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Abstract

Recent work on molecular programming has explored new piissis for com-
putational abstractions with biomolecules, includingdoggates, neural networks,
and linear systems. In the future such abstractions migitilemanoscale devices
that can sense and control the world at a molecular scalé.adus macroscale
robotics, it is critical that such devices can learn aboeirtenvironment and rea-
son under uncertainty. At this small scale, systems aredjlgimodeled as chem-
ical reaction networks. In this work, we develop a procedha¢can take arbitrary
probabilistic graphical models, represented as factqlgg@ver discrete random
variables, and compile them into chemical reaction netatrlt implement infer-
ence. In particular, we show that marginalization baseduom-product message
passing can be implemented in terms of reactions betweenichkspecies whose
concentrations represent probabilities. We show algealtgithat the steady state
concentration of these species correspond to the margstabdtions of the ran-
dom variables in the graph and validate the results in sitioug. As with stan-
dard sum-product inference, this procedure yields exacitsefor tree-structured
graphs, and approximate solutions for loopy graphs.

1 Introduction

Recent advances in nanoscale devices and biomoleculdresimthave opened up new and excit-
ing possibilities for constructing microscopic systematttan sense and autonomously manipulate
the world. Necessary to such advances is the developmenhgfutational mechanisms and asso-
ciated abstractions for algorithmic control of these nabots. Work on molecular programming
has resulted imn vitro biomolecular implementations of various such abstrastigrcluding logic
gates [12], artificial neural networks [6, 7, 10], tiled safsembly models [8, 11], and linear sys-
tems [3, 9, 16]. Similarlyin vivo, gene regulatory networks can be designed that when transtb
into cells implement devices such as oscillators [5], icetlularly coupled oscillators [4], or dis-
tributed algorithms such as pattern formation [1]. Manticai information processing tasks can be
framed in terms of probabilistic inference, in which noigsyra@omplete information is accumulated
to produce statistical estimates of hidden structure. ¢ty fae believe that this particular computa-
tional abstraction is ideally suited to the noisy and ofteanty characterized microscopic world. In
this work, we develop a chemical reaction network for perfimg inference in probabilistic graph-
ical models. We show that conventional message passingeshauch as belief propagation, map
relatively straightforwardly onto sets of chemical reant, which we think of as the “assembly lan-
guage” of bothin vitro andin vivo computation at the molecular scale. The long-term postsasil

of such technology are myriad: adaptive and tissue-seasitug deliveryin situ chemical sensing,
and identification of disease states.
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Figure 1. Inference at different levels of abstraction. Hadtor graph over two random variables. In-
ference can be performed efficiently by passing messagew/siis gray arrows) between vertices,
see Section 2. (b) Message passing implemented at a lowedrdfabstraction. Chemical species
represent the different components message vectors. Tardgs of the CRN constructed in Sec-
tion 3 perform the same computation as the sum-product messessing algorithm. (c) Schematic
representation of DNA strand displacement. The reactiaworl described in this paper can be
implemented in different physical systems, e.g. DNA strdisgplacement cascades [13].

At the small scales of interest systems are typically matiagedeterministic chemical reaction net-
works or their stochastic counterparts that explicitly rldtlictuations and noise. However, chem-
ical reactions are not only models, but can be thought of esiigations or abstract computational
frameworks themselves. For example, arbitrary reactitwanks can be simulated by DNA strand
displacement systems [13], where some strands correspdinel themical species in the specifying
reaction network. By adjusting the toehold length readtitates in these systems can be adjusted
over many orders of magnitude. We take advantage of thigaabstin by "compiling” the sum-
product algorithm for discrete variable factor graphs imtochemical reaction network, where the
concentrations of some species represent conditional @mgdimal distributions of variables in the
graph. In some ways, this representation is very naturailewitormalization is a constant concern
in digital systems, our chemical design conserves spedtbinveéome subsets and thus implicitly
and continuously normalizes its estimates. The computéioomplete when the reaction network
reaches equilibrium. Variables in the graph can be conticupon by adjusting the reaction rates
corresponding to unary potentials in the graph.

Section 2 provides a brief review of factor graphs and the-pumduct algorithm. Section 3 in-
troduces notation and concepts for chemical reaction mésv@Gection 4 shows how inference on
factor graphs can be compiled into reaction networks, arfskeiction 5, we show several example
networks and compare the results of molecular simulatiomkgital inference procedures.

To aid parsing the potentially tangled notation resultirgrf mixing probabilistic inference tools
with chemical reaction models, this paper follows theseeg@imotational guidelines: capital letters
denote constants, such as set sizes, and other quantitidsas tuples and message types; lower
case letters denote parameters, such as reaction ratesdiceki bold face letters denote vectors
and subscripts elements of that vector; scripted uppesrtethdicate sets; random variables are
always denoted by or their vector version; and species names have a sandesutif

2 Graphical Models and Probabilistic I nference

Graphical models are popular tools for reasoning about ¢ioatpd probability distributions. In
most types of graphical models, vertices represent randoiahles and edges reflect dependence
structure. Here, we focus on tifi@ctor graph formalism, in which there are two types of vertices
that have a bipartite structure: variable nodes (typicéithwn as circles), which represent random
variables, and factor nodes (typically drawn as squarek)¢chwrepresent potentials (also called
compatibility functions) coupling the random variableactr graphs, encode the factorization of a
probability distribution and therefore its conditionatlependence structure. Other graphical mod-
els, such as Bayesian Networks, can be converted to facphgrand thus factor graph algorithms
are directly applicable to other types of graphical modsds, [2, Ch. 8].



LetG be a factor graph ove¥ random variablex,, }_, wherex,, takes one of<,, discrete values.
The globalNV-dimensional random variabletakes on values in the (potentially huge) product space

K = ngl{l, ... K,}. The other nodes off are called factors and every edgeGhconnects
exactly one factor node and one variable node. In genéreén haveJ factors{v; (x’)}7_, where
we usex’ = neg(j) to indicate the subset of random variables that neighbofaabér ;. Eachx’

takes on values in the (potentially much smaller) sgdée- Hnene(j){l, ....Ky,}, and each); is a

non-negative scalar function @&’. Together the structure 6f and the particular factors; define
a joint distribution onx:

J
Pr(x) = Pr(x1, %2, -+ ,Xxn) = %ij(xj), Q)

whereZ is the appropriate normalizing constant. Figure 1a showmple factor graph with two
variable nodes and three factors. It implies that the thet jdistributionx; andxs has the form

Pr(x1,%2) = z1(x1)a(x2)¥3(x1, %2).

The sum-product algorithm (belief propagation) is an dyiegsrogramming technique for perform-
ing marginalization in a factor graph. That s, it compuuems of the form:

=g Y I 469 (2
x\xp, J=1
For tree-structured factor graphs, the sum-product alguoriefficiently recovers the exact
marginals. For more general graphs, the sum-product stgoidften converges to useful approxi-
mations. This approximate situation is calledpy belief propagation.

The sum-product algorithm proceeds by passing “messadm@sj ¢he graph edges. There are two
kinds of messages messages from a factor node to a variatideamul messages from a variable
node to a factor node. In order to make clear what quantitiesepresented by chemical species
concentrations in Section 4, we use somewhat unconvehtiotation. Thekth entry of thesum

message from factor nodeto variable node: is denoteoS,(ﬁ") and the entires,,-dimensional
vector is denoted bg(i ™). Thekth entry of theproduct message from variabieto factor nodej

is denoted b)P(’HJ and the entires ;-dimensional vector is denotd®("—7). Figure 1a shows a
simple factor graph with message names and their direcsibon as gray arrows. Sum messages
from j are computed as the weighted sum of product messages owdrtieEnK’ of ¢;:

7—”1) Zw XJ H PSJL/_”) (3)
K=k neneo')\n "

where néj)\n refers to the variable node neighborsjoéxceptn andk?, = k to the set of all
k’ € K7 where the entry in the dimension ofis fixed tok. Product messages are computed by
taking the component-wise product of incoming sum messages

J Eﬂe(n)\7
The variable node marginals can be found using the produotofning sum messages:
Pr(x, = k) H S(J_m) %)
JENe(n)

The sum- ﬁroduct algorithm corresponds to fixed-point ftens that are minimizing the Bethe free
energy. This observation leads to both partial-updatdaomed variants of sum-product, as well

as asynchronous versions [14, Ch.6][15]. The validity ofngad asynchronous sum-product is
what enables us to frame the computation as a chemical seantitwork. The continuous ODE
description of species concentrations that representagessan be thought of as an infinitesimally
small version of damped asynchronous update rules.

3 Chemical Reaction Networks

The following model describes how a setf chemical species Z = {Zy,Z,,--- ,Z)} interact
and their concentrations evolve over time. Eagdttion has the general form



2y +1rolo+ -+ 1yl p1Z1 +p2lo+ -+ Pyl (6)

In this generic representation most of the coefficieptss N andp,,, € N are typically zero (where
N indicates non-negative integers). The species on the #ft mon-zero coefficients are called
reactants and are consumed during the reaction. The species on thewitthnon-zero entries
are calledproducts and are produced during the reaction. Species that patécip a reaction,
i.e.,r, > 0, but where no net consumption or production occufs= p,., are calledcatalysts.
They change the dynamics of a particular reaction withoirtdehanged themselves.

A reaction network over a given set of species consists of a set @f reactions
R ={R1,Rs,---,Rqg}, where each reaction is a triple of reaction parameters (6),

Rq = (rqa’iqqu)' (7)

For example, in a reactioR, € R where specieZ; andZ; form a new chemical speci& at a
rate ofr,, the reactant vectar? is zero everywhere except#t = r? = 1. The associated product
vectorp? is zero everywhere except pf = 1. In the reaction notation where non-participating
species are dropped reactiffy is can be compactly written as

Zy 425 Zs. (8)

3.1 MassAction Kinetics

The concentration of each chemical spedgsis denoted byZ,,]. A reaction network describes
the evolution of species concentrations as a set of coujpledinear differential equations. For each
species concentratidd,, | the rate of change is given loyass action kinetics,

M

dZn] & ¥, 0d _ pa
% = qzzlﬂq H [Zm’] m/(pfn _rm)' (9)

m’=1

Based on the fact that reactant coefficients appear as p,d\hnrer:sumznj\f:1 ry, is called theorder
of a reaction. For example, if the only reaction in a netwoekethe second order reaction (8), the
concentration dynamics ¢Z, | would be
d[Z,]
dt

= —rq[Z1][Z3]. (10)

We design reaction networks where #agiilibriumconcentration of some species corresponds to the
result we are interested in computing. In general, chemsigsttms can exhibit complex dynamical
behaviors, be dominated non-equilibrium dynamics, andrgvithout bounds (at least their models
can). As such, we need to be sure that equilibrium solutigistseand that the system will approach
it. The reaction networks in the following section do not n auto-catalytic reactions, that would
create mass, or require flux of some fuel that provides enéngyead, we design @dosed system
where different species catalyze one another. By takingartbdynamic view of this abstracted
physical model, an equilibrium solution is guaranteed tisteand the system will stably approach
it. Non-equilibrium behavior, such as oscillations areesthiransient.

4 Representing Graphical Modelswith Reaction Networks

In the following compilation procedure, each message angjima probability is represented by a
set distinct chemical species. We design networks thatectgsn interact in such a way that, at
steady state the concentration of some species represemtaiyinal distributions of the variable
nodes in a factor graph. When information arrives the ndtvemuilibrates to the new, correct,
value. Since messages in the sum-product inference digodte computed from other messages,
the reaction networks that implement sending messagesiltkesmow species from one message
catalyze the species of another message.

Beliefs and messages are represented as concentratiolnsrofcal species: each component of a
sum messagésgj_m), has an associated chemical spetS%s_m); each component of a product
messageP,(C”_”), has an associated chemical speﬂé”s_’”; and each component of a marginal
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probability distribution,Pr(z,, = k), has an associated chemical speéigs In addition, each
message and marginal probability distribution has a chalrsfpecies with a zero subscript that rep-
resents unassigned probability mass. Together, the sqtenfes associated with a messages or
marginal probability are called laelief species, and the reaction networks presented in the subse-
guent sections are designed to conserve species — and lugaiextmeir concentrations — with each
such set. For example, the concentration of belief speies= {P}};, of Pr(x,) have a con-

stant sumEkZO[PZ] = const, determined by the initial concentrations. These setebsfiecies
are a chemical representation of the left hand sides of Eims8-5. The next few sections present
reaction networks whose dynamics implement their righthsdes.

4.1 Bedlief Recycling Reactions

Each set of belief species has an associated set of reattaingecycle assigned probabilities to the
unassigned species. By continuously and dynamicallyloeaing probability mass, the resulting
reaction network can adapt to changing potential functigns.e. new information.

For example, the factor graph shown in Figure 1a has 8 disi@is of belief species — 2 representing
marginal probabilities ofc; and x5, and 6 (ignoring messages to leaf factor nodes) repregentin
messages. The associate recycling reactions are

Pi%‘Pé S](glﬂl)%sglﬂl) 51(63%1)%83%1) P}(jas) Pé1a3)
Pi—T‘PZQ S](CQHQ)_T‘S((JQHQ) 51(63%2) i 53%2) P(2~>3) P(2~>3)
(11)

By choosing a smaller rate. less of the probability mass will be unassigned at steadg,sta.
guantities will be closer to normalized, however the speedtach the reaction network reaches
steady state decreases, see Section 5.

4.2 Sum Messages

In the reactions that implement messages from factor tabbrinodes, the message species of
incoming messages catalyze the assignment of the outga@sgage species and the entry in the
factor table determine the associated rate constantkhmessage component from a factor node
1; to the variable node,, is implemented by a reactions of the form

n n (7 =KkJ ) n n
S(J—> ) + Z P Ty T T 8(7—> ) + Z P —>7) (12)
n Ene(])\” n Ene(?)\”

where thenth component ok’ is clamped tok, k? = k. Using the law of mass action, the kinetics
for each sum message species are given by

d[S(H") i 1y sim (n'—9) (j—n)
Zw x [ § (AR R s (13)
n'ene(j)\n "
At steady state the concentrationS}f ™) is given by
S = Yued = W) TP 14)
S ] Kk wenei)\n "

Where aII[S(”" ] species concentrations have the same f Their relative concentra-

Hn)]
tions are exactly the message according to the to Equat)onAG%nr decreases, the concentration
of unassigned probability mass decreases and the contbiemtnarmalized by the constant sum of
all the related belief species can be interpreted as a pildpaBor example, in the simple exam-
ple the four factor-to-variable messages in the simple @l@amgraph shown in Figure 1(a) can be
implemented with the reactions

S((Jlﬂl) ¥1(k) S](glﬂl) 8(3%1)+P(2ﬂ3) Vs (kK 8(341)+P(2a3) (15)
S(()2—>2) ¥2(k) S,(f_)z) S(3—>2)+P(1—>3) ¥s(k' k) S(3—>2)+P(1—>3)



P11 ¥1(2) P ¥i(2) Pa(l)  P2(2) Ps(1)  ¥3(2)  ¥3(3) Yr(1)  Pr(2)
1 0.1 0.1 1 1 0.1 2 1 1 1 1
| %a(, 1) s, 2) | ¥s5(,1)  ¥s(,2)  9s5(,3) | ¥e(,1)  vs(:,2)
Pa(l,-) 1 0.1 ¥s(1,-) 01 2 01 e (1, ) 0.1 0.1
$a(2,-) 01 3 ¥5(2, ) ‘ 3 01 1 e (2, ) ‘ 1 0.1
(©)

Figure 2: Examples of non-trivial factor graphs. (a) Fouialale factor graph with binary factors.
The factor leafs can be used to specify information abouttcpdar random variable. (b) Example
of a small three variable cyclic graph. (c) Factors for (@dim simulation experiments in Sec. 5.1.

4.3 Product Messages

Reaction networks that implement variable to factor nodesgages have a similar, but slightly
simpler, structure. Again, each components species of #&sage is catalyzed by all incoming
messages species but only of the same component speciesit& benstant for all product message
reactions is the sameoq resulting in a reactions of the following from for a messagerf variable
noden to factor nodej,

P | Z Sl(cj/—m) prod plnd) 4 Z S;j'—m) (16)
Jj’ene(j)\n J'ene(j)\n
The dynamics of the message component species is given by

APy o) SU = o pnhd) 17
dt Kprod[Py ] H [Sk ] = & [Py, ]. 17)
jreneli\n

At steady state the concentrationR§fﬂj )is given by

Ry n—j =
——Py1= I] s (18)
Kprod Py '] ' ene()\n
Again, since all the component species of product messagee tthe same multiplier
W [P,(C’HJ )], the steady state species concentrations compute thetaressage according
Kprod|F g

to Equation 4. For example, the two different sets of vagdolfactor messages in Figure 1a are

Kprod Kprod
Pélas)_i_sl(jan P P](€143)+Sl(€1/a1) P((J2e3)+sl(€2/a2) p P}(jas)_i_sl(jam. (19)

Similarly, the reactions to compute the marginal probtibgiofx; andx, in Figure 1a are
Kprod
Py +SU7 #5070 = PL s s
Kprod
P24+ 532 4 g(222) T p2 | g(822) | g(222)

The two global rate constanksoq andx, can be adjusted to trade-off speed vs. accuracy of the
solution, see Section 5.

(20)

Together, reactions for recycling probability mass, impdating sum-product messages, and imple-
menting product messages define a reaction network whodéeqgm computes the messages and
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PI’ Xl PI’ X2 PI’ X3) PF(X4)

k=01 kK,

exact|] 0.692] 0.308] | 0.598] 0.402] | 0.392[ 0.526] 0.083| | 0.664] 0.336]
slow 0690 0.306 0583 0.393| | 0.394| 0.520| 0.083| | 0.665| 0.333
fast| | 0.661| 0.294| | 0.449| 0.302| | 0.379| 0.508| 0.080| | 0.646| 0.326

Figure 3: Inference results for factor graph in Figure 2@jlored boxes show the trajectories of
a belief species set in a simulated reaction network. Thelsiton time (3000sec) is along the
ax—dimension. Half way though the simulation the factor dteattox; changes from; to ¢/}, and
the exact marginal distribution for each period is shown back-white dashed line. The white area
at the top indicates unassigned probability mass. Thess ghow the clear tradeoff between speed
(higher value ofk,.) and accuracy (less unassigned probability mass). The exaterical answers
at 3000 sec are given in the table.

marginal probabilities via the sum-product algorithm. Aslpability mass is continuously recycled,
messages computed on partial information will re-adjust settle to the correct value. There is a
clear dependence of messages. Sum messages from leaf modesdepend on any other mes-
sages. Once they are computed, i.e. the reactions havéegtat, the message species continue to
catalyze the next set of messages until they have reachéuktlterrect value, etc.

5 Simulation Experiments

This section presents simulation results of factor graphshave been compiled into reaction net-
works via the procedure in Section 4. All simulations werdqrened using the SimBiology Toolbox
in Matlab with the 'sundials’ solver. The conserved concatiin for all sets of belief species were
set to 1, so plots of concentrations can be directly intéegras probabilities. Figure 2 shows the
two graphical models for which we present detailed simatatesults in the next two sections.

5.1 Tree-Structured Factor Graphs

To demonstrate the functionality and features of the caattipih procedure described in Section 4,
we compiled the 4 variable factor graph shown in Figure 2aameaction network. When , x5, x3

andx4 have discrete statds; = K, = K4 = 2 andK5 = 3, the resulting network has 64 chemical
species and 105 reactions. The largest reaction ishobrder to compute the marginal distribution
of xo. We instantiated the factors as shown in Figure 2c and liziéid all message and marginal
species to be uniform. To show that the network continuopsiyorms inference and can adapt
to new information, we changed the factoy to ¢} half way through the simulation. In terms of
information, the new factor implies th&t(x; = 2) suddenly more likely. In terms of reactions the

change means thStgl_)l) is now more likely to turn inttsgl_)l). In a biological reaction network,
such a change could be induced by up-regulating, or actiyaticatalyst due to a new chemical
signal. This new information changes the probability disttion of all the variable in the graph and
the network equilibrates to these new values, see Figure 3.

The only two free parameters atgoq ands,.. Since onlyk,. has an direct effect on all sets of belief

species, we fixedpog = 50 and varieds,.. Small values ok, results in better approximation as less
of the probability mass in each belief species set is in assigaed state. However, small values of
k. slow the dynamics of the network. Larger valuespfesult in faster dynamics, but more of the
probability mass remains unassigned, top white area irr&iguwe should note, that at equilibrium,

the relative assignments of probabilities are still carreee Equation 14 and Equation 18.

The compilation procedure also works for factor graphs Veitber factors. When replacing the two
of the binary factors)s andis in Figure 2a with a new tertiary factqr, that is connected t®;,x,
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Figure 4: (a) The belief oPr(x; = 1) as function of iteration in loopy belief propagation. All
messages are updated simultaneously at every time stegr. 180 iterations the oscillations abate
and the belief converges to the correct estimate indicagdidbdashed line. (b) Trajectory 84,
species concentrations. The simulation time is 3000 sed¢handifferent colors indicate the belief
of about either of the two states. The dotted line indicdtessixact marginal distribution &f; .

andx, the compiled reaction network has 58 species and 115 reactithe largest reaction is of
order 4. Larger factors can reduce the number of species #iece are fewer edges and associated
messages to represent, however, the domain ¥Zesf the individual factors grows exponentially
and in the number of neighbors and thus require more reactioimplement.

5.2 Loopy Belief Propagation

These networks can also be used on factor graphs that aneest Figure 2b shows a cyclic graph
which we compiled to reactions and simulated. WiAgn= 2 for all variables the resulting reaction
network has 54 species and 84 reactions. We chose factestttat anti-correlate neighbors and
leaf factors that prefer the same state.

Figure 4 shows the results of performing both loopy beli@fgagation and simulation results for
the compiled reaction network. Both exhibit decaying datidns, but settle to the correct marginal
distribution. Since the reaction network is essentiallgfganing damped loopy belief propagation
with an infinitesimal time step, the reaction network impértation should always converge.

6 Conclusion

We present a compilation procedure for taking arbitrarydagraphs over discrete random vari-
ables and construct a reaction network that performs thepmahuct message passing algorithm
for computing marginal distributions.

These reaction networks exploit the fact that the messagetste of the sum-product algorithm
maps neatly onto the model of mass action kinetics. By coattm, conserved sets of belief species
in the network perform implicit and continuous normalipatiof all messages and marginal distri-
butions. The correct behavior of the network implementatielies on higher order reactions to
implement multiplicative operations. However, physigdligh order reaction are exceedingly un-
likely to proceed in a single step. While we can simulate aalitlate our implementation with
respect to the mass action model, a physical implementatibnequire an additional translation
step, e.g. along the lines of [13] with intermediate specfdsnary reactions.

One aspect that this paper did not address, but we believepisrtant, is how parameter uncer-
tainty and noise affect the reaction network implementetiof inference algorithms. Ideally, they
would be robust to parameter uncertainty and random fluctust To address the former one could
directly compute the parameter sensitivity in this deteistic model. To address the latter, we
plan to look at other semantic interpretations of chemieattion networks, such as the linear noise
approximation or the stochastic chemical kinetics model.

In addition to further analyzing this particular algorithme would like to implement others, e.g.
max-product, parameter learning, and dynamic state estimas reaction networks. We believe
that statistical inference provides the right tools foktamy noise and uncertainty at a microscopic
level, and that reaction networks are the right languagsgecifying systems at that scale.
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