,n,νn)ψt,n
∫ ∞
0

e−ωt,nψ
2
t,n/2 pPG(ωt,n | b(st,n, νn), 0) dωt,n.

By introducing ωt,n as auxiliary variables, the likelihood of xt is proportional to a multivariate
Gaussian distribution,

p(st |xt,ωt, {νn}) ∝
N∏
n=1

N (cTnxt |ω−1t,nκ(st,n, νn), ω
−1
t,n)

∝ N (ŝt |Cxt, Ω−1t), (8.6)

where

κt = [κ(st,1, ν1), . . . , κ(st,N , νN)]
T

ŝt = Ω−1t κt

Ωt = diag ([ωt,1, . . . , ωt,N]) .

Note the similarity between the augmented likelihood of (8.6) and the Gaussian likelihood of (8.2).
The only difference is that, here, the precision is given by the auxiliary variables, and the “effective”
observations, ŝt,n, are a function of st,n, ωt,n, and νn. Thus, given a set of Pólya-gamma auxiliary
variables, the block Gibbs updates in Algorithm 8.1 will apply equally well to the setting with dis-
crete count observations.

Moreover, by the exponential tilting property of the Pólya-gamma distribution, the conditional

143

distribution of ωt,n is proportional to a Pólya-gamma distribution:

p(ωt,n |ψt,n, st,n, νn) ∝ e−ωt,nψ
2
t,n/2 pPG(ωt,n | b(st,n, νn), 0)

∝ pPG(ωt,n | b(st,n, νn), ψt,n). (8.7)

These auxiliary variables are conditionally independent of each other, and hence amenable to block
parallel Gibbs sampling. Efficient Pólya-gamma sampling algorithms have been developed for the
regimes typically encountered in Bernoulli, binomial, and negative binomial models (Windle et al.,
2014).

The proposed algorithm for sampling the latent variables and parameters of an SLDS is summa-
rized in Algorithm 8.2.

Require: s1:T andz1:T ,x1:T , andθ from previous iteration

Sampleθ | z1:T ,x1:T , s1:T
Samplez1:T |x1:T ,θ ▷Algorithm 7.1

for t = 1, . . . , T do ▷ In parallel
forn = 1, . . . , N do ▷ In parallel

Sampleωt,n | st,n,xt,θ ▷ Eq. 8.7
end for

end for

ComputeΩ1:T and ŝ1:T ▷ Eq. 8.6
Samplex1:T | ŝ1:T ,z1:T ,Ω1:T ,θ ▷Algorithm 8.1

Algorithm 8.2: Single iteration of Gibbs sampler for an switching LDSwith discrete count

observations.

8.2.3 Missing Data

Sometimes we only have partial observations. For example, in some cases we have multiple record-
ings from the same circuit, but each recording only provides access to a subset of the population of
neurons (Turaga et al., 2013). In other cases, we simply hold out some of the data for predictive like-
lihood comparisons. With Gaussian observations, we can implement this by replacing the missing
data point, st,n, with a zero mean, zero precision observation. In the discrete count model, this can
be implemented by setting the auxiliary variable, ωt,n, and the effective observation, ŝt,n, to zero.
Recall that the Pólya-gamma auxiliary variables specify the precision of the effective observations.
By setting this to zero, we effectively remove this data point.

144

8.3 Alternative Approaches

Most alternative approaches to performing Bayesian inference in latent state space models with dis-
crete observations have relied on a Laplace approximation (Tierney and Kadane, 1986) to the con-
ditional distribution, p(x1:T | s1:T , z1:T ,θ) (Smith and Brown, 2003; Paninski et al., 2010; Macke
et al., 2011). * Given a Gaussian approximation, the model parameters, θ, can be optimized such
that they maximize the expected joint log probability under the approximate Gaussian distribution
on x1:T . This constitutes an approximate expectation-maximization (EM) algorithm (Dempster
et al., 1977).

For completeness, we describe the fundamentals of this approach, largely following the presen-
tation of Macke et al. (2011). Consider a generative model in which st,n ∼ Poisson(exp{cTnxt}).
The conditional log probability of x1:T is given by,

log p(x1:T | s1:T , z1:T ,θ) ≃
T∑
t=1

N∑
n=1

st,n(c
T
nxt)− exp{cTnxt}+

− 1

2
(x1 − µ1)

TΣ−1z1 (x1 − µ1)+

− 1

2

T∑
t=2

(xt −Aztxt−1 − bzt)TΣ−1zt (xt −Aztxt−1 − bzt),

where≃ denotes equality up to an additive constant. This log probability is concave and can be
efficiently maximized to obtain the mean of the Laplace approximation,

µ∗ = argmax
x1:T

log p(x1:T | s1:T , z1:T ,θ).

Once the mean has been found, the optimal covariance is given by the inverse Hessian of the log
posterior evaluated atµ∗,

Σ∗ = −
[
∇2

x1:T
log p(x1:T | s1:T , z1:T ,θ)

∣∣∣
x1:T=µ∗

]−1
.

By exploiting the chain structure of the graphical model, this inverse Hessian can be computed in
time linear in T using essentially the same forward-backward approaches used during sampling.

*While the Laplace approximation is most common, see Buesing et al. (2012b) and Pfau et al. (2013) for
some interesting new directions.

145

The mean and covariance parameterize a Gaussian approximation,

p(x1:T | s1:T , z1:T ,θ) ≈ q(x1:T) = N (x1:T |µ∗,Σ∗).

Given this approximation, the parameters are updated by maximizing the expected log probability,

θ∗ = argmax
θ

Eq [log p(s1:T ,x1:T , z1:T ,θ)] .

For example, consider this expectation as a function of the emission matrix,C ,

Eq [log p(s1:T ,x1:T , z1:T ,θ)] ≃
T∑
t=1

N∑
n=1

st,n(c
T
nEq[xt])− Eq

[
exp{cTnxt}

]
,

=
T∑
t=1

N∑
n=1

st,n(c
T
nµ
∗
t)− exp

{
cTnµ

∗
t +

1

2
cTnΣ

∗
ttcn

}
.

The last line follows from the moment generating function of the multivariate Gaussian distribu-
tion. This objective function is concave in cn. Note that closed form, concave expectations arise
from the particular choice of exponential link function. Other models may require Monte Carlo
estimates of the expectation inside the optimization. As more and more approximation is required,
the performance of these methods tends to suffer.

Finally, we must handle the discrete latent states, z1:T . The simplest approach would be to al-
ternate between updating the discrete and continuous latent states, as in the MCMC algorithm
presented above. Alternatively, Petreska et al. (2011) have suggested a joint update for both x1:T

and z1:T based on an approximate filtering technique.
From our perspective, the principal advantages of the Pólya-gamma augmentation are: (i) it al-

lows for simple block Gibbs updates that leverage off-the-shelf code for Gaussian models; (ii) it pro-
vides an asymptotically unbiased MCMC algorithm; (iii) the stochasticity of the MCMC transitions
allows the sampling algorithm to escape local modes, to which expectation-maximization algorithms
are prone (Bishop, 2006); and (iv) once we have an MCMC algorithm, a number of natural exten-
sions are clear, like the marginal likelihood estimation methods we discuss next.

146

8.4 Model Comparison via Marginal Likelihood Estimation

The marginal likelihood is the probability of the data, s, having integrated out the latent variables, z
and x, and the parameters, θ,

p(s) =

∫
p(s | z,x,θ) p(z,x,θ) dz dx dθ.

By integrating over the latent variables and parameters, the marginal likelihood captures a tradeoff
between a model’s complexity and its ability to explain the data. As such, it is a natural criterion
for model comparison. In some cases, like linear Gaussian models with Gaussian observations, the
marginal likelihood can be computed exactly. In these cases, marginal likelihood is often the gold-
standard for model selection (Kass and Raftery, 1995; Grosse et al., 2015).

Unfortunately, seemingly small changes to the model can render the integration over parameters
and latent variables intractable. For example, in linear Gaussian models with discrete observations,
the marginal likelihood is no longer tractable. Instead, we must resort to approximate methods like
annealed importance sampling (AIS) (Neal, 2001). AIS is based on sampling from a sequence of in-
termediate distributions that anneal between a tractable distribution and the intractable posterior.
While AIS has proven highly effective for a variety of models (Grosse et al., 2015), the accuracy of
the method hinges upon the efficiency of the Markov transition operators that target the interme-
diate distributions. Unfortunately, while the posterior distribution may admit efficient MCMC
algorithms, the intermediate distributions may not. We show how the Pólya-gamma augmentation
strategies above can be extended to perform efficient annealed importance sampling in the class of
switching linear dynamical systems models with count observations.

8.4.1 Annealed Importance Sampling

AIS starts with a sample from a tractable distribution with a computable normalization constant.
The prior distribution often suffices. Given this initial sample, a sequence of Markov transition op-
erators is applied. The stationary distributions of these transition operators interpolate between the
tractable initial distribution and the intractable posterior. The posterior density is proportional to
the joint density, and the normalizing constant is the marginal likelihood of interest. Formally, the
annealing path is a sequence of distributions, q1(θ, z,x) to qM (θ, z,x) = p(θ, z,x | s), where

qm(θ, z,x) =
fm(θ, z,x)

Zm
, fM (θ, z,x) = p(θ, z,x, s), ZM = p(s).

147

Let q1(θ, z,x) be the normalized prior distribution such that f1(θ, z,x) = p(θ, z,x)

andZ1 = 1. Then, let fm(z, θ) be a geometric average of the prior and the joint:

fm(θ, z,x) =
[
p(θ, z,x)

]1−βm [
p(θ, z,x, s)

]βm
= p(θ, z,x) p(s |θ, z,x)βm ,

with βm monotonically increasing from β1 = 0 to βM = 1. As we anneal between β = 0

and β = 1, the intermediate distributions interpolate between the prior and the posterior. This
geometric path is most common, but any path that starts with a tractable distribution and ends with
the posterior will suffice (e.g. Grosse et al., 2013).

In addition to a annealing path, we also need a sequence of MCMC transition operators that
leave the intermediate distributions qm invariant,

Tm(θ, z,x→ θ′, z′,x′).

Starting with a sample from the prior and applying these transition operators form = 1, . . . ,M

yields a sample that is closer in distribution to the posterior. AIS uses this procedure as a proposal
distribution for importance sampling. The importance weights are given by a product of ratios
between fm and fm−1. Since the target density is the unnormalized posterior density, the impor-
tance weights will be unbiased estimates of the normalization constant, namely the marginal likeli-
hood,ZM = p(s). The annealed importance sampling algorithm is summarized in Algorithm 8.3.

for ℓ = 1 toL do

w(ℓ) ← Z1

Sampleθ(1), z(1),x(1) ∼ q1(θ, z,x)
form = 2 toM do

w(ℓ) ← w(ℓ) × fm(θ(m−1), z(m−1),x(m−1))

fm−1(θ
(m−1),z(m−1),x(m−1))

Sampleθ(m),z(m),x(m) ∼ Tm(θ,z,x← θ(m−1), z(m−1), x(m−1))
end for

end for

return ẐM = 1
L

∑L
ℓ=1w

(ℓ)

Algorithm 8.3: Annealed Importance Sampling (AIS). Adapted from (Grosse et al., 2015).

How can we reduce the variance of this estimator? First, we can increase the number of interme-

148

diate distributions; second, we can design rapidly mixing transition operators, Tm. In this section,
we develop transition operators that are both computationally efficient, allowing us to run more
transitions in a fixed amount of time, and more effective, in that they reach the equilibrium distribu-
tion more quickly.

With a geometric annealing path, the intermediate distributions of the switching LDS are given
by,

fm(θ, z,x) = p(θ, z,x)

T∏
t=1

N∏
n=1

c(st,n, νn)
βm (eψt,n)a(st,n,νn)·βm

(1 + eψt,n)b(st,n,νn)·βm
. (8.8)

where, again, νn is a parameter in θ, and ψt,n is a function of x and θ. Raising the likelihood to
the power βm does change its functional form; it only changes the power in the exponent. Most
importantly, it is still amenable to Pólya-gamma augmentation! Thus, the Gibbs sweep defined
in Algorithm 8.2 can be used as a transition operator, Tm. The only differences in targeting fm are
that,

κ(st,n, νn) =

(
a(st,n, ν)−

1

2
b(st,n, νn)

)
· βm,

and

p(ωt,n |ψt,n, st,n, νn) ∝ pPG(ωt,n | b(st,n, νn) · βm︸ ︷︷ ︸
often<1

, ψt,n).

This provides some intuition into how AIS works. When βm approaches zero, the intermediate dis-
tribution reduces to the prior. This is equivalent to setting κ and ω to zero. As b → 0, the density
Pólya-gamma density,PG(ω | b, ψ), approaches a delta function at zero.

Note, however, that in order to implement Tm efficiently, we must be able to sample from the
Pólya-gamma conditional distribution in the regime where b(st,n, νn) · βm < 1. For Bernoulli
observations, b(st,n, νn) ≡ 1, so we will be in this regime for all βm ∈ [0, 1). While efficient sam-
plers exist for Pólya-gamma distributed variables when b(st,n, νn) · βm ≥ 1 (Windle et al., 2014),
the default method for this “small shape” regime is to approximate a Pólya-gamma sample with a
truncated sum of gamma random variates (Polson et al., 2013). As the number of random variates
in the sum approaches infinity, the approximate sample converges to a true draw from the Pólya-
gamma distribution. To get a reasonably accurate draw, we typically need to sample around 200

149

gamma random variates per Pólya-gamma sample. With TN auxiliary variables, this quickly be-
comes prohibitively expensive. Next, we develop a novel sampling algorithm that makes these con-
ditional updates very efficient, and renders AIS with Pólya-gamma augmented transitions highly
effective.

8.5 A Novel Sampling Algorithm for the Pólya-gamma Distribution

The Pólya-gamma distribution,PG(b, ψ), is closely related to the Jacobi distribution, J∗(b, ψ),
surveyed by Biane et al. (2001) and elaborated upon in Windle et al. (2014). Specifically,

Y ∼ J∗(b, ψ2) =⇒ 1

4
Y ∼ PG(b, ψ).

Thus, to develop a sampler for the Pólya-gamma distribution, it is sufficient to be able to sample the
Jacobi distribution.

As derived by Windle et al. (2014), the density of J∗(b, ψ) can be written as an infinite alternat-
ing sum,

pJ∗(ω | b, ψ) =

coshb(ψ)e−ωψ
2/2 2b

Γ(b)

∞∑
n=0

(−1)n Γ(n+ b)

Γ(n+ 1)

(2n+ b)√
2πω3

exp

{
−(2n+ b)2

2ω

}
. (8.9)

Windle et al. (2014) developed a number of methods for sampling this distribution. Most rely on
finding tractable upper bounds on the density that can serve as a proposal distribution. Given a sam-
ple from the proposal, it is possible to accept or reject using the alternating series method (Devroye,
1986). We will go into more detail on this shortly.

We take the same basic approach, but we present a novel means of finding an upper bound on the
Jacobi density. Massaging terms in (8.9), we can factor it into the product of three terms:

pJ∗(ω | b, ψ) = α−1(b, ψ) pIG

(
ω

∣∣∣∣ b

|ψ|
, b2
)

Φ(ω | b). (8.10)

The first term, α−1(b, ψ), is a scaling constant greater than one,

α−1(b, ψ) = 2b coshb(ψ) e−b|ψ| =
(
1 + e−2|ψ|

)b
≥ 1.

150

(a)

0 2 4 6 8 10

ω

0.0

0.2

0.4

0.6

0.8

1.0
Φ

(ω
|b

)
b=0.01

b=0.10

b=0.25

b=0.50

b=0.75

b=0.90

b=1.00

(b)

1.5 1.0 0.5 0.0 0.5 1.0 1.5

ψ

0.00

0.25

0.50

0.75

1.00

b

Acceptance Probability

0.50

0.75

1.00

Figure 8.2: (a) Plot ofΦ(ω | b), the conditional acceptance probability for a proposed value ofω, for a range
of b ∈ (0, 1]. In all cases, this function is monotonically decreasing from 1 to 0 as a function ofω, and thus defines
a cumulative distribution function. (b)Acceptance probability,α(b, ψ), as a function of b andψ.

The second is an inverse Gaussian density,

pIG

(
ω

∣∣∣∣ b

|ψ|
, b2
)

=
b√
2πω3

exp

{
−ψ

2

2ω

(
ω − b

|ψ|

)2
}
.

When ψ = 0, the inverse Gaussian density reduces to an inverse gamma density,

pIGa(ω | 12 ,
b2

2) =
b√
2πω3

exp

{
− b

2

2ω

}
.

Finally, the third term we have calledΦ(ω | b),

Φ(ω | b) =
∞∑
n=0

(−1)nϕn(ω | b)

ϕn(ω | b) =
Γ(n+ b)

Γ(n+ 1)

2n+ b

Γ(b+ 1)
exp

{
−2n(n+ b)

ω

}
,

where each term, ϕn(ω | b), is nonnegative, and ϕ0(ω | b) = 1.
Figure 8.2a plotsΦ(ω | b) for various values of b. In all cases, it appears thatΦ(ω | b) is mono-

tonically decreasing and its range is [0, 1]. We have not proven this, but our numerical experiments
suggest that it is true. We formalize this as a conjecture:

151

Conjecture 1. For all b > 0, Φ(ω | b) is a monotonically decreasing function of ω with,

lim
0←ω

Φ(ω | b) = 1,

and, lim
ω→∞

Φ(ω | b) = 0.

Assuming this conjecture is true, as our plots suggest, all three terms in (8.10) are nonnegative.
WithΦ(ω | b) ≤ 1, the product α−1(b, ψ) pIG(ω | b|ψ| , b

2)must dominate pJ∗(ω | b, ψ). Thus,
the inverse Gaussian is a natural proposal distribution for a rejection sampling algorithm. To de-
termine whether a proposed value of ω is accepted, we must sample u ∼ Unif(0, 1), and check
whether u < Φ(ω | b).

The acceptance probability is α(b, ψ), the inverse of the scaling constant. It is bounded be-
tween [12 , 1]when b ≤ 1. The lower bound (worst case) is achieved when ψ = 0 and b = 1. The
upper bound (best case) is approached as b goes to zero or |ψ| goes to infinity. This is illustrated in
Figure 8.2b for a range of b and ψ. In fact, this rejection sampling algorithm works for b ≥ 1 as well,
but as b increases, the acceptance probability goes to zero. For this regime, the existing approaches
of Windle et al. (2014) are a better choice.

Determining acceptance In order to determine whether to accept or reject a proposed value
of ω, we need to compare againstΦ(ω | b). This function is not analytically tractable; however,
it is still possible to determine whether or not to accept with finite computation. To do so, we
use a slight modification of the alternating series method (Devroye, 1986). We exploit the fact that
Φ(ω | b) is an alternating sum, and the terms, ϕn(ω | b), are eventually monotonically decreasing as a
function of the index n for all fixed values of ω and b. We formalize this with the following lemma,

Lemma 1. For all fixed values of ω and b,

∃m : ∀n ≥ m : ϕn+1(ω | b) < ϕn(ω | b).

152

Proof. We show that the ratio of ϕn+1 to ϕn is a decreasing function whose limit is zero.

ϕn+1(ω | b)
ϕn(ω | b)

=
Γ(n+ 1)Γ(n+ 1 + b)(2n+ 2 + b) exp

{
−2(n+1)(n+1+b)

ω

}
Γ(n+ 2)Γ(n+ b)(2n+ b) exp

{
−2n(n+b)

ω

}
=

(n+ b)(2n+ b+ 2)

(n+ 1)(2n+ b)
exp

{
−4n+ 2b+ 2

ω

}
= ℓ(n)r(n),

where

ℓ(n) =
2n2 + nb+ 2n+ b+ 2(n+ 1)b+ b2

2n2 + nb+ 2n+ b

= 1 +O
(
1
n

)
,

r(n) = exp

{
−4n+ 2b+ 2

ω

}
.

Observe that ℓ(n) is monotonically decreasing toward one as n approaches infinity. The rate of
convergence is inverse polynomial in n. In contrast, r(n) decreases to zero exponentially quickly
as n approaches infinity. Thus, there exists a thresholdm such that this ratio is less than one for
all n ≥ m. Equivalently,

∀n ≥ m : ϕn+1(ω | b) ≤ ϕn(ω | b).

Lemma 1 guarantees that once we have computed the increasing terms, all subsequent partial
sums for even n are upper bounds, and all subsequent partial sums for odd n are lower bounds
onΦ(ω | b). To determine acceptance of u, we evaluate until we find an upper bound less than u,
at which point we reject, or a lower bound greater than u, at which point we accept. In practice,
determining acceptance takes only a small number of iterations.

Algorithm 8.4 provides pseudocode for the final rejection sampling algorithm.

153

Require: b > 0,ψ ∈ R
accept← False

while not accept do

ω ∼ IG
(

b
|ψ/2| , b

2
)

▷ Inv. Gaussian proposal

u ∼ Unif(0, 1) ▷ Sample acceptance variable

Φ = 1 ▷ Initialize partial sumwith first term

forn = 1 to∞ do

Φ← Φ + (−1)nϕn(ω | b) ▷Update partial sum
ifϕn(ω | b) < ϕn−1(ω | b) then ▷Check if terms are decreasing

ifn odd andu ≤ Φ then ▷Compare to lower bound

accept← True ▷Accept and return
break

end if

ifn even andu > Φ then ▷Compare to upper bound

break ▷ Reject andmake new proposal

end if

end if

end for

endwhile

return 1
4
ω

Algorithm 8.4: A rejection sampling algorithm for the Pólya-gamma distribution that is most effi-

cient in the “small-shape” (b < 1) regime.

8.6 Conclusion

This chapter has explored various facets of modeling neural spike trains with switching linear dy-
namical systems models. This powerful model for nonlinear dynamical systems contains a number
of simpler models as special cases. We have shown how a simple MCMC inference algorithm based
on the Pólya-gamma augmentation provides a unified means of performing inference for the SLDS
and its special cases.

As we consider hierarchical models like these — models constructed out of layers of latent struc-
ture — we must turn our attention to the important question of model selection. How should we
justify our modeling choices? Marginal likelihood estimates provide one answer to this question.
We have shown how the same Pólya-gamma augmentations can be applied inside annealed impor-

154

tance sampling algorithms, one of the most successful means of approximating marginal likelihoods.
In order to make these methods work in practice, however, we needed to improve the efficiency
of sampling the Pólya-gamma distribution in the “small shape” regime. By leveraging a particular
decomposition of the related Jacobi density, we derived a novel rejection sampling algorithm with
acceptance probability of at least one half.

Next, we turn our attention to another important question. For all their structure, what can
these models teach us about neural computation? The next chapter provides some initial attempts
to connect the methods we have developed thus far to more abstract theoretical models of neural
computation.

155

9
Reverse Engineering Bayesian Computations from

Spike Trains

The preceding chapters have developed a range of probabilistic models for neural spike trains that
leverage our intuitions about neural types, features, and states to inform structured prior distribu-
tions over the dynamics of neural activity. In this chapter, we take a first step toward reconciling
these intuitive models with the host of theoretical models of neural computation. From a Bayesian
perspective, theoretical models can be seen as prior distributions on activity — albeit highly sophis-
ticated ones. By connecting theory to observation in a hierarchical probabilistic model, we provide
the link necessary to test, evaluate, and revise our theories in a data-driven fashion. As an exercise in
meta-reasoning, the theory we test with this Bayesian approach is that neural populations are them-
selves performing Bayesian inference.

This chapter is organized as follows. First, in Section 9.1 we briefly review the “Bayesian brain”
hypothesis, the various lines of evidence supporting this hypothesis. While not strictly required by
the Bayesian brain hypothesis, we review some of the hypothesized means by which neurons could
represent probability distributions and carry out Bayesian calculations. Then, in Section 9.2 we
present a distributed representation scheme, and in Section 9.3 we provide a novel analysis of its
complexity in the spirit of Valiant (1994). This provides important constraints on biological plausi-
bility of this scheme and the number of neurons we must observe in order to test this theory. Sec-
tion 9.4 adapts existing theories to show how neural circuits could perform mean-field variational

156

inference in a restricted class of graphical models given our representation scheme. A simple example
of inference in a mixture model is illustrated in Section 9.5. Finally, in Section 9.6 we show that the
dynamics of inference in this model are equivalent to a nonlinear autoregressive model with weights
drawn from a stochastic block model, thus providing a “top-down,” theoretical justification for the
intuitive models developed in Chapter 5. With this insight, we show how simple probabilistic mod-
els can be reverse engineered from spike trains using Bayesian inference and a Bayesian theory of
neural computation. Section 9.7 considers some important open problems and directions for future
work.

9.1 The “Bayesian Brain” Hypothesis

Bayesian theories of neural computation address a fundamental question: how do organisms rea-
son, act, and make decisions given only limited, noisy information about the world around them?
Bayes’ rule tells us how an optimal agent should combine noisy information with prior knowledge
to make posterior inferences. That the brain may employ or approximate Bayesian methods is an
idea that dates back as far as von Helmholtz and Southall (1925). At the cognitive level, Bayesian
models have proven extraordinarily useful for understanding and explaining human and animal
behavior (Tenenbaum et al., 2011; Griffiths et al., 2008). These cognitive models span a variety of
domains, from lower level systems like visual perception (Knill and Richards, 1996; Brainard and
Freeman, 1997; Weiss et al., 2002; Yuille and Kersten, 2006; Stocker and Simoncelli, 2006; Simon-
celli, 2009) and motor control (Körding and Wolpert, 2004) to higher level systems of sensory in-
tegration (Ernst and Banks, 2002), time interval estimation (Jazayeri and Shadlen, 2010), language
processing (Chater and Manning, 2006), attention (Whiteley and Sahani, 2012; Chikkerur et al.,
2010; Dayan and Solomon, 2010), and learning (Tenenbaum et al., 2006; Courville et al., 2006) The
success of these models in explaining behavior suggests that the brain may be performing, or at least
approximating, Bayesian computations.

Further buttressing the Bayesian brain hypothesis, some experiments have shown Bayes-optimal
behavior along with simultaneous neural responses that are strongly correlated with relevant prob-
abilistic quantities. For example, Yang and Shadlen (2007) trained monkeys to make an eye move-
ment to either the left or the right based on an observed set of shapes. Each shape contributed an
additive “weight” to the log probability that reward would be given for leftward movements rather
than rightward, so the optimal strategy (once the weights were learned) was to sum the weights,
compute the log probability of left versus right, and choose the direction most likely to yield a re-

157

ward. In effect, the monkeys had to perform inference in a simple mixture model. The monkeys
learned to perform this task optimally, and Yang and Shadlen (2007) found that the firing rates of
neurons in parietal cortex were proportional to the log likelihood ratio of left versus right. Subse-
quent work showed that when the paradigm was extended to allow the monkey to opt-out of mak-
ing a decision and obtain a smaller but guaranteed reward, the monkey chose to opt out only when
the probability of left versus right was below a threshold. This implies that the brain has access to
not only the most likely direction, but also its uncertainty (Kiani and Shadlen, 2009).

Further evidence of neural probabilistic inference has been found in other simple tasks. In a time
interval reproduction task, non-human primates exhibited behavior consistent with a Bayesian
model, and simultaneous recordings in parietal cortex found that some neurons encoded interval es-
timates that could support this behavior (Jazayeri and Shadlen, 2015). In another line of work, neu-
ral correlates of multisensory cue integration were found in macaque monkeys performing a heading
discrimination task. These neurons combined both visual and vestibular inputs in a manner con-
sistent with Bayesian theory (Gu et al., 2008; Morgan et al., 2008; Fetsch et al., 2009; 2012). While
these experiments provide some compelling evidence in favor of a simple probabilistic computa-
tions in neural circuits, there is a large gap between these experiments and the rich array of cognitive
phenomena surveyed above. To bridge this gap, we need a broader theory of Bayesian inference in
neural circuits, and more powerful tools to link these theories to neural activity.

The past decade has witnessed a surge of interest in theoretical models of Bayesian inference with
spiking neurons, and this work has been the subject of a number of recent surveys (Simoncelli, 2009;
Fiser et al., 2010; Pouget et al., 2013; Ma and Jazayeri, 2014). These theories can be broadly character-
ized by their answers to three successive questions:

1. How are probabilities are represented, and how are the conditional probability distributions
that constitute the probabilistic model encoded? Are these distributions represented in a
parametric manner? How are the parameters instantiated in a neural system?

2. Given a representation, how do neural dynamics compute the desired posterior distribution?
In other words, what is the algorithm of probabilistic inference, and how is it reified in a pop-
ulation of neurons? These dynamics must respect the natural constraints of neural systems,
for example, that neural connectivity is sparse and that neurons have limited computational
power.

3. Finally, how are the parameters of the probabilistic model learned, and how are new variables
of interest incorporated into an existing model?

158

The simplest and most common answer to the first question is that neural firing rates are propor-
tional to probability (Hinton and Sejnowski, 1983; Hinton, 1992; Anderson and Essen, 1994; Barber
et al., 2003; Buesing et al., 2011; Berkes et al., 2011; Nessler et al., 2013; Legenstein and Maass, 2014)
or some function of the probability, like its log (Rao, 2004; Beck and Pouget, 2007; Rao, 2007; Lit-
vak and Ullman, 2009). Others have suggested that probability distributions are encoded implicitly
by the stochasticity of neurons (Zemel et al., 1998; Sahani and Dayan, 2003; Ma et al., 2006). Still
others have contended that neurons employ a predictive coding scheme to convey probabilistic in-
formation (Rao and Ballard, 1999; Deneve, 2008; Huang and Rao, 2011). According to the predictive
coding hypothesis, neurons only communicate spikes when their internal state cannot otherwise be
inferred by their downstream neighbors. Finally, an interesting variant of rate coding suggests that
distributions may be implicitly encoded in the number of neurons representing a particular value
or, similarly, in the width of neural tuning curves (Shi and Griffiths, 2009; Ganguli and Simoncelli,
2010).

Along with this host of representational hypotheses has come an equally broad set of proposed
inference algorithms. In the simplest models, like mixture models with a single latent variable, in-
ference can be performed exactly in a single step. For more complicated models, some dynamic and
often approximate inference algorithm is necessary. Of these, belief propagation and related mes-
sage passing algorithms (Rao, 2007; Litvak and Ullman, 2009), variational inference (Friston, 2010;
Nessler et al., 2013), and sampling based methods like Markov chain Monte Carlo (MCMC) (Hoyer
and Hyvarinen, 2003; Buesing et al., 2011; Berkes et al., 2011; Gershman et al., 2012b; Legenstein and
Maass, 2014), Hamiltonian Monte Carlo (Aitchison and Lengyel, 2014), importance sampling (Shi
and Griffiths, 2009), and particle filtering (Lee and Mumford, 2003) have all been suggested. This
amazing diversity speaks to both the computational power of neural populations as well as the enor-
mous challenge in winnowing the field of contending theories.

The question of learning has received less attention; indeed, many theories have ignored it com-
pletely. Those that have addressed it tend to equate learning with synaptic plasticity. In some cases,
synaptic plasticity rules like spike-timing dependent plasticity can be seen as maximizing a lower
bound on the marginal log likelihood (Friston, 2010; Nessler et al., 2013; Rezende et al., 2011). In
others, the stochasticity of synapses (e.g. stochastic vesicle release) is seen as sampling from a distri-
bution over weights (Aitchison and Latham, 2015; Kappel et al., 2015b;a; Tully et al., 2014). These
theories address unsupervised learning of model parameters, but the larger question of learning
model structure, via either supervised or unsupervised means, remains largely a mystery.

Given the breadth and depth of existing theories of neural inference, our intention here is not to

159

present a radically novel theory. Instead, our focus is on how we may assess the viability of a theory
of neural inference. To that end, we provide a detailed description of a distributed representation
of probability, analyze its complexity, show how inference could be performed with this represen-
tation, and provide a simple example of how this representation could be reverse engineered from
neural spike train recordings.

9.2 A Direct Distributed Representation of Probability Distributions

As described above, the simplest representation of probability is a direct representation in which
neural firing rates reflect instantaneous probabilities. Assume a population of neurons is respon-
sible for representing the distribution over values that a set of random variables may take on.
We denote this set of variables by, z = {z1, . . . , zJ}. For simplicity, assume for now that these
variables can only assume a discrete set of values, {1, . . . ,K}. Our neural population is thus
tasked with representing probability vectors,π(j), for each variable. The entries of these vectors
are, π(j)k = Pr(zj = k). In Section 9.7, we discuss how this representation could be extended to
continuous probability density functions by assigning each neuron a basis function or tuning curve
over the support of the distribution, as in Barber et al. (2003); Ma et al. (2006); Beck and Pouget
(2007).

In a distributed representation, each variable-value pair, (zj , k), is associated with a subpopu-
lation ofR neurons. This is inspired by Valiant (1994; 2005), and is similar to the ensemble based
neural sampling code of Legenstein and Maass (2014). We further assume that these subpopulations
are non-overlapping such that each neuron can be represented with at most one variable-value pair.
Let jn ∈ {1, . . . , J} denote the index of the specific variable and kn ∈ {1, . . .K} denote the
particular value that neuron n represents.

Now let st,n denote the number of spikes fired by neuron n in the t-th time bin. The relative
spike counts encode instantaneous probability distributions for each variable. If neurons represent-
ing a particular value fire twice as many spikes as neurons representing a competing value, then the
first value is twice as likely. We introduce the notion of an integration time, TI , over which spikes
are counted to estimate the probability distribution. With this notation, the empirical distribution
encoded by a population at a particular instant in time, π̂(j)

t , is defined by,

π̂
(j)
t,k =

∑TI
∆=1

∑N
n=1 I[jn = j, kn = k] st−∆,n∑TI

∆=1

∑N
n=1 I[jn = j] st−∆,n

.

160

(a)

log φ(z1, z2)

z1 ∈ { , }

z2 ∈ { , }

(b)

0 20 40 60 80 100

time

Spike Train

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
(c)

0 20 40 60 80 100
0.0
0.2
0.4
0.6
0.8
1.0

Decoded Probability

0 20 40 60 80 100

time

0.0
0.2
0.4
0.6
0.8
1.0

Figure 9.1: Example of a population of neurons encodingmarginal probability distributions for two binary random

variables, z1 and z2. Each variable is represented by a population of neurons, which is further divided into subpop-
ulations for each value the variable can take on. In (a), z1 is represented by red neurons, with dark red neurons rep-
resenting z1 = 1 and light red representing z1 = 0. Interneurons (black) provide normalization in the form of local

inhibition. Excitatory connections between populations implement probabilistic inference. (b) The population spike

train encodes themarginal distributions. For example,Pr(z1 = 1) is proportional to the spike count of the subpopu-
lation of dark red neurons. (c) These probabilities are decoded by integrating spike counts for each subpopulation over

time and normalizing across subpopulations for each variable. Dotted lines: true probability.

The numerator counts spikes from neurons representing the particular value, zj = k; the denomi-
nator counts all spikes from neurons representing zj .

We assume these neurons are stochastic, each endowed with an instantaneous firing rate, λt,n,
which gives rise to an instantaneous spike count, st,n according to a Poisson distribution,
st,n ∼ Poisson(λt,n).Thus, while the firing rate may encode one distribution, the distribution
that is read out from a finite number of spikes will differ.

To summarize, the direct distributed representation entails the following assumption:

Assumption 1. Neurons represent discrete probability distributions with a direct, distributed code.
Each variable-value pair is allotted R neurons that emit spikes according to a Poisson distribution.
Spikes are integrated over the subpopulation and over an integration time window, TI , to obtain an
unnormalized probability for the variable-value pair. By normalizing across subpopulations, they
decode the probability distribution.

161

9.3 Complexity of the Direct Distributed Representation

In pioneering work, Valiant (1994) suggested that the tools of computational learning theory, which
provide rigorous computational limits on statistical learning, may apply equally well to learning
in biological systems. All that is needed is a model of biological computation and a precisely stated
learning algorithm.* However, if the resources required by this algorithm (e.g. number of neurons
or spikes) grow exponentially quickly with the size of learning problem, then it is highly unlikely
that the algorithm is employed by the brain. In other words, biology is bound by the same limits
of computational tractability as our silicon devices, but the natural measure of complexity may be
spikes and synapses rather than FLOPs and bytes.

Valiant (1994) laid the groundwork for a model of neural computation that emphasizes a few
key features: distributed representations, and sparse, random connectivity. In this and following
work (Valiant, 2005; 2006), he showed that simple tasks, like learning an association between two
variables and learning a linear classifier, could be performed efficiently within this model. Since the
problem of approximate Bayesian inference is NP-hard in the worst case (Dagum and Luby, 1993;
Roth, 1996), a provably tractable algorithm for neural inference is out of the question. Instead, we
focus on the complexity of a prerequisite problem: simply representing a distribution with a popu-
lation of stochastic neurons. If this is tractable, then we may consider the question of inference and
the scenarios in which it may be possible.

Interestingly, the question of complexity has recently arisen in a somewhat different context. Gao
and Ganguli (2015) have developed a theory of “task complexity” that predicts the dimensionality of
neuronal dynamics as well as the number of neurons that must be measured in order to accurately
recover the dynamics. In their case, the quantities of interest are the total number of neurons, num-
ber of observed neurons, number of stimuli, length of recording, and the unknown dimensionality
of neural data. By fixing some of these parameters, they obtain bounds on the remaining parame-
ters that govern when the dimensionality can be recovered. In our case, we derive similar results that
govern the accuracy with which an encoded probability distribution can be recovered, either by a
downstream population of neurons, or by an experimental observer.

In our case, we are concerned with the complexity, in terms of the number of neurons, time
steps, or spikes, of stochastically encoding a distribution such that the decoded distribution is, with
high confidence, within some tolerable error of the true distribution. The stochasticity of the spike

* Of course, the difficulty lies in specifying such a model and algorithm! While this is surely a challenge,
there is no substitute for a formal declaration of assumptions.

162

counts implies that at any instant in time, the probability distribution that is represented by the
population will be a random variable. First, we will show that this representation is unbiased. That
is, if the firing rates, λt,n, are proportional to the probability, π(jn)kn

, then the empirical probability
distribution, π̂(j)

t , will equalπ(j) in expectation. Since we will be focusing on the representation of
a single random variable zj , we drop the superscripts (j) and (jn) for the remainder of this section.

Lemma 2. If the firing rates are proportional to a given probability distribution over the integration
time window then the probability distribution represented by the population will have expectation
equal to the given probability distribution. That is, if λt,n = λmaxπkn , then E[π̂t] = π.

Proof. Let,

St,k =

TI∑
∆=1

N∑
n=1

I[jn = j, kn = k] st−∆,n,

and

St =

TI∑
∆=1

N∑
n=1

I[jn = j] st,n =
K∑
k=1

St,k.

Iterating expectations, we have,

E[π̂t] = E
[
1

St
(St,1, . . . , St,K)

]
= ESt

[
E(St,1,...,St,K)

[
1

St
(St,1, . . . , St,K)

∣∣∣∣St]] .
Since st,n are independent Poisson random variables, their partial sums are as well. Specifically,

St,k ∼ Poisson

(
TI∑

∆=1

∑
n

I[jn = j, kn = k]λt,n

)

= Poisson

(
λmaxTI

∑
n

I[jn = j, kn = k]πk

)
= Poisson(λmax TI Rπk), (9.1)

which implies,

St =
∑
k

St,k ∼ Poisson(λmax TI R).

163

Moreover, by the Poisson superposition principle, the vector (St,1, . . . , St,K) is multinomial dis-
tributed given St,

(St,1, . . . , St,K) |St ∼ Mult

(
St,

(
λmax TI Rπ1
λmax TI R

, . . . ,
λmax TI RπK
λmax TI R

))
= Mult(St,π),

with expectationπSt. Plugging this into the iterated expectation above,

E[π̂t] = ESt
[
E(St,1,...,St,K)

[
1

St
(St,1, . . . , St,K)

∣∣∣∣St]]
= ESt

[
πSt
St

]
= π.

Thus, this stochastic encoding is unbiased.

While this stochastic representation may have the correct expectation, we would like to character-
ize the probability that it is “close” to its mean. As we hypothesized above, the difference between
the true probability and that represented by the population should shrink as the number of spikes
grows. We measure this difference with the ℓ∞ norm of the difference between two probability
vectors,

||π̂t − π||∞ = max
k
|π̂t,k − πk|.

While somewhat unorthodox, this metric is similar in spirit to the total variation distance. The fol-
lowing theorem provides an upper bound on the number of spikes required to guarantee that the
represented probability differs from the true probability by more than ϵ.

Theorem 1. Given a fixed probability vector π, firing rates λt,n = λmaxπkn over the integration
time window, a fixed error level ϵ < 1, and a desired confidence δ < 1, there exists a mini-
mum number of spikes S∗ such that if St ≥ S∗, the conditional probability of error is bounded
by Pr(||π̂t − π||∞ > ϵ |St) < δ. Furthermore, this minimum number of spikes is at most,

S∗ ≤ 1

2ϵ2
ln

2K

δ
,

164

Proof. First, consider the probability that a particular entry differs from its mean by more than ϵ.

Pr(|π̂k − πk| > ϵ |St)

= Pr(π̂k − πk > ϵ |St) + Pr(π̂k − πk < −ϵ |St)

= Pr

(
St,k > Stπk

(
1 +

ϵ

πk

) ∣∣∣∣St)+ Pr

(
St,k < Stπk

(
1− ϵ

πk

) ∣∣∣∣St)
= Pr

(
St,k > E[St,k |St]

(
1 +

ϵ

πk

))
+ Pr

(
St,k < E[St,k |St]

(
1− ϵ

πk

))
As in Lemma 2, we have used the fact that St,k |St ∼ Bin(St, πk) and hence has expectation Stπk.
The probability of this binomial random variable exceeding its mean by a multiplicative constant is
a decreasing function of the number of spikes, St. This implies that there exists a minimum number
of trials S∗ such that for St ≥ S∗, this probability of error is bounded above by δ, hence proving
the first part of the theorem.

Now suppose St = S∗. We use a Chernoff bound to upper bound the probability that the bino-
mial random variable, St,k, deviates from its mean by more than a multiplicative factor. Leveraging
the fact that πk ≤ 1, we have,

Pr

(
St,k > E[St,k |S∗]

(
1 +

ϵ

πk

))
≤ exp

{
−2S∗ϵ2

}
,

Pr

(
St,k < E[St,k |S∗]

(
1− ϵ

πk

))
≤ exp

{
−2S∗ϵ2

}
,

which together imply,

Pr(|π̂t,k − πk| > ϵ |S∗) ≤ 2 exp
{
−2S∗ϵ2

}
.

We bound the maximum deviation of any entry in π̂ with a union bound,

Pr(||π̂t − π||∞ > ϵ |S∗) ≤ 2K exp
{
−2S∗ϵ2

}
.

Setting this probability equal to δ yields the desired bound on S∗,

S∗ ≤ 1

2ϵ2
ln

2K

δ
.

165

This theorem provides an upper bound on the minimum number of spikes necessary to guar-
antee that the ℓ∞-distance between the true and estimated probability vectors is less than ϵwith
probability 1− δ. Notably, the relevant quantity is the number of spikes St, rather than the number
of neurons. Thus, there is some flexibility in how the probability is estimated: a small population
of neurons could be measured over many time bins, or a large population could be measured over
a single time bin. Moreover, the population gain, λmax, could be varied to adjust the number of
spikes per time bin.

In practice, the number of spikes cannot be set directly. It, is a Poisson random variable whose
mean, from Eq. 9.1, is E[St] = λmaxTIR: the expected number of spikes per neuron times the
number of neurons per outcome. This leads to the following theorem, which specifies a upper
bound on the gain and number of neurons required to guarantee that the ℓ∞-distance is less than ϵ
with probability 1− δ.

Theorem 2. Given a fixed probability vector π, firing rates λt,n = λmaxπkn , a fixed error level ϵ <
1, and a desired confidence δ < 1, the probability of error is bounded by Pr(||π̂t − π||∞ > ϵ) < δ

if λmaxTIR ≥ µ∗, where µ∗ is at most,

µ∗ ≤ 1

1− e−2ϵ2
ln

2K

δ
.

Proof. We have,

Pr(||π̂t − π||∞ > ϵ) =
∞∑
m=0

Pr(St = m) Pr(||π̂t − π||∞ > ϵ |St = m)

≤
∞∑
m=0

Pr(St = m)× 2K exp
{
−2mϵ2

}
= 2KESt

[
exp

{
−2Stϵ2

}]
= 2K exp

{
µ∗(e−2ϵ

2 − 1)
}
,

where the last line follows from moment generating function of St ∼ Poisson(µ∗). Setting this
equal to δ and solving for µ∗ yields the stated bound.

So far we have considered the estimated probability distribution obtained by “reading out” the
entire population of neurons. What if we only observe a fraction of the population, as a neuron
in a downstream population might? Assume each neuron in the population is “observed” with

166

probability ρ. The expected number of observed neurons for a given variable-value pair isRρ, and if
we see exactly the expected number of neurons for each value (assume it is an integer), the estimated
probability distribution will have the correct expectation. However, in practice we will incur some
bias from seeing a different number of neurons for each value. Bounding the error theoretically is
challenging due to this additional source of randomness, so we instead consider the simple case in
which we see exactlyRρ neurons for each value. Then, following the same logic as above, we have
the following corollary.

Corollary 1. Given a fixed probability vector π, firing rates λt,n = λmaxπkn over the integration
time window, a fixed error level ϵ < 1, and a desired confidence δ < 1, and ρR observed neurons
for each of theK values, the probability of error is bounded by Pr(||π̂t − π||∞ > ϵ) < δ if

(λmaxTI)(ρR) ≥ µ∗,

where µ∗ is at most,

µ∗ ≤ 1

1− e−2ϵ2
ln

2K

δ
.

Proof. This follows directly from Theorem 2 with ρR substituted forR.

Corollary 1 provides theoretical connection between the fidelity of the representation, measured
in terms of the error ϵ and confidence δ, for a given domain sizeK , maximum firing rate λmax, in-
tegration time TI , connection probability ρ, and representation sizeR. The expected spike count
is the product of the effective number of neurons, ρR, and the expected number of spikes per neu-
ron, λmaxTI . Together, these allow us to deduce a manifold of trade-offs between population size
and integration time that will achieve a desired error level and confidence.

Figure 9.2 plots these theoretical bounds. Fig. 9.2a shows the theoretical upper bound on the
95th percentile of the ℓ∞-distance as a function of the expected spike count for a range of distribu-
tion sizes,K . Fig. 9.2b illustrates the trade-offs between effective number of neurons and expected
number of spikes per neuron necessary to achieve a desired expected spike count.

Figure 9.3 shows the results of an empirical assessment of this theory under a variety of parameter
regimes. For each regime, we present results for discrete distributions overK = 2 values (left col-
umn) andK = 10 values (right column). We sample 1000 discrete distributions from a Dirichlet
prior,π ∼ Dir(1K), and then we encode each true distribution with Poisson spiking neurons and
measure the ℓ∞-distance between the true and encoded distributions.

167

(a)

100 101 102 103

Expected Spike Count µ

0.0

0.2

0.4

0.6

0.8

1.0
E
rr

o
r
ε

K=2

K=5

K=10

K=25

K=50

K=100

(b)

0 10 20 30 40 50 60 70

λmaxT

0

10

20

30

40

50

60

70

ρ
R

µ=10

µ=50

µ=100

µ=500

µ=1000

Figure 9.2: Theoretical relationship between between ℓ∞-distance, expected spike count, and physiological param-

eters. (a) Theoretical upper bound on the 95th percentile of the ℓ∞-distance, ϵ, as a function of the expected spike
count,µ = (ρR)(λmaxTI), for increasing values ofK . (b) The expected spike count is the product of the effective

number of neurons, ρR, and the effective number of spikes per neuron,λmaxTI . This shows how time and number of

neurons can be balanced to obtain the desired expected spike count.

In the top row, we consider the case where the total population spike count is set explicitly, as in
Theorem 1. In this case, the spikes are attributed to each value according to a multinomial distribu-
tion. We plot the theoretical bound from Theorem 1 in yellow.

In the middle row we measure the error as a function of the representation size,R, for ρ = 1.0,
under the assumption that spikes are counted in one millisecond bins for TI = 10milliseconds, and
a maximum firing rate of 100Hz (i.e. λmax = 0.1). Thus, in expectation the population will emitR
spikes, allowing the top and middle rows to be directly compared. That is, in the top row, the popu-
lation fires exactly the number of spikes expected in the middle row. We see that the stochastic pop-
ulation spike counts does indeed introduce extra variability in the error, as predicted by Theorem 2,
though the median error is not substantially different from that of the fixed-S case.

Finally, the bottom row shows the empirical and predicted error as we vary the observation prob-
ability, ρ. Here, the representation size is fixed toR = 25, and the gain and integration time are set
as in the middle row. While a strict upper bound is difficult to derive theoretically, the approxima-
tion from Corollary 1 provides a reasonable approximation for this parameter regime.

These complexity-theoretic bounds relate the number of spikes to the distance between the true
and estimated distributions. From the number of spikes, we can deduce constraints on the repre-
sentation size, integration time, and connection probability, for realistic gain levels. While the the-
oretical bounds do not exactly match the empirical error distributions, they appear to be roughly
correct up to a multiplicative factor. Thus, if we can estimate some biophysical properties like con-

168

100 101 102 103

S

0.0

0.2

0.4

0.6

0.8

1.0
E
rr

o
r
ε

K=2

100 101 102 103

S

0.0

0.2

0.4

0.6

0.8

1.0

E
rr

o
r
ε

K=10

theory

100 101 102 103

R

0.0

0.2

0.4

0.6

0.8

1.0

E
rr

o
r
ε

K=2, T=10ms

100 101 102 103

R

0.0

0.2

0.4

0.6

0.8

1.0

E
rr

o
r
ε

K=10, T=10ms

0.2 0.4 0.6 0.8 1.0

ρ

0.0

0.2

0.4

0.6

0.8

1.0

E
rr

o
r
ε

K=2, R=25, T=10ms

0.2 0.4 0.6 0.8 1.0

ρ

0.0

0.2

0.4

0.6

0.8

1.0

E
rr

o
r
ε

K=10, R=25, T=10ms

Figure 9.3: Empirical and theoretical ℓ∞-distance under a variety of parameter regimes. Whiskers show the em-

pirical 5th and 95th percentiles. Yellow line shows the theoretical upper bound on the 95th percentile. Left col-

umn:K = 2. Right column:K = 10. Top row: fixed population spike count,S .Middle row: varying the number

of neurons per variable. Bottom row: varying the connection probability. See text for full description.

169

nection probabilities, integration times, and firing rates, and we can constrain the error tolerances of
the algorithms that consume these probability estimates, then we can estimate the number of neu-
rons that must represent each variable-value pair. This will prove useful in guiding our bottom-up
search, and serve as an important constraint for assessing the viability of a direct representation of
probability.

9.4 Bayesian Inference with Neural Dynamics

Two forces cause the encoded distributions to change over time. As we interact with the world and
receive new inputs, the probabilities of variables change to reflect the new observations. Moreover,
even for a fixed set of observed variable assignments, the probabilities of latent variables will change
as we perform inference. We show how a simple, iterative inference algorithm can be implemented
with biologically plausible neural dynamics.

We assume that as an organism receives new inputs from the world, it updates its posterior distri-
bution over the values of latent variables. Doing so requires a probabilistic model that relates hidden
and observed variables via a joint probability distribution. Whereas in previous chapters we have
considered directed graphical models, here we assume that the probabilistic models implemented in
the brain are best described in terms of a factor graph,

p(z |θ) = 1

Z(θ)

∏
j∈G

ϕ(zj |θ)
∏
i,j∈G

ϕ(zi, zj |θ) (9.2)

The graph, G, specifies unary and pairwise probabilistic dependencies between variables. Each unary
factor, ϕ(· | θ) is a function that maps a variable assignment to a nonnegative real number, and each
pairwise factor, ϕ(·, · |θ), is a function that maps a pair of assignments, say (zi = k, zj = k′) to
a nonnegative real number. The normalizing constant,Z(θ), ensures that the joint probability
distribution sums to one. The probabilistic model in Eq. 9.2 reflects a specific assumption about the
types of dependency structures neural populations can represent.

Assumption 2. Neural populations perform inference in probabilistic models that factor into the
product of unary and pairwise dependencies.

A general probabilistic model need not factor into pairwise terms. It may instead have factors
that relate three or more latent variables. As we will see, unary and pairwise factors map naturally
onto neural biases and synaptic weights. In our proposed neural implementation, higher order fac-

170

tors would require the interaction of three or more neurons. While this may be realized with den-
dritic computation or interneurons, these more sophisticated implementations are beyond the scope
of this chapter.

In general, the posterior distribution of a subset of hidden variables zH ⊆ z given the observed
variables zO = z \ zH is,

p(zH | zO,θ) =
p(zH , zO |θ)∑
zH

p(zH , zO |θ)
.

Typically, this cannot be efficiently computed since it requires a sum over all possible hidden variable
assignments. However, as we have seen in previous chapters, there are many methods of approxi-
mating posterior distributions. Mean field variational inference maps particularly nicely onto the
natural constraints of neural dynamics. In mean field variational inference, the intractable exact pos-
terior distribution is approximated with a tractable, factorized distribution,

p(zH | zO,θ) ≈ q(zH) ≡
∏

zj∈zH

q(zj).

The terms in this product are called variational factors. We solve for the variational factors that min-
imize KL-divergence between the true and approximate posterior,KL(q(zH) || p(zH | zO,θ)).
In minimizing the KL-divergence, we simultaneously maximize a lower bound on the log marginal
likelihood, log p(zO |θ).

The simplest method of minimizing this objective is via coordinate descent, iteratively updating
the probability of one hidden variable given the probabilities of the rest. Since our variational dis-
tribution is factorized, the variational factor for variable zj must satisfy the mean field consistency
equation:

log q(zj) ≃ Eq(z¬j) [log p(zH , zO |θ)] , (9.3)

where≃ denotes equality up to an additive constant and the expectations are taken with respect to
the variational distribution over other hidden variables,

q(z¬j) =
∏
i ̸=j

q(zi).

The additive constant ensures normalization of the probabilities, and will be discussed subse-

171

quently.
For discrete random variables, the variational factors are simply vectors specifying the posterior

probability of each variable, zj . Under the direct representation described above, the instantaneous
values of these factors are encoded in the relative spike counts of populations of neurons,

qt(zj = k) = π̂
(j)
t,k

To perform inference, the neuronal dynamics must be such that at each time step, the relative spike
counts satisfy Eq. 9.3. Explicitly writing the additive constant,− log ν

(j)
t , we have,

log π̂
(j)
t,k = − log ν

(j)
t + log ϕ(zj = k |θ)

+ Eqt−1(z¬j)

[∑
i∈ne(j)

log ϕ(zi, zj = k |θ)
]

= − log ν
(j)
t + log ϕ(zj = k |θ)

+
∑

i∈ne(j)

K∑
k′=1

[
log ϕ(zi = k′, zj = k |θ) · π̂(i)t−1,k′

]
(9.4)

= − log ν
(j)
t + ψ

(j)
t,k ,

where

ψ
(j)
t,k = log ϕ(zj = k |θ) +

∑
i∈ne(j)

K∑
k′=1

log ϕ(zi = k′, zj = k |θ) · π̂(i)t−1,k′ .

Since π̂(j)
t is a probability distribution, the additive constant must be set to it is normalized.

Thus,

π̂
(j)
t,k = exp

{
ψ
(j)
t,k − log ν

(j)
t

}
=⇒ ν

(j)
t =

∑
k′

exp
{
ψ
(j)
t,k′

}
.

Now that we have derived theoretically exact mean field updates, we must show how they can be
approximated with plausible neural dynamics. We assume that inference occurs on a characteristic
time scale of TI time steps. This reflects the window of time over which neurons estimate proba-

172

bility distributions. From Lemma 2, we know that if the firing rates of neurons the variable-value
pair (zj , k) are proportional to π̂(j)t,k , then in expectation, the empirical distribution represented by
the spike counts will be equal to the desired distribution. Thus, we aim to set,

λt,n = λmax π̂
(jn)
t,kn

= λmax exp
{
ψ
(jn)
t,kn
− log ν

(jn)
t

}
,

for maximum firing rate, λmax. While this rate function is nearly a linear-nonlinear cascade, as we
studied in previous chapters, there is one major impediment to realizing this calculation in biological
neurons. Specifically, to compute the activation, a neuron must have access to the normalized prob-
abilities of other hidden and visible variables. In practice, a neuron only observes the spike counts of
the neurons it receives input from. However, these can be used to estimate the desired probabilities.
This motivates our next assumptions,

Assumption 3. Neurons are sparsely connected to one another. For each ordered pair of neurons,
(m,n), the variable am→n ∈ {0, 1} indicates whether or not there exists a synaptic connection from
neuronm to neuron n. These connections are modeled as independent and identically distributed
Bernoulli random variables,

am→n ∼ Bern(ρ).

We combine these variables into a binary adjacency matrix,A ∈ {0, 1}N×N .

Assumption 4. All neurons in the population share the same gain, λmax. Thus, neuron n’s estimate
of π(j) is informed by (λmaxTI)(ρR) spikes, in expectation:

EA,s

[TI∑
∆=1

N∑
m=1

I[jm = j] am→n · st−∆,m
]

= EA,s

[
TI∑

∆=1

N∑
m=1

K∑
k=1

I[jm = j, km = k] am→n · st,m

]

= λmaxTIρ
N∑
m=1

K∑
k=1

I[jm = j, km = k] π̂
(j)
t,k

= (λmaxTI)(ρR).

173

Moreover, the instantaneous probability is well-approximated by,

π̂
(j)
t,k =

∑TI
∆=1

∑N
m=1 I[jm = j, km = k] am→n · st−∆,m∑TI

∆=1

∑N
m=1 I[jm = j] am→n · st−∆,m

≈ (λmaxTIρR)
−1

TI∑
∆=1

N∑
m=1

I[jm = j, km = k] am→n · st−∆,m.

In other words, the total spike count is concentrated around its mean.

Under the assumption of shared gain, the desired dynamics in Eq. 9.4 simplify to,

λt,n = λmax exp

{
bn + (λmaxTIρR)

−1
TI∑

∆=1

N∑
m=1

am→n · wm→n · st−∆,m − log ν
(jn)
t

}
(9.5)

where

bn = log ϕ(zjn = kn |θ),

and

wm→n =

log ϕ(zjn = kn, zjm = km |θ) if jm ∈ ne(jn)

0 o.w.

Thus, the theory provides a normative interpretation of synaptic weights: they reflect the condi-
tional log probabilities for the variable-value pairs represented by the pre- and post-synaptic neu-
rons.

The last step is to compute the normalizing input, ν(j)t . This requires summing the instanta-
neous rates of all neurons representing the random variable, zj . While this is clearly implausible,
we may derive a gain controller from an alternative perspective. Normalizing the probability distri-
bution ensures that the expected spike count at any time step for neurons representing zj is equal
to λmaxR. If the distribution is not properly normalized, the expected spike count will deviate.
Thus, a reasonable gain controller can estimate the population can estimate the population rate,

λ̂
(j)
t =

TG∑
∆=1

N∑
n=1

I[jn = j]st−∆,n,

174

and set the control input to,

ν
(j)
t =

λ̂
(j)
t

λmaxTGR
.

The time scale of the gain controller is typically less than the time scale of inference, that is TG < TI .
Having shown that variational inference is theoretically plausible, we consider a simple example.

9.5 Example of a Simple Mixture Model

Consider a simple mixture model with a single latent variable denoting the mixture compo-
nent, z ∈ {1, . . . ,K}, and a set of conditionally independent observations, {xj}Jj=1. In this ex-
ample, we let the observations be Bernoulli random variables. The model is parameterized by a
marginal class probability vector,α, which we assume is uniform, and class-conditional probabilities
for each observation, pj,k = Pr(xj = 1 | z = k). Together, these specify the probabilistic model,

α = 1
K1, z ∼ Discrete(α),

pj,k ∼ Beta(12 ,
1
2), xj ∼ Bern(pj,z).

This corresponds to a factor graph with,

ϕ(z = k) = αk,

ϕ(xj = 1, z = k) = pj,k,

ϕ(xj = 0, z = k) = 1− pj,k.

We simulate inference in this model with a population of neurons. Each variable-value pair is
represented byR = 10 neurons, and each pair of neurons is connected with probability ρ = 0.5.
The maximum firing rate is set to λmax = 100Hz, and the integration time window is set to TI =

100ms. Hence, the expected spike count used to estimate probabilities is (ρR)(λmaxTI) = 50

spikes. The neurons representing the observed variable assignment xj = k are externally driven at a
rate of 0.95λmax if xj = k, and a rate of 0.05λmax if xj ̸= k. We assume that the synaptic weights
have already been learned and reflect the exact log of the pairwise factors.

Figure 9.4 illustrates inference dynamics for a changing stimulus. Every second, the observed
variables are driven with a new pattern, which leads to a new posterior distribution over the latent
variable. With each change in input, the neurons representing the latent variable adjust their firing

175

(a)

0 1000 2000 3000 4000 5000

time [ms]

0.0

0.2

0.4

0.6

0.8

1.0
p
ro

b
a
b
ili

ty

π̂1 π1 π̂2 π2 π̂3 π3

(b)

z

latent variable

x
1

observed variables

x
2

x
3

x
4

0 1000 2000 3000 4000 5000

time [ms]

x
5

Figure 9.4: Example of neural inference a simplemixturemodel with one latent variable, z ∈ {1, 2, 3}, indicating
which of the threemixture components gave rise to the data. The observations consist of 5 conditionally indepen-

dent binary variables,x1, . . . , x5, whose values change every second. (a) The empirical probabilities (solid lines)

decoded from the spike train, and the true posterior (dashed line). Stochasticity arises from noisy inputs and Poisson

spike counts. (b) The underlying spike trains of the neurons representing z andxi. Horizontal gray lines distinguish
subpopulations ofR = 10 neurons for each value; vertical lines denote times of stimulus change.

rates to reflect this new probability. Fig. 9.4a shows the decoded probabilities over time (solid lines)
along with the true posterior (dashed lines). Despite many sources of stochasticity, the decoded
probabilities do converge to the correct posterior values. The 100ms integration time is reflected in
the delayed convergence upon each change in stimulus. Fig. 9.4b shows the spike trains from which
these probabilities were decoded. The neurons are ordered according to the value they encode and
the subpopulations ofR neurons are separated by horizontal light gray lines. Vertical lines indicate

176

changes in input. Overall, the neurons fire at between 30 and 40Hz, with a dynamic range of about
0 to 100Hz, as expected.

9.6 Reverse Engineering the Probabilistic Model from Spike Trains

Given this “top-down” theory of neural computation, can we reverse engineer the probabilistic
model from neural recordings? To do so, we need to infer the subpopulations of neurons that en-
code each variable-value pair, as well as the characteristic weights that connect each subpopulation.
We show that this is possible using the generalized linear models and structured network priors de-
scribed in Chapter 5.

Recall the theoretical dynamics proposed in Section 9.4, reproduced here in slightly simplified
form,

λt,n = λmax exp

{
bn + γ

TI∑
∆=1

N∑
m=1

am→n · wm→n · st−∆,m − log ν
(jn)
t

}
.

The instantaneous firing rate take the form of a generalized linear model. Each neuron has a baseline
rate that is a function of bn and λmax. Moreover, the rate is influenced by recent spiking activity
through the network,A⊙W , and through the local normalization, ν.

According to our theory of neural inference, the sparsity pattern of the network should fol-
low an independent Bernoulli model. That is, each edge is present with the same probabil-
ity, am→n ∼ Bern(ρ). Moreover, the weights of network should encode the pairwise log proba-
bilities, log ϕ(zi = k, zj = k′), and the weights from theR neurons representing zi = k to theR
neurons representing zj = k′ should all be approximately equal. This corresponds to stochastic
block structure in the weight matrix. Thus, to reverse engineer the probabilistic model from the ob-
served spike train, we fit a generalized linear model with a spike-and-slab network prior that has an
independent Bernoulli model for the adjacency matrix, and a stochastic block model (SBM) for the
weight matrix. The SBM has latent variables for each neuron that indicate the cluster assignment,
and parameters that specify the average weight between each pair of clusters:

cn ∼ Discrete(α1),

µc→c′ ∼ N (0, σ20),

wm→n ∼ N (µcm→cn , σ
2).

177

By performing Bayesian inference in this model, we recover a posterior distribution over bi-
ases, {bn}Nn=1; weighted adjacency matrices,A andW ; latent variables, {cn}Nn=1; and parame-
ters, {µc→c′}Cc,c′=1.

The normalization presents a minor complication. According to the theory, this is most likely
computed by local inhibitory neurons that estimate the population rate of neurons represent-
ing zj and deliver a common, normalizing input to stabilize the rate at the desired level. This can be
roughly approximated with direct, excitatory connections between neurons representing the same
variable-value pair, and inhibitory connections between neurons representing competing values
of the same variable. In other words, if we focus solely on the activity of neurons representing the
variable-value pairs, we should expect additional functional connections that encode the mutually
exclusive nature of the distinct values of a given variable.

We demonstrate this approach by fitting the hierarchical model to a neural spike train simulated
from the population described in Section 9.5. The population performs inference in a simple mix-
ture model with three latent mixture components, and five binary observations. An observation
consists of an assignment of the five observations, indicated by the variables {xj}5j=1, and given an
observation, the dynamics perform posterior inference of z, the latent variable indicating the un-
derlying mixture component. The population consists of 130 neurons, 10 for each variable-value
pair.

Figure 9.5 shows the inferred parameters of the hierarchical model. The posterior mean of the
weighted adjacency matrix is shown in Figure 9.5a, with neurons sorted by variable and then by
value. The block diagonal structure shows the normalizing connections between neurons repre-
senting the same variable, and the region highlighted in yellow shows the inferred connections from
neurons representing xj to neurons representing z. These encode the pairwise log probabilities of
the mixture model.

Figure 9.5b shows the inferred posterior probability of two neurons belonging to the same clus-
ter. While the true model has 13 clusters, we allowed our model to use as many as 20 clusters. If the
variable-value subpopulations were recovered perfectly, this matrix would be block diagonal. We see
that it is nearly so; only a handful of neurons are misclassified and some blocks are split in two.

Finally, Figure 9.5c shows the true and inferred mean weights under the stochastic block model.
First, we found the permutation of inferred cluster labels that best matched the true cluster labels.
Then we found the linear transformation that best matched the true and inferred weights. The re-
sult shows that the true pattern of weights from xj to z are recovered with high fidelity.

While this procedure for reverse engineering probabilistic models from observed spike trains is

178

(a)

z x1 x2 x3 x4 x5

Presynaptic

z

x1

x2

x3

x4

x5

P
o
st

sy
n
a
p
ti

c
Inferred W

4 3 2 1 0 1 2 3 4

(b)

z x1 x2 x3 x4 x5

Neuron n

z

x1

x2

x3

x4

x5

N
e
u
ro

n
 m

Inferred Pr(cn =cm)

0.00 0.25 0.50 0.75 1.00

(c)

x
1
=

0

x
1
=

1

x
2
=

0

x
2
=

1

x
3
=

0

x
3
=

1

x
4
=

0

x
4
=

1

x
5
=

0

x
5
=

1

z=0

z=1

z=2

True µz←x

3.0 1.5 0.0 1.5 3.0

x
1
=

0

x
1
=

1

x
2
=

0

x
2
=

1

x
3
=

0

x
3
=

1

x
4
=

0

x
4
=

1

x
5
=

0

x
5
=

1

z=0

z=1

z=2

Inferred µz←x

3.0 1.5 0.0 1.5 3.0

Figure 9.5: The probabilistic model can be reverse engineered from the neural spike train. (a) Inferredweighted ad-

jacencymatrix for the population of 130 neurons. Thin lines delineate boundaries between subpopulations for each
value of z andxj ; bold lines separate populations for each variable. (b) Inferred probability that each pair of neurons
belongs to the same cluster under a stochastic blockmodel. The block diagonal structure shows that the variable-

value subpopulations are clearly recovered. (c) True and inferred weights fromxj to z (yellow square in (a)). Inferred

weights are themeanweights under the stochastic blockmodel. They accurately recover the true weights.

not foolproof, this simple example illustrates that much can be learned by combining top-down
theories with bottom-up analysis. To further improve this inference procedure, we should include
two sets of latent cluster assignments in our hierarchical model: one set of variables that specifies the
variable that a cluster of neurons represents (i.e. jn in our theory), and another that indicates the
value (i.e. kn). Incorporating the knowledge that different values of the same variable are mutually
exclusive, we can build a strong prior distribution over weights given these two variables.

179

What else can be learned from the results of this approach? In practice, we only observe a
fraction of the neurons in a particular region If our recording method samplesN neurons out
ofNtotal, then given an inferred block size, R̂, we can estimate the true representation size to be
roughly,R ≈ R̂Ntotal/N . If variable-value subpopulations are truly disjoint, this provides an es-
timate of the number of subpopulations the region could encode. Combined with the complexity
theoretic bounds developed in Section 9.3, these top-down and bottom-up approaches provide two
tacks by which we may converge on a theory of probabilistic inference in neural circuits.

9.7 Future Work

This chapter has illustrated how theoretical models of neural computation may be assessed from
a “top-down” perspective by analyzing the complexity and comparing it to biological parameters,
and from the “bottom-up” perspective, by incorporating theoretical dynamics into probabilistic
models of neural population activity. This is only a first step toward closing the gap between these
two perspectives, and it opens many important questions. We enumerate and partially answer a few
of them here.

9.7.1 Unsupervised Learning via Synaptic Plasticity

Perhaps the most pressing question is that of learning: how are these subpopulations of neurons
and their weighted connections established? While we do not have a concrete answer to this ques-
tion, we speculate that subpopulations are primarily allocated in a supervised fashion by a process
like those of Valiant (1994). Once the neurons have been allocated, their weights may be tuned in an
unsupervised manner. We suggest one way in which this unsupervised learning may be related to the
process of spike-timing dependent plasticity, based on the work of Nessler et al. (2013).

The parameters of the model, θ, specify the conditional probabilities for pairs of hidden and visi-
ble variables. Rather than treating the parameters as given, we now treat them as part of the model.

p(z,θ) = p(θ) p(z |θ)

=
p(θ)

Z(θ)

∏
j∈G

ϕ(zj |θ)
∏
i,j∈G

ϕ(zi, zj |θ).

The challenge with learning is that the parameters appear in the normalizing constant,Z(θ), which
is typically an intractable summation over variable assignments. For this simple example, we will
only consider learning in a subset of models that can formulated as directed graphical models.

180

Assumption 5. The following unsupervised learning algorithm assumes that the probabilistic model
not only factors into the product of unary and pairwise potentials, but that this factorization corre-
sponds to a directed graphical model in which the variables have at most one “parent” variable. That
is, the variables are ordered such that the joint probability is equal to,

p(z,θ) = p(θ)

J∏
j=1

p(zj | pa(zj),θ),

where pa(zj) ∈ {∅, z1, . . . , zj−1}. Each conditional distribution in this product is properly nor-
malized, which implies that the joint distribution is normalized as well.

While this is clearly a strict assumption, it allows for some realistic models like mixtures and hid-
den Markov models. The advantage is that, here, the distribution is normalized such that the param-
eters appear only in their prior and in the conditional distributions, which depend on at most two
variables. This will map nicely onto synaptic plasticity rules.

Since we are assuming the variables are discrete, the parameters θ specify either the
marginal probability of zj (if pa(zj) = ∅) or the rows of a conditional probability table
(if pa(zj) ∈ {z1, . . . , zj−1}). We make this explicit with the following notation,

p(zj | pa(zj) = ∅,θ) = Discrete(θ(j)),

p(zj | pa(zj) = zj′ = k, θ) = Discrete(θ(j,k)).

In words, if the variable zj has no parent, it is marginally distributed according to a categorical distri-
bution with parameter θ(j). If variable zj has parent zj′ , then when zj′ = k, the variable zj follows
a categorical distribution with parameter θ(j,k).

To incorporate these parameters into the model, we introduce Dirichlet priors over the probabil-
ity vectors,

θ(j) ∼ Dir(α1), θ(j,k) ∼ Dir(α1).

Learning in a Bayesian framework corresponds to performing posterior inference over the param-
eters. Thus, we introduce a variational factor for θ as well,

q(θ) =
∏

j:pa(zj)=∅

q(θ(j))
∏

j:pa(zj) ̸=∅

∏
k

q(θ(j,k))

181

Consider the variational factor for θ(j,k). Omitting the details, we can show that this factor takes the
form of a Dirichlet distribution,

qt(θ
(j,k)) = Dir(θ(j,k) |α(j,k)

t),

α
(j,k)
t = α+ π̂

(j)
t−1 · π̂

(pa(zj))
t−1,k .

The updates of q(zj)must consider expectations with respect to this Dirichlet factor:

log q(zj) ≃ Eq(z¬j)Eq(θ) [p(z,θ)] .

This expectation is given by,

Eqt(θ)
[
log p(zj = k | pa(zj) = k′,θ)

]
= Eqt(θ)

[
log θ

(j,k′)
k

]
= ψ

(
α
(j,k′)
t,k

)
− ψ

(K∑
i=1

α
(j,k′)
t,i

)
= ψ

(
α
(j,k′)
t,k

)
− ψ

(
Kα+ π̂

(pa(zj)
t−1,k′

)
. (9.6)

How could this be implemented biologically? First, we assume that learning occurs on a time-
scale of TL time steps, which is relatively slow compared to the time scales of inference and behavior.
That is, TI < TL. This allows the learning algorithm to generalize from many input rather than
overfitting to a single example.

We want the synaptic weights to equal the expected log parameter value, as in (9.6). In theory,
the weights should be identical for all synapses between neurons representing (zj = k) and neurons
representing (zj′ = k′). It is unreasonable to assume this in practice, since these synapses exist be-
tween different neurons and are updated independently. However, we can specify a simple learning
rule that would give rise to the same weights in expectation.

Assume that each synapse has a two latent state variables, αt,m→n, and βt,m→n. These will en-
able us to compute the expectation with respect to the variational parameter. We propose the fol-
lowing learning rule for the first state,

αt,m→n = α+ (λ2maxTL)
−1

TL∑
∆=1

st−∆,n · st−∆,m

≈ α+ π̂
(jn)
t−1,kn · π̂

(jm)
t−1,km .

182

Suppose neuron n represents the child variable and neuronm represents the parent variable. Then,†

βt,m→n = Kα+ (λmaxTL)
−1

TL∑
∆=1

st−∆,m

≈ Kα+ π̂
(zjm)
t−1,km .

The synaptic weight is then a deterministic function of these two state variables,

wt,m→n = ψ(αt,m→n)− ψ(βt,m→n).

This state-based learning rule is Hebbian in that correlated spiking activity leads to increases
in αt,m→n, which in turn lead to larger weights (since the digamma function is increasing on the
nonnegative reals). This is counteracted by the accrual of βt,m→n, which counts pre- or post-
synaptic spikes, depending on whether the post-synaptic neuron represents the child or parent vari-
able, respectively. If this value is large relative to αt,m→n, the spike correlation is low relative to the
background rate, which implies a low probability and a strongly negative weight.

Moreover, this learning rule is nonlinear. While the state variables are linear functions of pre- and
post-synaptic spike counts, their effect on the weight is highly nonlinear due to the digamma func-
tions. We could instead write this learning rule as a nonlinear dynamical system on the weights alone
since the digamma function is also invertible on this range. Using the tools developed in Chapter 6,
this dynamic learning process could potentially be incorporated in a probabilistic model for neural
activity as well. We leave this for future work.

9.7.2 Representing Continuous Random Variables

While this chapter has focused on representing discrete random variables, many of the quantities
we need to infer and reason about are continuous in nature. Suppose that we wish to represent a
random variable z ∈ RD. Rather than representing the parameters of a standard distribution, like
the mean and variance of a Gaussian, the brain may use a nonparametric representation like a kernel

†Here, the synaptic state variable counts spikes on the pre-synaptic neuron. If the parent-child order
was flipped, the synapse would have to count post-synaptic spikes instead. This asymmetry is admittedly
somewhat unsatisfying.

183

density estimate for the variational factors (Anderson and Essen, 1994; Barber et al., 2003). Suppose,

qt(zj) ∝
K∑
k=1

η
(j)
t,k ζ(zj ;µk),

where {η(j)t,k}
K
k=1 is a set of nonnegative weights that sum to one, ζ(z;µ) is a nonnegative “kernel

function” that integrates to one and has mean µ, and {µk} is the set of means at which these kernels
are located. This defines a proper density function because qt(zj) is nonnegative and integrates to
one,

∫
qt(zj) dzj =

K∑
k=1

∫
η
(j)
t,k ζ(z;µk) dzj =

K∑
k=1

η
(j)
t,k = 1.

To implement this with a distributed population of neurons, let

η
(j)
t,k =

∑N
n=1

∑K
k=1 I[jn = j, kn = k] st,n∑N
n=1 I[jn = j]st,n

.

The mean field variational inference algorithm is no longer as simple as in Section 9.4, but the
key quantities of the variational lower bound, namely the entropy of the variational factor and the
expected log probability, are still tractable. Using an approach similar to that of Gershman et al.
(2012a), we have,

Eqt(z) [log p(z |θ)] = Eqt(z)

∑
j∈G

log ϕ(zj |θ) +
∑
i,j∈G

log ϕ(zi, zj |θ)


=
∑
j∈G

K∑
k=1

η
(j)
t,k

∫
log ϕ(zj |θ)ζ(zj ;µk) dzj

+
∑
i,j∈G

K∑
k=1

K∑
k′=1

η
(i)
t,k′ η

(j)
t,k

∫∫
log ϕ(zi, zj |θ) ζ(zi;µk) ζ(zj ;µk′) dzi dzj

=
∑
j∈G

K∑
k=1

η
(j)
t,k b̃

(j)
k +

∑
i,j∈G

K∑
k′=1

K∑
k=1

η
(i)
t,k′ η

(j)
t,k w̃

(i,j)
k′,k

184

The second term of the variational lower bound is the entropy of the variational distribution,

H[qt(zj)] = −
∫
qt(zj) log qt(zj) dzj

= −
∫
qt(zj) log

K∑
k=1

η
(j)
t,k ζ(zj ;µk) dzj .

We can lower bound this with Jensen’s inequality to get,

H[qt(zj)] ≥
K∑
k=1

log

∫
qt(zj) η

(j)
t,k ζ(zj ;µk) dzj

=

K∑
k=1

log

(
η
(j)
t,k

K∑
k′=1

η
(j)
t,k′

∫
ζ(zj ;µk′) ζ(zj ;µk) dzj

)

=

K∑
k=1

log

(
η
(j)
t,k

K∑
k′=1

η
(j)
t,k′ ζ

∗
k,k′

)

where we have defined ζ∗k,k′ = ζ∗k′,k =
∫
ζ(zj ;µk′) ζ(zj ;µk) dzj as the convolution of a pair of

kernel functions.
Now, to perform inference, we can perform gradient ascent directly on the evidence lower bound

(ELBO) on the log marginal likelihood, which is just the sum of these two terms. That is, we drive
firing rates such that,

η
(j)
t,k = η

(j)
t−1,k + α∇η

(
Eqt−1(z) [log p(z |θ)] +H[qt−1(zj)]

)
.

The gradient of the ELBO has two components, the first from the expected log probability and
the second from the entropy. The first is quite intuitive,

∂

∂η
(j)
t,k

Eqt(z) [log p(z |θ)] = b̃
(j)
k +

∑
i∈ne(j)

K∑
k′=1

η
(i)
t,k′ w̃

(i,j)
k′,k .

As in the discrete random variable case, the firing rates of neurons representing the pair (j, k), are
driven by a bias and a weighted sum of activity from connected neurons. Now, however, the bias
and the weights reflect integrations with respect to the basis functions.

185

The second term comes from the lower bound on the entropy,

∂

∂η
(j)
t,k

H[qt(zj)] =
1

η
(j)
t,k

+
∑
k′ ̸=k

∂

∂η
(j)
t,k

log

η(j)t,k ζ∗k′,k + ∑
k′′ ̸=k

η
(j)
t,k′′ ζ

∗
k′,k′′


=

1

η
(j)
t,k

+
∑
k′ ̸=k

ζ∗k′,k

(∑K
k′′=1 η

(j)
t,k′′ ζ

∗
k′,k′′

)−1
. (9.7)

While less intuitive, this term effectively provides a damping signal that prevents one kernel from
dominating the rest. As the rates approach one, the first term in (9.7) diminishes. We leave more
detailed studies of the biological plausibility of this approach to future work.

9.7.3 Alternative Representations of Probability

The introduction enumerated a host of potential neural representations of probability and corre-
sponding inference algorithms. Eventually, these combinations of representation and algorithm
lead to some prediction of the dynamics of neural spiking. Often, these dynamics follow standard
forms, like the linear-nonlinear cascade of the GLM. If this is the case, then we should be able to
derive probabilistic models for neural data that incorporate the hypothesized dynamics of Bayesian
inference.

One popular theory of representation is the probabilistic population code (PPC) (Ma et al.,
2006). According to this theory, the Poisson-like variability of neurons leads to a likelihood of a
random variable for any particular spike train, p(s | zj). Combined with a prior, this yields a pos-
terior distribution, p(zj | s). In their theory, the encoded distribution is exactly this posterior,
p̂(zj) = p(zj | s).

This leads to two levels of randomness. While the neurons may be driven with firing rates that, in
expectation, encode the distribution p̄(zj), the randomness in s implies a distribution over encoded
distributions, p(p̂(zj)). This doubly stochastic nature has been explored by Zemel et al. (1998), Sa-
hani and Dayan (2003), and others. Ma et al. (2006) skirt this issue by assuming that as the number
of neurons grows, this distribution over distributions collapses to its mode, p(p̂(zj)) = δp∗(zj),
which is presumed to be approximately equal to the desired distribution. That is, p∗(zj) ≈ p̄(zj).
In their example, a Gaussian distribution is encoded by a population of neurons with radial basis
function tuning curves. The mean is encoded by the relative firing rate of the activity, and the preci-
sion is encoded by the absolute firing rate, or gain, of the population.

Their main contribution is a demonstration of how inference in some simple probabilistic mod-

186

els, like a naïve Bayes model for cue combination, can be performed with simple linear functions on
PPCs. For example, in simple naïve Bayes models, downstream neurons only need to sum popula-
tion activity to combine evidence and compute an updated posterior. However, other probabilistic
computations, like marginalization and variational inference, do require nonlinear operations (Beck
et al., 2011; 2012).

If neural populations are performing inference with PPCs using linear operations, then the neu-
ral spike trains recorded from these populations should follow linear Hawkes process dynamics.
Thus, the tools of Chapters 2 and 3 could provide a mechanism for inferring the connection weights.
Given these connection weights and an estimate of the tuning curves, it should be possible to reverse
engineer the underlying probabilistic model. This provides one more avenue toward connecting
theory and experiment.

9.8 Conclusion

This chapter has taken a novel look at the problem of connecting the theory of neural computation
to experimental recording. While the traditional approach of making specific, testable predictions
of a theory remains invaluable, this is a process we would like to automate as much as possible. With
the advent of large-scale recording technologies, the bottleneck in the scientific process moves from
collecting evidence to designing experiments and revising theories. Here, we have suggested that the
scientific loop of theorizing, experimenting, and revising may be closed by formulating our theories
in the language of prior distributions in a Bayesian probabilistic model of neural data. With such a
model, we could hypothetically measure the marginal likelihood of a theory given the data, suggest
experiments to refine our estimate of theoretical values, and revise our theories in an automated
fashion. This chapter has not nearly closed this loop, but it has provided a framework for thinking
about a future in which theoretical, computational, and systems neuroscience are tightly tethered.

187

10
Conclusion

Recent advances in neural recording technologies have stirred great excitement. It seems that a more
complete understanding of neural computation is within our grasp. Armed with these powerful
tools, we can peer into the brain and observe the activity of most, if not all, of the neurons in a cir-
cuit. What a major advance over the handfuls of neurons we were limited to only a few years ago!
All we must do is extract the underlying patterns and principles from these large scale recordings.

While these advances present unprecedented opportunities, the task of translating data into un-
derstanding is far from trivial. The human genome has been known for a decade now (Consortium,
2004; Gregory et al., 2006), yet much of its structure remains enigmatic. The connectome of the
nematode C. Elegans has been known for three decades (White et al., 1986), yet our understanding
of this simple organism with fewer than 400 neurons is still incomplete. At the heart of these en-
deavors is the search for meaningful abstractions and structured representations given complex and
noisy data. Our success in reverse engineering neural computation relies critically on our ability to
discover such structure. This thesis has developed a number of methods for instantiating structural
hypotheses in the form of probabilistic models and turning the crank of Bayesian inference in order
to reason about them.

I believe the path forward lies in the iterative refinement of theories guided by both top-down
considerations of algorithmic goals and complexity-theoretic constraints, and bottom-up, data-
driven analyses of neural data. The Bayesian methods presented in this thesis are designed to acceler-

188

ate this process, providing “data microscopes” that allow us to visualize complex, high-dimensional
data in new and interpretable ways. I will briefly discuss two directions in which these methods
should continue to be developed.

10.1 Toward Programmatic Models of Neural Computation

As we have shown here, hierarchical probabilistic models provide an intuitive language for capturing
different types of abstraction, allowing us to formalize generative processes of how data comes to
be. However, as these models grow in scope and scale, the language of probabilistic models becomes
cumbersome. At the same time, as our models grow in complexity, they look more and more like
probabilistic programs (Goodman et al., 2008).

The probabilistic models developed in this thesis can all be written in this way. For example, the
hidden Markov models of Chapter 7 are equivalent to the following program:

Require: π(0),P ,Λ
for t = 1, . . . , T do

if t = 1 then
zt ∼ Discrete(π(0))

else

zt ∼ Discrete(π(zt−1))
end if

forn = 1, . . . , N do

st,n ∼ Poisson(λzt,n)
end for

end for

Program 10.1: Programmatic representation of a hiddenMarkovmodel.

This representation is equivalent to the probabilistic model (it implies the same distribution
over z andS), but this description combines stochastic operations, like sampling, with basic control
flow, like if statements and for loops. This powerful combination not only enables rapid formula-
tion of models for neural data, it also forms the basis for a “probabilistic language of thought,” an
idea that is taking hold in cognitive science (Goodman et al., 2014). As we seek to bridge the gap
between cognitive algorithms and neural implementations, it will help if we are speaking the same
language.

Of course, the “no free lunch” theorem applies here as well. While probabilistic programming
languages make it easy to specify complex generative processes, they make it just as easy to specify

189

models for which Bayesian inference is completely intractable. While much progress has been made
in general purpose inference algorithms (Goodman et al., 2008; Ranganath et al., 2014; Mansinghka
et al., 2014; Wood et al., 2015; Kucukelbir et al., 2015), these “black box” inference algorithms are, by
design, not capitalizing on model-specific structure that the rather bespoke inference algorithms of
this thesis have leveraged. This will certainly change as probabilistic program “compilers” become
more adept at recognizing model structure, but this is currently a major challenge.

10.2 Toward Joint Models of Neural Activity, Behavior, and Environment

This thesis has focused solely on modeling the dynamics and structure of neural spike trains, how-
ever, this data is often collected from organisms as they perform natural behaviors in complex be-
haviors. For example, massive recordings are now being collected from animals in decision making
(e.g. Briggman et al., 2005), freely behaving (e.g. Prevedel et al., 2014), and evoked response (e.g.
Portugues et al., 2014) tasks. This type of data provides a tremendous opportunity to study the rela-
tionship between neural activity, natural behavior, and environment. But first, we must formulate
and fit a model that captures both the complex dynamics of neural activity, the rich repertoire of
behavior, and the environmental state. The models and inference algorithms designed in this thesis
capture core notions of state and dynamics that can be extended, in an intuitive way, to these types
of recordings.

For example, large-scale recordings have revealed that ensembles of neurons reliably participate
together during natural or trained behavior, suggesting that task-related neural activity might be
lower-dimensional than the number of recorded neurons, and that these neurons might evolve
through different states over time in an environmentally dependent manner. The dynamical sys-
tem models developed in this thesis can naturally instantiate these hypotheses. Consider a model
in which neural spike trains, st, behavioral time series, bt, and environmental stimuli, et, are si-
multaneously measured. A simple hypothesis is that the neural spike trains and the behavior are
conditionally independent given underlying states, xt and zt, and that the evolution of these states
depends on the environment, et. Such a model enables us to identify the low dimensional states of
neural activity and overt behavior, as well as their dynamics. Moreover, it enables us to predict one
given the others. With relatively minor adjustments, the inference algorithms developed previously
can be extended to handle these multimodal datasets.

Ultimately, the goal of computational and systems neuroscience is to understand this interplay
between environment, neural activity, and behavior. As with all scientific endeavors, our success

190

will be measured in our ability to articulate theories of neural computation that explain, in simpler
terms, the complex nature of these multifaceted systems. With the advent of recording technologies
capable of probing neural circuits at unprecedented scale and advances in machine learning provid-
ing the computational and statistical tools for making sense of complex data, it seems the stage is set
for major breakthroughs in our understanding of nature’s most sophisticated computer: the human
brain.

191

A
Common Distributions

This thesis makes use of a number of common distributions. The notation z ∼ P(θ)means that
the random variable z is sampled from (or distributed according to) the distributionP, which is pa-
rameterized by θ. When we writeP(z | θ)we refer to the density (assuming it exists) ofP evaluated
at z. Here, we provide a summary of common distributions and their parametric densities or mass
functions.

Bernoulli

For a binary random variable x ∈ {0, 1}with ρ ∈ [0, 1],

Bern(x | ρ) = ρx(1− ρ)1−x.

Beta

For a continuous random variable ρ ∈ [0, 1]with a > 0 and b > 0,

Beta(ρ | a, b) = Γ(a+ b)

Γ(a)Γ(b)
ρa−1(1− ρ)b−1.

The beta distribution is a conjugate prior for the Bernoulli, binomial, and negative binomial distri-
butions.

192

Binomial

For an integer-valued random variable x ∈ {1, . . . , N}withN ∈ N and ρ ∈ [0, 1],

Bin(x |N, ρ) =
(
N

x

)
ρx(1− ρ)N−x.

Dirichlet

For a probability vectorπ ∈ [0, 1]K such that πk ≥ 0 and
∑

k πk = 1, and parameterα ∈ RK+ ,

Dir(π |α) =
Γ
(∑K

k=1 αk
)∏K

k=1 Γ(αk)

K∏
k=1

παk−1k .

The Dirichlet distribution is a conjugate prior to the discrete and multinomial distributions.

Discrete

For a discrete random variable x ∈ {1, . . . ,K}withK distinct outcomes, and a probability vec-
torπ ∈ [0, 1]K that is nonnegative and sums to one,

Discrete(x |π) =
K∏
k=1

π
I[x=k]
k .

Gamma

For a nonnegative random variable λ ∈ R+ with shape parameter a > 0 and rate parameter b > 0,

Gamma(λ | a, b) = ba

Γ(a)
λa−1e−bλ.

The gamma distribution is the conjugate prior to the Poisson distribution, as well as to the rate pa-
rameter of the gamma distribution. The gamma distribution may also be parameterized in terms of
a scale parameter, θ = b−1, but we do not use that parameterization in this thesis.

193

Gaussian

For a random variable x ∈ RD with meanµ ∈ RD and positive semidefinite covariance ma-
trixΣ ∈ RD×D,

N (x |µ,Σ) = (2π)−D/2|Σ|−1/2 exp
{
−1

2
(x− µ)TΣ−1(x− µ)

}
.

Multinomial

For a vector of discrete counts x ∈ NK with
∑

k xk = N and a probability vectorπ ∈ [0, 1]K ,

Mult(x |N,π) =
(

N

x1, x2, . . . xK

) K∏
k=1

πxkk ,

where (
N

x1, x2, . . . xK

)
=

N !

x1! . . . xK !
.

Negative Binomial

For an integer-valued random variable x ∈ Nwith shape parameters ν ∈ R+ and probabil-
ity ρ ∈ [0, 1],

NB(x | ν, ρ) =
(
x+ ν − 1

x

)
ρx(1− ρ)ν .

Poisson

For an integer random variable x ∈ N and a nonnegative rate parameters λ ∈ R+,

Poisson(x |λ) = 1

x!
λxe−λ.

194

Uniform

For a continuous random variable x ∈ R,

Unif(x | a, b) =

 1
b−a if a < x < b,

0 o.w..

195

References

Yashar Ahmadian, Jonathan W Pillow, and Liam Paninski. Efficient Markov chain Monte Carlo
methods for decoding neural spike trains. Neural Computation, 23(1):46–96, 2011.

Misha B Ahrens, Michael B Orger, Drew N Robson, Jennifer M Li, and Philipp J Keller. Whole-
brain functional imaging at cellular resolution using light-sheet microscopy. Nature Methods, 10
(5):413–420, 2013.

Laurence Aitchison and Peter E Latham. Synaptic sampling: A connection between PSP variabil-
ity and uncertainty explains neurophysiological observations. arXiv preprint arXiv:1505.04544,
2015.

Laurence Aitchison and Máté Lengyel. The Hamiltonian brain. arXiv preprint arXiv:1407.0973,
2014.

David J Aldous. Representations for partially exchangeable arrays of random variables. Journal of
Multivariate Analysis, 11(4):581–598, 1981.

Charles H Anderson and David C Van Essen. Neurobiological computational systems. Computa-
tional Intelligence Imitating Life, pages 1–11, 1994.

Christophe Andrieu, Nando De Freitas, Arnaud Doucet, and Michael I Jordan. An introduction
to MCMC for machine learning. Machine Learning, 50(1-2):5–43, 2003.

Christophe Andrieu, Arnaud Doucet, and Roman Holenstein. Particle Markov chain Monte
Carlo methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 72(3):
269–342, 2010.

Michael J Barber, John W Clark, and Charles H Anderson. Neural representation of probabilistic
information. Neural Computation, 15(8):1843–64, August 2003.

Leonard E Baum and Ted Petrie. Statistical inference for probabilistic functions of finite state
Markov chains. The Annals of Mathematical Statistics, 37(6):1554–1563, 1966.

Matthew J. Beal, Zoubin Ghahramani, and Carl E. Rasmussen. The infinite hidden Markov
model. Advances in Neural Information Processing Systems 14, pages 577–585, 2002.

196

Jeffrey M Beck and Alexandre Pouget. Exact inferences in a neural implementation of a hidden
Markov model. Neural Computation, 19(5):1344–1361, 2007.

Jeffrey M Beck, Peter E Latham, and Alexandre Pouget. Marginalization in neural circuits with
divisive normalization. The Journal of Neuroscience, 31(43):15310–15319, 2011.

Jeffrey M Beck, Katherine A Heller, and Alexandre Pouget. Complex inference in neural circuits
with probabilistic population codes and topic models. Advances in Neural Information Processing
Systems, pages 3059–3067, 2012.

Yoshua Bengio and Paolo Frasconi. An input output HMM architecture. Advances in Neural
Information Processing Systems, pages 427–434, 1995.

Pietro Berkes, Gergo Orbán, Máté Lengyel, and József Fiser. Spontaneous cortical activity reveals
hallmarks of an optimal internal model of the environment. Science, 331(6013):83–7, January 2011.

Gordon J Berman, Daniel M Choi, William Bialek, and Joshua W Shaevitz. Mapping the stereo-
typed behaviour of freely moving fruit flies. Journal of The Royal Society Interface, 11(99):
20140672, 2014.

Philippe Biane, Jim Pitman, and Marc Yor. Probability laws related to the Jacobi theta and Rie-
mann zeta functions, and Brownian excursions. Bulletin of the American Mathematical Society, 38
(4):435–465, 2001.

Christopher M Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

David M Blei. Build, compute, critique, repeat: Data analysis with latent variable models. Annual
Review of Statistics and Its Application, 1:203–232, 2014.

David M Blei, Andrew Y Ng, and Michael I Jordan. Latent Dirichlet allocation. The Journal of
Machine Learning Research, 3:993–1022, 2003.

Carolyn R Block and Richard Block. Street gang crime in Chicago. US Department of Justice,
Office of Justice Programs, National Institute of Justice, 1993.

Carolyn R Block, Richard Block, and Illinois Criminal Justice Information Authority. Homicides
in Chicago, 1965-1995. ICPSR06399-v5. Ann Arbor, MI: Inter-university Consortium for Political
and Social Research [distributor], July 2005.

197

Charles Blundell, Katherine A Heller, and Jeffrey M Beck. Modelling reciprocating relationships
with Hawkes processes. Advances in Neural Information Processing Systems, pages 2600–2608,
2012.

George EP Box. Sampling and Bayes’ inference in scientific modelling and robustness. Journal of
the Royal Statistical Society. Series A (General), pages 383–430, 1980.

David H Brainard and William T Freeman. Bayesian color constancy. Journal of the Optical Society
of America A, 14(7):1393–1411, 1997.

Kevin L Briggman, Henry DI Abarbanel, and William B Kristan. Optical imaging of neuronal
populations during decision-making. Science, 307(5711):896–901, 2005.

David R. Brillinger. Maximum likelihood analysis of spike trains of interacting nerve cells. Biologi-
cal Cybernetics, 59(3):189–200, August 1988.

David R Brillinger, Hugh L Bryant Jr, and Jose P Segundo. Identification of synaptic interactions.
Biological Cybernetics, 22(4):213–228, 1976.

Michael Bryant and Erik B Sudderth. Truly nonparametric online variational inference for hier-
archical Dirichlet processes. Advances in Neural Information Processing Systems 25, pages 2699–
2707, 2012.

Lars Buesing, Johannes Bill, Bernhard Nessler, and Wolfgang Maass. Neural dynamics as sampling:
a model for stochastic computation in recurrent networks of spiking neurons. PLoS Computa-
tional Biology, 7(11):e1002211, November 2011.

Lars Buesing, Jakob H. Macke, and Maneesh Sahani. Learning stable, regularised latent models of
neural population dynamics. Network: Computation in Neural Systems, 23:24–47, 2012a.

Lars Buesing, Jakob H Macke, and Maneesh Sahani. Spectral learning of linear dynamics from
generalised-linear observations with application to neural population data. Advances in Neural
Information Processing Systems, pages 1682–1690, 2012b.

Lars Buesing, Timothy A Machado, John P Cunningham, and Liam Paninski. Clustered factor
analysis of multineuronal spike data. Advances in Neural Information Processing Systems, pages
3500–3508, 2014.

Ed Bullmore and Olaf Sporns. Complex brain networks: graph theoretical analysis of structural
and functional systems. Nature Reviews Neuroscience, 10(3):186–198, 2009.

198

Santiago Ramón Cajal. Textura del Sistema Nervioso del Hombre y los Vertebrados, volume 1.
Imprenta y Librería de Nicolás Moya, Madrid, Spain, 1899.

Natalia Caporale and Yang Dan. Spike timing-dependent plasticity: a Hebbian learning rule.
Annual Review of Neuroscience, 31:25–46, 2008.

Nick Chater and Christopher D Manning. Probabilistic models of language processing and acqui-
sition. Trends in Cognitive Sciences, 10(7):335–344, 2006.

Zhe Chen, Fabian Kloosterman, Emery N Brown, and Matthew A Wilson. Uncovering spatial
topology represented by rat hippocampal population neuronal codes. Journal of Computational
Neuroscience, 33(2):227–255, 2012.

Zhe Chen, Stephen N Gomperts, Jun Yamamoto, and Matthew A Wilson. Neural representation
of spatial topology in the rodent hippocampus. Neural Computation, 26(1):1–39, 2014.

Sharat Chikkerur, Thomas Serre, Cheston Tan, and Tomaso Poggio. What and where: A Bayesian
inference theory of attention. Vision Research, 50(22):2233–2247, 2010.

Yoon Sik Cho, Aram Galstyan, Jeff Brantingham, and George Tita. Latent point process models
for spatial-temporal networks. arXiv:1302.2671, 2013.

International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of
the human genome. Nature, 431(7011):931–945, 2004.

Aaron C Courville, Nathaniel D Daw, and David S Touretzky. Bayesian theories of conditioning in
a changing world. Trends in Cognitive Sciences, 10(7):294–300, 2006.

Ronald L Cowan and Charles J Wilson. Spontaneous firing patterns and axonal projections of
single corticostriatal neurons in the rat medial agranular cortex. Journal of Neurophysiology, 71(1):
17–32, 1994.

W Maxwell Cowan, Thomas C Südhof, and Charles F Stevens. Synapses. Johns Hopkins Univer-
sity Press, 2003.

Mary Kathryn Cowles and Bradley P Carlin. Markov chain Monte Carlo convergence diagnostics:
a comparative review. Journal of the American Statistical Association, 91:883–904, 1996.

John P Cunningham and Byron M Yu. Dimensionality reduction for large-scale neural recordings.
Nature Neuroscience, 17(11):1500–1509, 2014.

199

Paul Dagum and Michael Luby. Approximating probabilistic inference in Bayesian belief networks
is NP-hard. Artificial Intelligence, 60(1):141–153, 1993.

Daryl J Daley and David Vere-Jones. An introduction to the theory of point processes: Volume I:
Elementary Theory and Methods. Springer Science & Business Media, 2 edition, 2003.

Peter Dayan and Larry F Abbott. Theoretical neuroscience: Computational and mathematical
modeling of neural systems. MIT Press, 2001.

Peter Dayan and Joshua A Solomon. Selective Bayes: Attentional load and crowding. Vision
Research, 50(22):2248–2260, 2010.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological), pages
1–38, 1977.

Sophie Deneve. Bayesian spiking neurons I: inference. Neural Computation, 20(1):91–117, January
2008.

Luc Devroye. Non-Uniform Random Variate Generation. Springer-Verlag, New York, USA, 1986.

Christopher DuBois, Carter Butts, and Padhraic Smyth. Stochastic block modeling of relational
event dynamics. Proceedings of the International Conference on Artificial Intelligence and Statistics,
pages 238–246, 2013.

Seif Eldawlatly, Yang Zhou, Rong Jin, and Karim G Oweiss. On the use of dynamic Bayesian
networks in reconstructing functional neuronal networks from spike train ensembles. Neural
Computation, 22(1):158–189, 2010.

Marc O Ernst and Martin S Banks. Humans integrate visual and haptic information in a statisti-
cally optimal fashion. Nature, 415(6870):429–433, 2002.

Sean Escola, Alfredo Fontanini, Don Katz, and Liam Paninski. Hidden Markov models for the
stimulus-response relationships of multistate neural systems. Neural Computation, 23(5):1071–1132,
2011.

Warren John Ewens. Population genetics theory—the past and the future. In S. Lessard, editor,
Mathematical and Statistical Developments of Evolutionary Theory, pages 177–227. Springer, 1990.

Daniel E Feldman. The spike-timing dependence of plasticity. Neuron, 75(4):556–71, August 2012.

200

Daniel J Felleman and David C Van Essen. Distributed hierarchical processing in the primate
cerebral cortex. Cerebral Cortex, 1(1):1–47, 1991.

Thomas S Ferguson. A Bayesian analysis of some nonparametric problems. The Annals of Statis-
tics, pages 209–230, 1973.

Christopher R Fetsch, Amanda H Turner, Gregory C DeAngelis, and Dora E Angelaki. Dynamic
reweighting of visual and vestibular cues during self-motion perception. The Journal of Neuro-
science, 29(49):15601–15612, 2009.

Christopher R Fetsch, Alexandre Pouget, Gregory C DeAngelis, and Dora E Angelaki. Neural
correlates of reliability-based cue weighting during multisensory integration. Nature Neuroscience,
15(1):146–154, 2012.

József Fiser, Pietro Berkes, Gergő Orbán, and Máté Lengyel. Statistically optimal perception and
learning: from behavior to neural representations. Trends in Cognitive Sciences, 14(3):119–130, 2010.

Alyson K Fletcher, Sundeep Rangan, Lav R Varshney, and Aniruddha Bhargava. Neural recon-
struction with approximate message passing (neuramp). Advances in Neural Information Process-
ing Systems, pages 2555–2563, 2011.

Emily B Fox. Bayesian nonparametric learning of complex dynamical phenomena. PhD thesis,
Massachusetts Institute of Technology, 2009.

Emily B Fox, Erik B Sudderth, Michael I Jordan, and Alan S Willsky. An HDP-HMM for systems
with state persistence. Proceedings of the International Conference on Machine Learning, pages
312–319, 2008.

Jeremy Freeman, Greg D Field, Peter H Li, Martin Greschner, Deborah E Gunning, Keith Math-
ieson, Alexander Sher, Alan M Litke, Liam Paninski, Eero P Simoncelli, et al. Mapping nonlinear
receptive field structure in primate retina at single cone resolution. eLife, 4:e05241, 2015.

Karl Friston. The free-energy principle: a unified brain theory? Nature Reviews. Neuroscience, 11
(2):127–38, February 2010.

Karl J Friston. Functional and effective connectivity in neuroimaging: a synthesis. Human Brain
Mapping, 2(1-2):56–78, 1994.

Deep Ganguli and Eero P Simoncelli. Implicit encoding of prior probabilities in optimal neural
populations. Advances in Neural Information Processing Systems, pages 6–9, 2010.

201

Peiran Gao and Surya Ganguli. On simplicity and complexity in the brave new world of large-scale
neuroscience. Current Opinion in Neurobiology, 32:148–155, 2015.

Andrew Gelman, John B Carlin, Hal S Stern, David B Dunson, Aki Vehtari, and Donald B Rubin.
Bayesian Data Analysis. CRC press, 3rd edition, 2013.

Stuart Geman and Donald Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian
restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, (6):721–
741, 1984.

Felipe Gerhard, Tilman Kispersky, Gabrielle J Gutierrez, Eve Marder, Mark Kramer, and Uri Eden.
Successful reconstruction of a physiological circuit with known connectivity from spiking activity
alone. PLoS Computational Biology, 9(7):e1003138, 2013.

Samuel J Gershman, Matthew D Hoffman, and David M Blei. Nonparametric variational infer-
ence. Proceedings of the International Conference on Machine Learning, pages 663–670, 2012a.

Samuel J Gershman, Edward Vul, and Joshua B Tenenbaum. Multistability and perceptual infer-
ence. Neural Computation, 24(1):1–24, 2012b.

Sebastian Gerwinn, Jakob Macke, Matthias Seeger, and Matthias Bethge. Bayesian inference for
spiking neuron models with a sparsity prior. Advances in Neural Information Processing Systems,
pages 529–536, 2008.

Charles J Geyer. Practical Markov Chain Monte Carlo. Statistical Science, pages 473–483, 1992.

Walter R Gilks. Markov Chain Monte Carlo. Wiley Online Library, 2005.

Anna Goldenberg, Alice X Zheng, Stephen E Fienberg, and Edoardo M Airoldi. A survey of statis-
tical network models. Foundations and Trends in Machine Learning, 2(2):129–233, 2010.

Manuel Gomez-Rodriguez, Jure Leskovec, and Andreas Krause. Inferring networks of diffusion
and influence. Proceedings of the ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, pages 1019–1028, 2010.

Noah Goodman, Vikash Mansinghka, Daniel M Roy, Keith Bonawitz, and Joshua B Tenenbaum.
Church: a language for generative models. Proceedings of the Conference on Uncertainty in Artifi-
cial Intelligence, pages 220––229, 2008.

202

Noah D Goodman, Joshua B Tenenbaum, and Tobias Gerstenberg. Concepts in a probabilistic
language of thought. Technical report, Center for Brains, Minds and Machines (CBMM), 2014.

Agnieszka Grabska-Barwinska, Jeff Beck, Alexandre Pouget, and Peter Latham. Demixing odors-
fast inference in olfaction. Advances in Neural Information Processing Systems, pages 1968–1976,
2013.

SG Gregory, KF Barlow, KE McLay, R Kaul, D Swarbreck, A Dunham, CE Scott, KL Howe,
K Woodfine, CCA Spencer, et al. The DNA sequence and biological annotation of human chro-
mosome 1. Nature, 441(7091):315–321, 2006.

Thomas L Griffiths, Charles Kemp, and Joshua B Tenenbaum. Bayesian models of cognition. In
Ron Sun, editor, The Cambridge Handbook of Computational Psychology. Cambridge University
Press, 2008.

Roger B Grosse, Chris J Maddison, and Ruslan R Salakhutdinov. Annealing between distributions
by averaging moments. Advances in Neural Information Processing Systems, pages 2769–2777,
2013.

Roger B Grosse, Zoubin Ghahramani, and Ryan P Adams. Sandwiching the marginal likelihood
using bidirectional Monte Carlo. arXiv preprint arXiv:1511.02543, 2015.

Yong Gu, Dora E Angelaki, and Gregory C DeAngelis. Neural correlates of multisensory cue
integration in macaque MSTd. Nature Neuroscience, 11(10):1201–1210, 2008.

Fangjian Guo, Charles Blundell, Hanna Wallach, and Katherine A Heller. The Bayesian echo
chamber: Modeling influence in conversations. arXiv preprint arXiv:1411.2674, 2014.

Alan G Hawkes. Spectra of some self-exciting and mutually exciting point processes. Biometrika,
58(1):83, 1971.

Moritz Helmstaedter, Kevin L Briggman, Srinivas C Turaga, Viren Jain, H Sebastian Seung, and
Winfried Denk. Connectomic reconstruction of the inner plexiform layer in the mouse retina.
Nature, 500(7461):168–174, 2013.

Geoffrey E Hinton. How neural networks learn from experience. Scientific American, 1992.

Geoffrey E Hinton and Terrence J Sejnowski. Optimal perceptual inference. Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 1983.

203

Daniel R Hochbaum, Yongxin Zhao, Samouil L Farhi, Nathan Klapoetke, Christopher A Wer-
ley, Vikrant Kapoor, Peng Zou, Joel M Kralj, Dougal Maclaurin, Niklas Smedemark-Margulies,
et al. All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins.
Nature Methods, 2014.

Alan L Hodgkin and Andrew F Huxley. A quantitative description of membrane current and its
application to conduction and excitation in nerve. The Journal of Physiology, 117(4):500, 1952.

Peter D Hoff. Modeling homophily and stochastic equivalence in symmetric relational data. Ad-
vances in Neural Information Processing Systems, 20:1–8, 2008.

Matthew D Hoffman, David M Blei, Chong Wang, and John Paisley. Stochastic variational infer-
ence. The Journal of Machine Learning Research, 14(1):1303–1347, 2013.

Douglas N. Hoover. Relations on probability spaces and arrays of random variables. Technical
report, Institute for Advanced Study, Princeton, 1979.

John J Hopfield. Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the National Academy of Sciences, 79(8):2554–2558, 1982.

Patrik O Hoyer and Aapo Hyvarinen. Interpreting neural response variability as Monte Carlo
sampling of the posterior. Advances in neural information processing systems, pages 293–300, 2003.

Yanping Huang and Rajesh P. N. Rao. Predictive coding. Wiley Interdisciplinary Reviews: Cogni-
tive Science, 2(5):580–593, September 2011.

David H Hubel and Torsten N Wiesel. Receptive fields, binocular interaction and functional
architecture in the cat’s visual cortex. The Journal of Physiology, 160(1):106–154, 1962.

Hemant Ishwaran and Mahmoud Zarepour. Exact and approximate sum representations for the
Dirichlet process. Canadian Journal of Statistics, 30(2):269–283, 2002.

Tomoharu Iwata, Amar Shah, and Zoubin Ghahramani. Discovering latent influence in online
social activities via shared cascade Poisson processes. Proceedings of the ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pages 266–274, 2013.

Mehrdad Jazayeri and Michael N Shadlen. Temporal context calibrates interval timing. Nature
Neuroscience, 13(8):1020–1026, 2010.

204

Mehrdad Jazayeri and Michael N Shadlen. A neural mechanism for sensing and reproducing a time
interval. Current Biology, 25(20):2599–2609, 2015.

Matthew J Johnson. Bayesian time series models and scalable inference. PhD thesis, Massachusetts
Institute of Technology, June 2014.

Matthew J Johnson and Alan S Willsky. Bayesian nonparametric hidden semi-Markov models.
Journal of Machine Learning Research, 14(1):673–701, 2013.

Matthew J Johnson and Alan S Willsky. Stochastic variational inference for Bayesian time series
models. Proceedings of the International Conference on Machine Learning, 32:1854–1862, 2014.

Matthew J Johnson, Scott W Linderman, Sandeep R Datta, and Ryan P Adams. Discovering
switching autoregressive dynamics in neural spike train recordings. Computational and Systems
Neuroscience (Cosyne) Abstracts, 2015.

Lauren M Jones, Alfredo Fontanini, Brian F Sadacca, Paul Miller, and Donald B Katz. Natural
stimuli evoke dynamic sequences of states in sensory cortical ensembles. Proceedings of the Na-
tional Academy of Sciences, 104(47):18772–18777, 2007.

Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An introduction
to variational methods for graphical models. Machine Learning, 37(2):183–233, 1999.

Eric R Kandel, James H Schwartz, Thomas M Jessell, et al. Principles of neural science, volume 4.
McGraw-Hill New York, 2000.

David Kappel, Stefan Habenschuss, Robert Legenstein, and Wolfgang Maass. Network plasticity
as Bayesian inference. PLoS Computational Biology, 11(11):e1004485, 2015a.

David Kappel, Stefan Habenschuss, Robert Legenstein, and Wolfgang Maass. Synaptic sampling:
A Bayesian approach to neural network plasticity and rewiring. Advances in Neural Information
Processing Systems, pages 370–378, 2015b.

Robert E Kass and Adrian E Raftery. Bayes factors. Journal of the American Statistical Association,
90(430):773–795, 1995.

Jason ND Kerr and Winfried Denk. Imaging in vivo: watching the brain in action. Nature Reviews
Neuroscience, 9(3):195–205, 2008.

205

Roozbeh Kiani and Michael N Shadlen. Representation of confidence associated with a decision
by neurons in the parietal cortex. Science, 324(5928):759–64, May 2009.

John F. C. Kingman. Poisson Processes (Oxford Studies in Probability). Oxford University Press,
January 1993. ISBN 0198536933.

David C Knill and Whitman Richards. Perception as Bayesian inference. Cambridge University
Press, 1996.

Konrad P Körding and Daniel M Wolpert. Bayesian integration in sensorimotor learning. Nature,
427(6971):244–7, January 2004.

Alp Kucukelbir, Rajesh Ranganath, Andrew Gelman, and David Blei. Automatic variational
inference in Stan. Advances in Neural Information Processing Systems, pages 568–576, 2015.

Stephen W Kuffler. Discharge patterns and functional organization of mammalian retina. Journal
of Neurophysiology, 16(1):37–68, 1953.

Harold W Kuhn. The Hungarian method for the assignment problem. Naval Research Logistics
Quarterly, 2(1-2):83–97, 1955.

Kenneth W Latimer, Jacob L Yates, Miriam LR Meister, Alexander C Huk, and Jonathan W Pil-
low. Single-trial spike trains in parietal cortex reveal discrete steps during decision-making. Science,
349(6244):184–187, 2015.

Tai Sing Lee and David Mumford. Hierarchical Bayesian inference in the visual cortex. Journal of
the Optical Society of America A, 20(7):1434–1448, 2003.

Robert Legenstein and Wolfgang Maass. Ensembles of spiking neurons with noise support optimal
probabilistic inference in a dynamically changing environment. PLoS Computational Biology, 10
(10):e1003859, 2014.

William C Lemon, Stefan R Pulver, Burkhard Höckendorf, Katie McDole, Kristin Branson,
Jeremy Freeman, and Philipp J Keller. Whole-central nervous system functional imaging in lar-
val Drosophila. Nature Communications, 6, 2015.

Michael S Lewicki. A review of methods for spike sorting: the detection and classification of neural
action potentials. Network: Computation in Neural Systems, 9(4):R53–R78, 1998.

206

Percy Liang, Slav Petrov, Michael I Jordan, and Dan Klein. The infinite PCFG using hierarchical
Dirichlet processes. Proceedings of Empirical Methods in Natural Language Processing, pages
688–697, 2007.

David Liben-Nowell and Jon Kleinberg. The link-prediction problem for social networks. Journal
of the American Society for Information Science and Technology, 58(7):1019–1031, 2007.

Jeff W Lichtman, Jean Livet, and Joshua R Sanes. A technicolour approach to the connectome.
Nature Reviews Neuroscience, 9(6):417–422, 2008.

Scott W Linderman and Ryan P. Adams. Discovering latent network structure in point process
data. Proceedings of the International Conference on Machine Learning, pages 1413–1421, 2014.

Scott W Linderman and Ryan P Adams. Scalable Bayesian inference for excitatory point process
networks. arXiv preprint arXiv:1507.03228, 2015.

Scott W Linderman and Ryan P Johnson, Matthew Jand Adams. Dependent multinomial models
made easy: Stick-breaking with the Pólya-gamma augmentation. Advances in Neural Information
Processing Systems, pages 3438–3446, 2015.

Scott W Linderman, Christopher H Stock, and Ryan P Adams. A framework for studying synap-
tic plasticity with neural spike train data. Advances in Neural Information Processing Systems,
pages 2330–2338, 2014.

Scott W Linderman, Ryan P Adams, and Jonathan W Pillow. Inferring structured connectivity
from spike trains under negative-binomial generalized linear models. Computational and Systems
Neuroscience (Cosyne) Abstracts, 2015.

Scott W Linderman, Matthew J Johnson, Matthew W Wilson, and Zhe Chen. A nonparametric
Bayesian approach to uncovering rat hippocampal population codes during spatial navigation.
Journal of Neuroscience Methods, 263:36–47, 2016a.

Scott W Linderman, Aaron Tucker, and Matthew J Johnson. Bayesian latent state space models of
neural activity. Computational and Systems Neuroscience (Cosyne) Abstracts, 2016b.

Fredrik Lindsten, Michael I Jordan, and Thomas B Schön. Ancestor sampling for particle Gibbs.
Advances in Neural Information Processing Systems, pages 2600–2608, 2012.

Shai Litvak and Shimon Ullman. Cortical circuitry implementing graphical models. Neural
Computation, 21(11):3010–3056, 2009.

207

James Robert Lloyd, Peter Orbanz, Zoubin Ghahramani, and Daniel M Roy. Random function
priors for exchangeable arrays with applications to graphs and relational data. Advances in Neural
Information Processing Systems, 2012.

Wei Ji Ma and Mehrdad Jazayeri. Neural coding of uncertainty and probability. Annual Review of
Neuroscience, 37:205–220, 2014.

Wei Ji Ma, Jeffrey M Beck, Peter E Latham, and Alexandre Pouget. Bayesian inference with proba-
bilistic population codes. Nature Neuroscience, 9(11):1432–8, November 2006.

David JC MacKay. Bayesian interpolation. Neural Computation, 4(3):415–447, 1992.

Jakob H Macke, Lars Buesing, John P Cunningham, M Yu Byron, Krishna V Shenoy, and Ma-
neesh Sahani. Empirical models of spiking in neural populations. Advances in neural information
processing systems, pages 1350–1358, 2011.

Evan Z Macosko, Anindita Basu, Rahul Satija, James Nemesh, Karthik Shekhar, Melissa Goldman,
Itay Tirosh, Allison R Bialas, Nolan Kamitaki, Emily M Martersteck, et al. Highly parallel genome-
wide expression profiling of individual cells using nanoliter droplets. Cell, 161(5):1202–1214, 2015.

Vikash Mansinghka, Daniel Selsam, and Yura Perov. Venture: a higher-order probabilistic pro-
gramming platform with programmable inference. arXiv preprint arXiv:1404.0099, 2014.

David Marr. Vision: A computational investigation into the human representation and processing of
visual information. MIT Press, 1982.

Paul Miller and Donald B Katz. Stochastic transitions between neural states in taste processing and
decision-making. The Journal of Neuroscience, 30(7):2559–2570, 2010.

T. J. Mitchell and J. J. Beauchamp. Bayesian variable selection in linear regression. Journal of the
American Statistical Association, 83(404):1023—-1032, 1988.

Shakir Mohamed, Zoubin Ghahramani, and Katherine A Heller. Bayesian and L1 approaches for
sparse unsupervised learning. Proceedings of the International Conference on Machine Learning,
pages 751–758, 2012.

Jesper Møller, Anne Randi Syversveen, and Rasmus Plenge Waagepetersen. Log Gaussian Cox
processes. Scandinavian Journal of Statistics, 25(3):451–482, 1998.

208

Michael L Morgan, Gregory C DeAngelis, and Dora E Angelaki. Multisensory integration in
macaque visual cortex depends on cue reliability. Neuron, 59(4):662–673, 2008.

Abigail Morrison, Markus Diesmann, and Wulfram Gerstner. Phenomenological models of synap-
tic plasticity based on spike timing. Biological Cybernetics, 98(6):459–478, 2008.

Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

Radford M Neal. Annealed importance sampling. Statistics and Computing, 11(2):125–139, 2001.

Radford M. Neal. MCMC using Hamiltonian dynamics. Handbook of Markov Chain Monte
Carlo, pages 113–162, 2010.

John A Nelder and R Jacob Baker. Generalized linear models. Encyclopedia of Statistical Sciences,
1972.

Bernhard Nessler, Michael Pfeiffer, Lars Buesing, and Wolfgang Maass. Bayesian computation
emerges in generic cortical microcircuits through spike-timing-dependent plasticity. PLoS Compu-
tational Biology, 9(4):e1003037, 2013.

Mark EJ Newman. The structure and function of complex networks. Society for Industrial and
Applied Mathematics (SIAM) Review, 45(2):167–256, 2003.

Krzysztof Nowicki and Tom A B Snijders. Estimation and prediction for stochastic blockstruc-
tures. Journal of the American Statistical Association, 96(455):1077–1087, 2001.

Seung Wook Oh, Julie A Harris, Lydia Ng, Brent Winslow, Nicholas Cain, Stefan Mihalas,
Quanxin Wang, Chris Lau, Leonard Kuan, Alex M Henry, et al. A mesoscale connectome of the
mouse brain. Nature, 508(7495):207–214, 2014.

Erkki Oja. Simplified neuron model as a principal component analyzer. Journal of Mathematical
Biology, 15(3):267–273, 1982.

John O’Keefe and Lynn Nadel. The Hippocampus as a Cognitive Map, volume 3. Clarendon Press,
1978.

Peter Orbanz and Daniel M Roy. Bayesian models of graphs, arrays and other exchangeable ran-
dom structures. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(2):437–461,
2015.

209

Peter Orbanz and Yee Whye Teh. Bayesian nonparametric models. In Encyclopedia of Machine
Learning, pages 81–89. Springer, 2011.

Adam M Packer, Darcy S Peterka, Jan J Hirtz, Rohit Prakash, Karl Deisseroth, and Rafael Yuste.
Two-photon optogenetics of dendritic spines and neural circuits. Nature Methods, 9(12):1202–
1205, 2012.

Liam Paninski. Maximum likelihood estimation of cascade point-process neural encoding models.
Network: Computation in Neural Systems, 15(4):243–262, January 2004.

Liam Paninski, Yashar Ahmadian, Daniel Gil Ferreira, Shinsuke Koyama, Kamiar Rahnama Rad,
Michael Vidne, Joshua Vogelstein, and Wei Wu. A new look at state-space models for neural data.
Journal of Computational Neuroscience, 29(1-2):107–126, 2010.

Andrew V Papachristos. Murder by structure: Dominance relations and the social structure of
gang homicide. American Journal of Sociology, 115(1):74–128, 2009.

Il Memming Park and Jonathan W Pillow. Bayesian spike-triggered covariance analysis. Advances
in Neural Information Processing Systems, pages 1692–1700, 2011.

Patrick O Perry and Patrick J Wolfe. Point process modelling for directed interaction networks.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2013.

Biljana Petreska, Byron Yu, John P Cunningham, Gopal Santhanam, Stephen I Ryu, Krishna V
Shenoy, and Maneesh Sahani. Dynamical segmentation of single trials from population neural
data. Advances in Neural Information Processing Systems, pages 756–764, 2011.

David Pfau, Eftychios A Pnevmatikakis, and Liam Paninski. Robust learning of low-dimensional
dynamics from large neural ensembles. Advances in Neural Information Processing Systems, pages
2391–2399, 2013.

Jonathan W. Pillow and James Scott. Fully Bayesian inference for neural models with negative-
binomial spiking. Advances in Neural Information Processing Systems, pages 1898–1906, 2012.

Jonathan W Pillow, Jonathon Shlens, Liam Paninski, Alexander Sher, Alan M Litke,
EJ Chichilnisky, and Eero P Simoncelli. Spatio-temporal correlations and visual signalling in a
complete neuronal population. Nature, 454(7207):995–999, 2008.

210

Eftychios A Pnevmatikakis, Daniel Soudry, Yuanjun Gao, Timothy A Machado, Josh Merel, David
Pfau, Thomas Reardon, Yu Mu, Clay Lacefield, Weijian Yang, et al. Simultaneous denoising, de-
convolution, and demixing of calcium imaging data. Neuron, 2016.

Nicholas G Polson, James G Scott, and Jesse Windle. Bayesian inference for logistic models using
Pólya-gamma latent variables. Journal of the American Statistical Association, 108(504):1339–1349,
2013.

Ruben Portugues, Claudia E Feierstein, Florian Engert, and Michael B Orger. Whole-brain activity
maps reveal stereotyped, distributed networks for visuomotor behavior. Neuron, 81(6):1328–1343,
2014.

Alexandre Pouget, Jeffrey M Beck, Wei Ji Ma, and Peter E Latham. Probabilistic brains: knowns
and unknowns. Nature Neuroscience, 16(9):1170–1178, 2013.

Robert Prevedel, Young-Gyu Yoon, Maximilian Hoffmann, Nikita Pak, Gordon Wetzstein, Saul
Kato, Tina Schrödel, Ramesh Raskar, Manuel Zimmer, Edward S Boyden, et al. Simultaneous
whole-animal 3d imaging of neuronal activity using light-field microscopy. Nature Methods, 11(7):
727–730, 2014.

Lawrence R Rabiner. A tutorial on hidden Markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

Adrian E Raftery and Steven Lewis. How many iterations in the Gibbs sampler? Bayesian Statis-
tics, pages 763–773, 1992.

Rajesh Ranganath, Sean Gerrish, and David M Blei. Black box variational inference. Proceedings of
the International Conference on Artificial Intelligence and Statistics, 33:275––283, 2014.

Rajesh P. N. Rao. Bayesian computation in recurrent neural circuits. Neural Computation, 16(1):
1–38, January 2004.

Rajesh P. N. Rao. Neural models of Bayesian belief propagation. In Bayesian brain: Probabilistic
approaches to neural computation, pages 236–264. MIT Press Cambridge, MA, 2007.

Rajesh P. N. Rao and Dana H Ballard. Predictive coding in the visual cortex: a functional inter-
pretation of some extra-classical receptive-field effects. Nature Neuroscience, 2(1):79–87, January
1999.

211

Danilo J Rezende, Daan Wierstra, and Wulfram Gerstner. Variational learning for recurrent spik-
ing networks. Advances in Neural Information Processing Systems, pages 136–144, 2011.

Fred Rieke, David Warland, Rob de Ruyter van Steveninck, and William Bialek. Spikes: exploring
the neural code. MIT press, 1999.

Christian Robert and George Casella. Monte Carlo statistical methods. Springer Science & Business
Media, 2013.

Dan Roth. On the hardness of approximate reasoning. Artificial Intelligence, 82(1):273–302, 1996.

Maneesh Sahani. Latent variable models for neural data analysis. PhD thesis, California Institute
of Technology, 1999.

Maneesh Sahani and Peter Dayan. Doubly distributional population codes: simultaneous repre-
sentation of uncertainty and multiplicity. Neural Computation, 2279:2255–2279, 2003.

Joshua R Sanes and Richard H Masland. The types of retinal ganglion cells: current status and
implications for neuronal classification. Annual Review of Neuroscience, 38:221–246, 2015.

Jayaram Sethuraman. A constructive definition of Dirichlet priors. Statistica Sinica, 4:639–650,
1994.

Ben Shababo, Brooks Paige, Ari Pakman, and Liam Paninski. Bayesian inference and online ex-
perimental design for mapping neural microcircuits. Advances in Neural Information Processing
Systems, pages 1304–1312, 2013.

Vahid Shalchyan and Dario Farina. A non-parametric Bayesian approach for clustering and track-
ing non-stationarities of neural spikes. Journal of Neuroscience Methods, 223:85–91, 2014.

Lei Shi and Thomas L Griffiths. Neural implementation of hierarchical Bayesian inference by
importance sampling. Advances in Neural Information Processing Systems, 2009.

Yousheng Shu, Andrea Hasenstaub, and David A McCormick. Turning on and off recurrent
balanced cortical activity. Nature, 423(6937):288–293, 2003.

Jack W Silverstein. The spectral radii and norms of large dimensional non-central random matri-
ces. Stochastic Models, 10(3):525–532, 1994.

Aleksandr Simma and Michael I Jordan. Modeling events with cascades of Poisson processes.
Proceedings of the Conference on Uncertainty in Artificial Intelligence, 2010.

212

Eero P Simoncelli. Optimal estimation in sensory systems. The Cognitive Neurosciences, IV, 2009.

Anne C Smith and Emery N Brown. Estimating a state-space model from point process observa-
tions. Neural Computation, 15(5):965–91, May 2003.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical Bayesian optimization of machine
learning algorithms. Advances in Neural Information Processing Systems, pages 2951–2959, 2012.

Sen Song, Kenneth D Miller, and Lawerence F Abbott. Competitive Hebbian learning through
spike-timing-dependent synaptic plasticitye. Nature Neuroscience, 3(9):919–26, September 2000.
ISSN 1097-6256.

Daniel Soudry, Suraj Keshri, Patrick Stinson, Min-hwan Oh, Garud Iyengar, and Liam Paninski.
Efficient ”shotgun” inference of neural connectivity from highly sub-sampled activity data. PLoS
Computational Biology, 11(10):1–30, 10 2015. doi: 10.1371/journal.pcbi.1004464.

Olaf Sporns, Giulio Tononi, and Rolf Kötter. The human connectome: a structural description of
the human brain. PLoS Computational Biology, 1(4):e42, 2005.

Olav Stetter, Demian Battaglia, Jordi Soriano, and Theo Geisel. Model-free reconstruction of
excitatory neuronal connectivity from calcium imaging signals. PLoS Computational Biology, 8(8):
e1002653, 2012.

Ian Stevenson and Konrad Koerding. Inferring spike-timing-dependent plasticity from spike train
data. Advances in Neural Information Processing Systems, pages 2582–2590, 2011.

Ian H Stevenson, James M Rebesco, Nicholas G Hatsopoulos, Zach Haga, Lee E Miller, and Kon-
rad P Körding. Bayesian inference of functional connectivity and network structure from spikes.
IEEE Transactions on Neural Systems and Rehabilitation Engineering, 17(3):203–213, 2009.

Alan A Stocker and Eero P Simoncelli. Noise characteristics and prior expectations in human
visual speed perception. Nature Neuroscience, 9(4):578–85, April 2006.

Yee Whye Teh and Michael I Jordan. Hierarchical Bayesian nonparametric models with applica-
tions. Bayesian Nonparametrics, pages 158–207, 2010.

Yee Whye Teh, Michael I Jordan, Matthew J Beal, and David M Blei. Hierarchical Dirichlet pro-
cesses. Journal of the American Statistical Association, 101:1566–1581, 2006.

213

Joshua B Tenenbaum, Thomas L Griffiths, and Charles Kemp. Theory-based Bayesian models of
inductive learning and reasoning. Trends in Cognitive Sciences, 10(7):309–318, 2006.

Joshua B Tenenbaum, Charles Kemp, Thomas L Griffiths, and Noah D Goodman. How to grow a
mind: Statistics, structure, and abstraction. Science, 331(6022):1279–1285, 2011.

Luke Tierney and Joseph B Kadane. Accurate approximations for posterior moments and
marginal densities. Journal of the American Statistical Association, 81(393):82–86, 1986.

Wilson Truccolo, Uri T. Eden, Matthew R. Fellows, John P. Donoghue, and Emery N. Brown. A
point process framework for relating neural spiking activity to spiking history, neural ensemble,
and extrinsic covariate effects. Journal of Neurophysiology, 93(2):1074–1089, 2005. doi: 10.1152/jn.
00697.2004.

Philip Tully, Matthias Hennig, and Anders Lansner. Synaptic and nonsynaptic plasticity approxi-
mating probabilistic inference. Frontiers in Synaptic Neuroscience, 6(8), 2014.

Srini Turaga, Lars Buesing, Adam M Packer, Henry Dalgleish, Noah Pettit, Michael Hausser, and
Jakob Macke. Inferring neural population dynamics from multiple partial recordings of the same
neural circuit. Advances in Neural Information Processing Systems, pages 539–547, 2013.

Leslie G Valiant. Circuits of the Mind. Oxford University Press, Inc., 1994.

Leslie G Valiant. Memorization and association on a realistic neural model. Neural Computation,
17(3):527–555, 2005.

Leslie G Valiant. A quantitative theory of neural computation. Biological Cybernetics, 95(3):205–
211, 2006.

Jurgen Van Gael, Yunus Saatci, Yee Whye Teh, and Zoubin Ghahramani. Beam sampling for the
infinite hidden Markov model. Proceedings of the International Conference on Machine Learning,
pages 1088–1095, 2008.

Michael Vidne, Yashar Ahmadian, Jonathon Shlens, Jonathan W Pillow, Jayant Kulkarni, Alan M
Litke, EJ Chichilnisky, Eero Simoncelli, and Liam Paninski. Modeling the impact of common noise
inputs on the network activity of retinal ganglion cells. Journal of Computational Neuroscience, 33
(1):97–121, 2012.

214

Joshua T Vogelstein, Brendon O Watson, Adam M Packer, Rafael Yuste, Bruno Jedynak, and Liam
Paninski. Spike inference from calcium imaging using sequential Monte Carlo methods. Biophysi-
cal Journal, 97(2):636–655, 2009.

Joshua T Vogelstein, Adam M Packer, Timothy A Machado, Tanya Sippy, Baktash Babadi, Rafael
Yuste, and Liam Paninski. Fast nonnegative deconvolution for spike train inference from popula-
tion calcium imaging. Journal of Neurophysiology, 104(6):3691–3704, 2010.

Hermann von Helmholtz and James Powell Cocke Southall. Treatise on Physiological Optics:
Translated from the 3rd German Ed. Optical Society of America, 1925.

Martin J Wainwright and Michael I Jordan. Graphical models, exponential families, and variational
inference. Foundations and Trends in Machine Learning, 1(1-2):1–305, 2008.

Yair Weiss, Eero P Simoncelli, and Edward H Adelson. Motion illusions as optimal percepts. Na-
ture Neuroscience, 5(6):598–604, 2002.

Mike West, P Jeff Harrison, and Helio S Migon. Dynamic generalized linear models and Bayesian
forecasting. Journal of the American Statistical Association, 80(389):73–83, 1985.

John G White, Eileen Southgate, J Nichol Thomson, and Sydney Brenner. The structure of the
nervous system of the nematode Caenorhabditis elegans: the mind of a worm. Philosophical Trans-
actions of the Royal Society of London: Series B (Biological Sciences), 314:1–340, 1986.

Louise Whiteley and Maneesh Sahani. Attention in a Bayesian framework. Frontiers in Human
Neuroscience, 6, 2012.

Alexander B Wiltschko, Matthew J Johnson, Giuliano Iurilli, Ralph E Peterson, Jesse M Katon,
Stan L Pashkovski, Victoria E Abraira, Ryan P Adams, and Sandeep Robert Datta. Mapping sub-
second structure in mouse behavior. Neuron, 88(6):1121–1135, 2015.

Jesse Windle, Nicholas G Polson, and James G Scott. Sampling Pólya-gamma random variates:
alternate and approximate techniques. arXiv preprint arXiv:1405.0506, 2014.

Frank Wood and Michael J Black. A nonparametric Bayesian alternative to spike sorting. Journal of
Neuroscience Methods, 173(1):1–12, 2008.

Frank Wood, Jan Willem van de Meent, and Vikash Mansinghka. A new approach to probabilistic
programming inference. arXiv preprint arXiv:1507.00996, 2015.

215

Tianming Yang and Michael N Shadlen. Probabilistic reasoning by neurons. Nature, 447(7148):
1075–80, June 2007.

Byron M. Yu, John P. Cunningham, Gopal Santhanam, Stephen I. Ryu, Krishna V. Shenoy, and
Maneesh Sahani. Gaussian-process factor analysis for low-dimensional single-trial analysis of neu-
ral population activity. Journal of Neurophysiology, 102:614–635, 2009.

Alan Yuille and Daniel Kersten. Vision as Bayesian inference: analysis by synthesis? Trends in
Cognitive Sciences, 10(7):301–308, 2006.

Richard S Zemel, Peter Dayan, and Alexandre Pouget. Probabilistic interpretation of population
codes. Neural Computation, 10(2):403–30, February 1998.

Ke Zhou, Hongyuan Zha, and Le Song. Learning social infectivity in sparse low-rank networks us-
ing multi-dimensional Hawkes processes. Proceedings of the International Conference on Artificial
Intelligence and Statistics, 16, 2013.

Mingyuan Zhou, Lingbo Li, Lawrence Carin, and David B Dunson. Lognormal and gamma
mixed negative binomial regression. Proceedings of the International Conference on Machine
Learning, pages 1343–1350, 2012.

216

217

