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Abstract

Optimization with noisy gradients has become ubiquitous in statistics and ma-
chine learning. Reparameterization gradients, or gradient estimates computed via
the “reparameterization trick,” represent a class of noisy gradients often used in
Monte Carlo variational inference (MCVI). However, when these gradient estima-
tors are too noisy, the optimization procedure can be slow or fail to converge. One
way to reduce noise is to generate more samples for the gradient estimate, but this
can be computationally expensive. Instead, we view the noisy gradient as a ran-
dom variable, and form an inexpensive approximation of the generating procedure
for the gradient sample. This approximation has high correlation with the noisy
gradient by construction, making it a useful control variate for variance reduc-
tion. We demonstrate our approach on a non-conjugate hierarchical model and a
Bayesian neural net where our method attained orders of magnitude (20-2,000×)
reduction in gradient variance resulting in faster and more stable optimization.

1 Introduction

Representing massive datasets with flexible probabilistic models has been central to the success of
many statistics and machine learning applications, but the computational burden of fitting these mod-
els is a major hurdle. For optimization-based fitting methods, a central approach to this problem has
been replacing expensive evaluations of the gradient of the objective function with cheap, unbiased,
stochastic estimates of the gradient. For example, stochastic gradient descent using small mini-
batches of (conditionally) i.i.d. data to estimate the gradient at each iteration is a popular approach
with massive data sets. Alternatively, some learning methods sample directly from a generative
model or approximating distribution to estimate the gradients of interest, for example, in learning
algorithms for implicit models [18, 30] and generative adversarial networks [2, 9].

Approximate Bayesian inference using variational techniques (variational inference, or VI) has also
motivated the development of new stochastic gradient estimators, as the variational approach re-
frames the integration problem of inference as an optimization problem [4]. VI approaches seek out
the distribution from a well-understood variational family of distributions that best approximates
an intractable posterior distribution. The VI objective function itself is often intractable, but recent
work has shown that it can be optimized with stochastic gradient methods that use Monte Carlo
estimates of the gradient [19, 14, 22, 25], which we call Monte Carlo variational inference (MCVI).
In MCVI, generating samples from an approximate posterior distribution is the source of gradient
stochasticity. Alternatively, stochastic variational inference (SVI) [11] and other stochastic opti-
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mization procedures induce stochasticity through data subsampling; MCVI can also be augmented
with data subsampling to accelerate computation for large data sets.

The two commonly used MCVI gradient estimators are the score function gradient [19, 22] and the
reparameterization gradient [14, 25, 29, 8]. Broadly speaking, score function estimates can be ap-
plied to both discrete and continuous variables, but often have high variance and thus are frequently
used in conjunction with variance reduction techniques. On the other hand, the reparameterization
gradient often has lower variance, but is restricted to continuous random variables. See Ruiz et al.
[28] for a unifying perspective on these two estimators. Like other stochastic gradient methods, the
success of MCVI depends on controlling the variance of the stochastic gradient estimator.

In this work, we present a novel approach to controlling the variance of the reparameterization gra-
dient estimator in MCVI. Existing MCVI methods control this variance naïvely by averaging several
gradient estimates, which becomes expensive for large data sets and complex models, with error that
only diminishes as O(1/

√
N). Our approach exploits the fact that, in MCVI, the randomness in the

gradient estimator is completely determined by a known Monte Carlo generating process; this al-
lows us to leverage knowledge about this generative procedure to de-noise the gradient estimator.
In particular, we construct a computationally cheap control variate based on an analytical linear
approximation to the gradient estimator. Taking a linear combination of a naïve gradient estimate
with this control variate yields a new estimator for the gradient that remains unbiased but has lower
variance. Applying the idea to Gaussian approximating families, we observe a 20-2,000× reduction
in variance of the gradient norm under various conditions, and faster convergence and more stable
behavior of optimization traces.

2 Background
Variational Inference Given a model, p(z,D) = p(D|z)p(z), of data D and parameters/latent
variables z, the goal of VI is to approximate the posterior distribution p(z|D). VI approximates this
intractable posterior distribution with one from a simpler family,Q = {q(z;λ),λ ∈ Λ}, parameter-
ized by variational parameters λ. VI procedures seek out the member of that family, q(·;λ) ∈ Q,
that minimizes some divergence between the approximation q and the true posterior p(z|D).

Variational inference can be framed as an optimization problem, usually in terms of Kullback-
Leibler (KL) divergence, of the following form

λ∗ = arg min
λ∈Λ

KL(q(z;λ) || p(z|D)) = arg min
λ∈Λ

Ez∼qλ [ln q(z;λ)− ln p(z|D)] .

The task is to find a setting of λ that makes q(z;λ) close to the posterior p(z|D) in KL diver-
gence.2 Directly computing the KL divergence requires evaluating the posterior itself; therefore, VI
procedures use the evidence lower bound (ELBO) as the optimization objective

L(λ) = Ez∼qλ [ln p(z,D)− ln q(z;λ)] , (1)

which, when maximized, minimizes the KL divergence between q(z;λ) and p(z|D). In special
cases, parts of the ELBO can be expressed analytically (e.g. the entropy form or KL-to-prior form
[10]) — we focus on the general form in Equation 1.

To maximize the ELBO with gradient methods, we need to compute the gradient of Eq. (1),
∂L/∂λ , gλ. The gradient inherits the ELBO’s form as an expectation, which is in general an
intractable quantity to compute. In this work, we focus on reparameterization gradient estima-
tors (RGEs) computed using the reparameterization trick. The reparameterization trick exploits
the structure of the variational data generating procedure — the mechanism by which z is simu-
lated from qλ(z). To compute the RGE, we first express the sampling procedure from qλ(z) as a
differentiable map applied to exogenous randomness

ε ∼ q0(ε) independent of λ (2)
z = T (ε;λ) differentiable map, (3)

where the initial distribution q0 and T are jointly defined such that z ∼ q(z;λ) has the de-
sired distribution. As a simple concrete example, if we set q(z;λ) to be a diagonal Gaussian,

2We use q(z;λ) and qλ(z) interchangeably.
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(a) step size = .01
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Figure 1: Optimization traces for MCVI applied to a Bayesian neural network with various hyper-
parameter settings. Each trace is running adam [13]. The three lines in each plot correspond to
three different numbers of samples, L, used to estimate the gradient at each step. (Left) small step-
size; (Right) stepsize 10 times larger. Large step sizes allow for quicker progress, however noisier
(i.e., small L) gradients combined with large step sizes result in chaotic optimization dynamics. The
converging traces reach different ELBOs due to the illustrative constant learning rates; in practice,
one decreases the step size over time to satisfy the convergence criteria in Robbins and Monro [26].

N (mλ, diag(s2
λ)), with λ = [mλ, sλ], mλ ∈ RD, and sλ ∈ RD+ the mean and variance. The

sampling procedure could then be defined as

ε ∼ N (0, ID) , z = T (ε;λ) = mλ + sλ � ε, (4)

where s � ε denotes an element-wise product.3 Given this map, the reparameterization gradient
estimator is simply the gradient of a Monte Carlo ELBO estimate with respect to λ. For a single
sample, this is

ε ∼ q0(ε) , ĝλ , ∇λ [ln p(T (ε;λ),D)− ln q(T (ε;λ);λ)]

and similarly the L-sample approximation can be computed by averaging the single-sample estima-
tor over the individual samples

ĝ
(L)
λ =

1

L

L∑
`=1

ĝλ(ε`). (5)

Crucially, the reparameterization gradient is unbiased, E[ĝλ] = ∇λL(λ), guaranteeing the conver-
gence of stochastic gradient optimization procedures that use it [26].

Gradient Variance and Convergence The efficiency of Monte Carlo variational inference hinges
on the magnitude of gradient noise and the step size chosen for the optimization procedure. When
the gradient noise is large, smaller gradient steps must be taken to avoid unstable dynamics of the
iterates. However, a smaller step size increases the number of iterations that must be performed to
reach convergence.

We illustrate this trade-off in Figure 1, which shows realizations of an optimization proce-
dure applied to a Bayesian neural network using reparameterization gradients. The posterior is
over D = 653 parameters that we approximate with a diagonal Gaussian (see Appendix C.2). We
compare the progress of the adam algorithm using various numbers of samples [13], fixing the
learning rate. The noise present in the single-sample estimator causes extremely slow convergence,
whereas the lower noise 50-sample estimator quickly converges, albeit at 50 times the cost.

The upshot is that with low noise gradients we are able to safely take larger steps, enabling faster
convergence to a local optimum. A natural question is, how can we reduce the variance of gradient
estimates without introducing too much extra computation? Our approach is to use information
about the variational model, q(·;λ), and carefully construct a control variate to the gradient.

Control Variates Control variates are random quantities that are used to reduce the variance of
a statistical estimator without introducing any bias by incorporating additional information into the
estimator, [7]. Given an unbiased estimator ĝ such that E[ĝ] = g (the quantity of interest), our goal

3We will also use x/y and x2 to denote pointwise division and squaring, respectively.
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is to construct another unbiased estimator with lower variance. We can do this by defining a control
variate g̃ with known expectation m̃ and can write the new estimator as

g(cv) = ĝ −C(g̃ − m̃) . (6)

where C ∈ RD×D for D-dimensional ĝ. Clearly the new estimator has the same expectation as
the original estimator, but has a different variance. We can attain optimal variance reduction by
appropriately setting C. Intuitively, the optimal C is very similar to a regression coefficient — it is
related to the covariance between the control variate and the original estimator. See Appendix A for
further details on optimally setting C.

3 Method: Modeling Reparameterization Gradients

In this section we develop our main contribution, a new gradient estimator that can dramatically
reduce reparameterization gradient variance. In MCVI, the reparameterization gradient estimator
(RGE) is a Monte Carlo estimator of the true gradient — the estimator itself is a random variable.
This random variable is generated using the “reparameterization trick” — we first generate some
randomness ε and then compute the gradient of the ELBO with respect to λ holding ε fixed. This
results in a complex distribution from which we can generate samples, but in general cannot charac-
terize due to the complexity of the term arising from the gradient of the model term.

However, we do have a lot of information about the sampling procedure — we know the variational
distribution ln q(z;λ), the transformation T , and we can evaluate the model joint density ln p(z,D)
pointwise. Furthermore, with automatic differentiation, it is often straightforward to obtain gradients
and Hessian-vector products of our model ln p(z,D). We propose a scheme that uses the structure
of qλ and curvature of ln p(z,D) to construct a tractable approximation of the distribution of the
RGE.4 This approximation has a known mean and is correlated with the RGE distribution, allowing
us to use it as a control variate to reduce the RGE variance.

Given a variational family parameterized by λ, we can decompose the ELBO gradient into a few
terms that reveal its “data generating procedure”

ε ∼ q0 , z = T (ε;λ) (7)

ĝλ , ĝ(z;λ) =
∂ ln p(z,D)

∂z︸ ︷︷ ︸
data term

∂z

∂λ
− ∂ ln qλ(z)

∂z︸ ︷︷ ︸
pathwise score

∂z

∂λ
− ∂ ln qλ(z)

∂λ︸ ︷︷ ︸
parameter score

. (8)

Certain terms in Eq. (8) have tractable distributions. The Jacobian of T (·;λ), given by ∂z/∂λ, is de-
fined by our choice of q(z;λ). For some transformations T we can exactly compute the distribution
of the Jacobian given the distribution of ε. The pathwise and parameter score terms are gradients of
our approximate distribution with respect to λ (via z or directly). If our approximation is tractable
(e.g., a multivariate Gaussian), we can exactly characterize the distribution for these components.5

However, the data term in Eq. (8) involves a potentially complicated function of the latent vari-
able z (and therefore a complicated function of ε), resulting in a difficult-to-characterize distribution.
Our goal is to construct an approximation to the distribution of ∂ ln p(z,D)/∂z and its interaction
with ∂z/∂λ given a fixed distribution over ε. If the approximation yields random variables that are
highly correlated with ĝλ, then we can use it to reduce the variance of that RGE sample.

Linearizing the data term To simplify notation, we write the data term of the gradient as

f(z′) ,
∂ ln p(z,D)

∂z

∣∣∣
z=z′

, (9)

where f : RD 7→ RD since z ∈ RD. We then linearize f about some value z0

f̃(z) = f(z0) +

[
∂f

∂z
(z0)

]
(z − z0) = f(z0) +H(z0)(z − z0), (10)

4We require the model ln p(z,D) to be twice differentiable.
5In fact, we know that the expectation of the parameter score term is zero, and removing that term altogether

can sometimes be a source of variance reduction that we do not explore here [27].
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whereH(z0) is the Hessian of the model, ln p(z,D), with respect to z evaluated at z0,

H(z0) =
∂f

∂z
(z0) =

∂2 ln p(z,D)

∂z2
(z0) (11)

Note that even though this uses second-order information about the model, it is a first-order approx-
imation of the gradient. We also view this as a transformation of the random ε for a fixed λ

f̃λ(ε) = f(z0) +H(z0)(T (ε,λ)− z0) , (12)

which is linear in z = T (ε,λ). For some forms of T we can analytically derive the distribution of
the random variable f̃λ(ε). In Eq. (8), the data term interacts with the Jacobian of T , given by

Jλ′(ε) ,
∂z

∂λ
=
∂T (ε,λ)

∂λ

∣∣∣
λ=λ′

, (13)

which importantly is a function of the same ε as in Eq. (12). We form our approximation of the first
term in Eq. (8) by multiplying Eqs. (12) and (13) yielding

g̃
(data)
λ (ε) , f̃λ(ε)Jλ(ε) . (14)

The tractability of this approximation hinges on how Eq. (14) depends on ε. When q(z;λ) is multi-
variate normal, we show that this approximation has a computable mean and can be used to reduce
variance in MCVI settings. In the following sections we describe and empirically test this variance
reduction technique applied to diagonal Gaussian posterior approximations.

3.1 Gaussian Variational Families

Perhaps the most common choice of approximating distribution for MCVI is a diagonal Gaussian,
parameterized by a meanmλ ∈ RD and scales sλ ∈ RD+ . 6 The log probability density function is

ln q(z;mλ, s
2
λ) = −1

2
(z −mλ)ᵀ

[
diag(s2

λ)
]−1

(z −mλ)− 1

2

∑
d

ln s2
λ,d −

D

2
ln(2π) . (15)

To generate a random variate z from this distribution, we use the sampling procedure in Eq. (4). We
denote the Monte Carlo RGE as ĝλ , [ĝmλ

, ĝsλ ]. From Eq. (15), it is straightforward to derive the
distributions of the pathwise score, parameter score, and Jacobian terms in Eq. (8).

The Jacobian term of the sampling procedure has two straightforward components

∂z

∂mλ
= ID ,

∂z

∂sλ
= diag(ε) . (16)

The pathwise score term is the partial derivative of Eq. (15) with respect to z, ignoring variation due
to the variational distribution parameters and noting that z = mλ + sλ � ε:

∂ ln q

∂z
= −diag(s2

λ)−1(z −mλ) = −ε/sλ . (17)

The parameter score term is the partial derivative of Eq. (15) with respect to variational parame-
ters λ, ignoring variation due to z. Themλ and sλ components are given by

∂ ln q

∂mλ
= (z −mλ)/s2

λ = ε/sλ (18)

∂ ln q

∂sλ
= −1/sλ − (z −mλ)2/s2

λ =
ε2 − 1

sλ
. (19)

The data term, f(z), multiplied by the Jacobian of T is all that remains to be approximated in
Eq. (8). We linearize f around z0 = mλ where the approximation is expected to be accurate

f̃λ(ε) = f(mλ) +H(mλ) ((mλ + sλ � ε)−mλ) (20)

∼ N
(
f(mλ),H(mλ)diag(s2

λ)H(mλ)ᵀ
)
. (21)

6For diagonal Gaussian q, we define λ = [mλ, sλ].
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Figure 2: Relationship be-
tween the base random-
ness ε, RGE ĝ, and ap-
proximation g̃. Arrows in-
dicate deterministic func-
tions. Sharing ε correlates
the random variables. We
know the distribution of g̃,
which allows us to use it as
a control variate for ĝ.

Algorithm 1 Gradient descent with RV-RGE with a diagonal Gaus-
sian variational family
1: procedure RV-RGE-OPTIMIZE(λ1, ln p(z,D), L)
2: f(z)← ∇z ln p(z,D)
3: H(za, zb)←

[
∇2
z ln p(za,D)

]
zb . Define Hessian-vector product function

4: for t = 1, . . . , T do
5: ε(`) ∼ N (0, ID) for ` = 1, . . . , L . Base randomness q0
6: ĝ

(`)
λt
← ∇λ ln p(z(ε(`),λt),D) . Reparameterization gradients

7: g̃(`)mλt
← f(mλt ) +H(mλt , sλt � ε

(`)) . Mean approx

8: g̃(`)sλt
←
(
f(mλt ) +H(mλt , sλt � ε

(`))
)
� ε+ 1

sλt
. Scale approx

9: E[g̃mλt
]← f(mλt ) . Mean approx expectation

10: E[g̃sλt
]← diag(H(mλt ))� sλt + 1/sλt . Scale approx expectation

11: ĝ
(RV )
λt

= 1
L

∑
` ĝ

`
λt
− (g̃`λt

− E[g̃λt ]) . Subtract control variate

12: λt+1 ← grad-update(λt, ĝ
(RV )
λt

) . Gradient step (sgd, adam, etc.)

13: return λT

Putting It Together: Full RGE Approximation We write the complete approximation of the
RGE in Eq. (8) by combining Eqs. (16), (17), (18), (19), and (21) which results in two components
that are concatenated, g̃λ = [g̃mλ

, g̃sλ ]. Each component is defined as

g̃mλ
= f̃λ(ε) + ε/sλ − ε/sλ = f(mλ) +H(mλ)(sλ � ε) (22)

g̃sλ = f̃λ(ε)� ε+ (ε/sλ)� ε− ε2 − 1

sλ
= (f(mλ) +H(mλ)(sλ � ε))� ε+

1

sλ
. (23)

To summarize, we have constructed an approximation, g̃λ, of the reparameterization gradient, ĝλ,
as a function of ε. Because both g̃λ and ĝλ are functions of the same random variable ε, and
because we have mimicked the random process that generates true gradient samples, the two gradient
estimators will be correlated. This approximation yields two tractable distributions — a Gaussian
for the mean parameter gradient, gmλ

, and a location shifted, scaled non-central χ2 for the scale
parameter gradient gsλ . Importantly, we can compute the mean of each component

E[g̃mλ
] = f(mλ) , E[g̃sλ ] = diag(H(mλ))� sλ + 1/sλ . (24)

We use g̃λ (along with its expectation) as a control variate to reduce the variance of the RGE ĝλ.

3.2 Reduced Variance Reparameterization Gradient Estimators

Now that we have constructed a tractable gradient approximation, g̃λ, with high correlation to the
original reparameterization gradient estimator, ĝλ, we can use it as a control variate as in Eq. (6)

ĝ
(RV )
λ = ĝλ −C(g̃λ − E[g̃λ]). (25)

The optimal value for C is related to the covariance between g̃λ and ĝλ (see Appendix A). We can
try to estimate the value of C (or a diagonal approximation to C) on the fly, or we can simply fix
this value. In our case, because we are using an accurate linear approximation to the transformation
of a spherical Gaussian, the optimal value of C will be close to the identity (see Appendix A.1).

High Dimensional Models For models with high dimensional posteriors, direct manipulation of
the Hessian is computationally intractable. However, our approximations in Eqs. (22) and (23) only
require a Hessian-vector product, which can be computed nearly as efficiently as the gradient [21].
Modern automatic differentiation packages enable easy and efficient implementation of Hessian-
vector products for nearly any differentiable model [1, 20, 15]. We note that the mean of the control
variate g̃sλ (Eq. (24)), depends on the diagonal of the Hessian matrix. While computing the Hessian
diagonal may be tractable in some cases, in general it may cost the time equivalent of D function
evaluations to compute [16]. Given a high dimensional problem, we can avoid this bottleneck in
multiple ways. The first is simply to ignore the random variation in the Jacobian term due to ε —
if we fix z to be mλ (as we do with the data term), the portion of the Jacobian that corresponds to
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sλ will be zero (in Eq. (16)). This will result in the same Hessian-vector-product-based estimator
for g̃mλ

but will set g̃sλ = 0, yielding variance reduction for the mean parameter but not the scale.

Alternatively, we can estimate the Hessian diagonal on the fly. If we use L > 1 samples at each iter-
ation, we can create a per-sample estimate of the sλ-scaled diagonal of the Hessian using the other
samples [3]. As the scaled diagonal estimator is unbiased, we can construct an unbiased estimate
of the control variate mean to use in lieu of the actual mean. We will see that the resulting variance
is not much higher than when using full Hessian information, and is computationally tractable to
deploy on high-dimensional models. A similar local baseline strategy is used for variance reduction
in Mnih and Rezende [17].

RV-RGE Estimators We introduce three different estimators based on variations of the gradient
approximation defined in Eqs. (22), (23), and (24), each adressing the Hessian operations differently:

• The Full Hessian estimator implements the three equations as written and can be used when
it is computationally feasible to use the full Hessian.

• The Hessian Diagonal estimator replaces the Hessian in (22) with a diagonal approxima-
tion, useful for models with a cheap Hessian diagonal.

• The Hessian-vector product + local approximation (HVP+Local) uses an efficient Hessian-
vector product in Eqs. (22) and (23), while approximating the diagonal term in Eq. (24)
using a local baseline. The HVP+Local approximation is geared toward models where
Hessian-vector products can be computed, but the exact diagonal of the Hessian cannot.

We detail the RV-RGE procedure in Algorithm 1 and compare properties of these three estimators
to the pure Monte Carlo estimator in the following section.

3.3 Related Work

Recently, Roeder et al. [27] introduced a variance reduction technique for reparameterization gra-
dients that ignores the parameter score component of the gradient and can be viewed as a type of
control variate for the gradient throughout the optimization procedure. This approach is comple-
mentary to our method — our approximation is typically more accurate near the beginning of the
optimization procedure, whereas the estimator in Roeder et al. [27] is low-variance near conver-
gence. We hope to incorporate information from both control variates in future work. Per-sample
estimators in a multi-sample setting for variational inference were used in Mnih and Rezende [17].
We employ this technique in a different way; we use it to estimate computationally intractable quan-
tities needed to keep the gradient estimator unbiased. Black box variational inference used control
variates and Rao-Blackwellization to reduce the variance of score-function estimators [22]. Our
development of variance reduction for reparameterization gradients complements their work. Other
variance reduction techniques for stochastic gradient descent have focused on stochasticity due to
data subsampling [12, 31]. Johnson and Zhang [12] cache statistics about the entire dataset at each
epoch to use as a control variate for noisy mini-batch gradients.

The variance reduction method described in Paisley et al. [19] is conceptually similar to ours. This
method uses first or second order derivative information to reduce the variance of the score function
estimator. The score function estimator (and their reduced variance version) often has much higher
variance than the reparameterization gradient estimator that we improve upon in this work. Our
variance measurement experiments in Table 1 includes a comparison to the estimator featured in
[19], which we found to be much higher variance than the baseline RGE.

4 Experiments and Analysis

In this section we empirically examine the variance properties of RV-RGEs and stochastic optimiza-
tion for two real-data examples — a hierarchical Poisson GLM and a Bayesian neural network.7

• Hierarchical Poisson GLM: The frisk model is a hierarchical Poisson GLM, described in
Appendix C.1. This non-conjugate model has a D = 37 dimensional posterior.

• Bayesian Neural Network: The non-conjugate bnn model is a Bayesian neural network
applied to the wine dataset, (see Appendix C.2) and has a D = 653 dimensional posterior.

7Code is available at https://github.com/andymiller/ReducedVarianceReparamGradients.

7

https://github.com/andymiller/ReducedVarianceReparamGradients


Table 1: Comparison of variances for RV-RGEs with L = 10-sample estimators. Variance mea-
surements were taken for λ values at three points during the optimization algorithm (early, mid,
late). The parenthetical rows labeled “MC abs” denote the absolute value of the standard Monte
Carlo reparameterization gradient estimator. The other rows compare estimators relative to the pure
MC RGE variance — a value of 100 indicates equal variation L = 10 samples, a value of 1 indi-
cates a 100-fold decrease in variance (lower is better). Our new estimators (Full Hessian, Hessian
Diag, HVP+Local) are described in Section 3.2. The Score Delta method is the gradient estimator
described in [19]. Additional variance measurement results are in Appendix D.

gmλ
ln gsλ gλ

Iteration Estimator Ave V(·) V(|| · ||) Ave V(·) V(|| · ||) Ave V(·) V(|| · ||)

early

(MC abs.) (1.7e+02) (5.4e+03) (3e+04) (2e+05) (1.5e+04) (5.9e+03)
MC 100.000 100.000 100.000 100.000 100.000 100.000
Full Hessian 1.279 1.139 0.001 0.002 0.008 1.039
Hessian Diag 34.691 23.764 0.003 0.012 0.194 21.684
HVP + Local 1.279 1.139 0.013 0.039 0.020 1.037
Score Delta [19] 6069.668 718.430 1.395 0.931 34.703 655.105

mid

(MC abs.) (3.8e+03) (1.3e+05) (18) (3.3e+02) (1.9e+03) (1.3e+05)
MC 100.000 100.000 100.000 100.000 100.000 100.000
Full Hessian 0.075 0.068 0.113 0.143 0.076 0.068
Hessian Diag 38.891 21.283 6.295 7.480 38.740 21.260
HVP + Local 0.075 0.068 30.754 39.156 0.218 0.071
Score Delta [19] 4763.246 523.175 2716.038 700.100 4753.752 523.532

late

(MC abs.) (1.7e+03) (1.3e+04) (1.1) (19) (8.3e+02) (1.3e+04)
MC 100.000 100.000 100.000 100.000 100.000 100.000
Full Hessian 0.042 0.030 1.686 0.431 0.043 0.030
Hessian Diag 40.292 53.922 23.644 28.024 40.281 53.777
HVP + Local 0.042 0.030 98.523 99.811 0.110 0.022
Score Delta [19] 5183.885 1757.209 17355.120 3084.940 5192.270 1761.317

Quantifying Gradient Variance Reduction We measure the variance reduction of the RGE ob-
served at various iterates, λt, during execution of gradient descent. Both the gradient magnitude,
and the marginal variance of the gradient elements — using a sample of 1000 gradients — are
reported. Further, we inspect both the mean, mλ, and log-scale, ln sλ, parameters separately. Ta-
ble 1 compares gradient variances for the frisk model for our four estimators: i) pure Monte Carlo
(MC), ii) Full Hessian, iii) Hessian Diagonal, and iv) Hessian-vector product + local approxima-
tion (HVP+Local). Additionally, we compare our methods to the estimator described in [19], based
on the score function estimator and a control variate method. We use a first order delta method
approximation of the model term, which admits a closed form control variate term.

Each entry in the table measures the percent of the variance of the pure Monte Carlo estimator. We
show the average variance over each component AveV(·), and the variance of the norm V(|| · ||). We
separate out variance in mean parameters, gm, log scale parameters, ln gs, and the entire vector gλ.
The reduction in variance is dramatic. Using HVP+Local, in the norm of the mean parameters we
see between a 80× and 3,000× reduction in variance depending on the progress of the optimizer.
The importance of the full Hessian-vector product for reducing mean parameter variance is also
demonstrated as the Hessian diagonal only reduces mean parameter variance by a factor of 2-5×.

For the variational scale parameters, ln gs, we see that early on the HVP+Local approximation is
able to reduce parameter variance by a large factor (≈ 2,000×). However, at later iterates the
HVP+Local scale parameter variance is on par with the Monte Carlo estimator, while the full Hes-
sian estimator still enjoys huge variance reduction. This indicates that, by this point, most of the
noise is the local Hessian diagonal estimator. We also note that in this problem, most of the estima-
tor variance is in the mean parameters. Because of this, the norm of the entire parameter gradient, gλ
is reduced by 100−5,000×. We found that the score function estimator (with the delta method con-
trol variate) is typically much higher variance than the baseline reparameterization gradient estimator
(often by a factor of 10-50×). In Appendix D we report results for other values of L.

Optimizer Convergence and Stability We compare the optimization traces for the frisk and
bnn model for the MC and the HVP+Local estimators under various conditions. At each iteration
we estimate the true ELBO value using 2000 Monte Carlo samples. We optimize the ELBO objective
using adam [13] for two step sizes, each trace starting at the same value of λ0.
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Figure 3: MCVI optimization trace applied to the frisk model for two values of L and step size.
We run the standard MC gradient estimator (solid line) and the RV-RGE with L = 2 and 10 samples.
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Figure 4: MCVI optimization for the bnn model applied to the wine data for various L and step
sizes. The standard MC gradient estimator (dotted) was run with 2, 10, and 50 samples; RV-RGE
(solid) was run with 2 and 10 samples. In 4b the 2-sample MC estimator falls below the frame.

Figure 3 compares ELBO optimization traces for L = 2 and L = 10 samples and step sizes .05
and .1 for the frisk model. We see that the HVP+Local estimators make early progress and con-
verge quickly. We also see that the L = 2 pure MC estimator results in noisy optimization paths.
Figure 4 shows objective value as a function of wall clock time under various settings for the bnn
model. The HVP+Local estimator does more work per iteration, however it tends to converge faster.
We observe the L = 10 HVP+Local outperforming the L = 50 MC estimator.

5 Conclusion

Variational inference reframes an integration problem as an optimization problem with the caveat
that each step of the optimization procedure solves an easier integration problem. For general mod-
els, each sub-integration problem is itself intractable, and must be estimated, typically with Monte
Carlo samples. Our work has shown that we can use more information about the variational family
to create tighter estimators of the ELBO gradient, which leads to faster and more stable optimization.
The efficacy of our approach relies on the complexity of the RGE distribution to be well-captured
by linear structure which may not be true for all models. However, we found the idea effective for
non-conjugate hierarchical Bayesian models and a neural network.

Our presentation is a specific instantiation of a more general idea — using cheap linear structure
to remove variation from stochastic gradient estimates. This method described in this work is tai-
lored to Gaussian approximating families for Monte Carlo variational inference, but could be easily
extended to location-scale families. We plan to extend this idea to more flexible variational distri-
butions, including flow distributions [24] and hierarchical distributions [23], which would require
approximating different functional forms within the variational objective. We also plan to adapt our
technique to model and inference schemes with recognition networks [14], which would require
back-propagating de-noised gradients into the parameters of an inference network.
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