
Message Passing Inference with Chemical Reaction
Networks

Nils Napp and Ryan Prescott Adams
School of Engineering and Applied Sciences

Harvard University
Cambridge, MA 02138

{nnapp,rpa}@seas.harvard.edu

Abstract

Recent work on molecular programming has explored new possibilities for com-
putational abstractions with biomolecules, including logic gates, neural networks,
and linear systems. In the future such abstractions might enable nanoscale devices
that can sense and control the world at a molecular scale. Just as in macroscale
robotics, it is critical that such devices can learn about their environment and rea-
son under uncertainty. At this small scale, systems are typically modeled as chem-
ical reaction networks. In this work, we develop a procedurethat can take arbitrary
probabilistic graphical models, represented as factor graphs over discrete random
variables, and compile them into chemical reaction networks that implement infer-
ence. In particular, we show that marginalization based on sum-product message
passing can be implemented in terms of reactions between chemical species whose
concentrations represent probabilities. We show algebraically that the steady state
concentration of these species correspond to the marginal distributions of the ran-
dom variables in the graph and validate the results in simulations. As with stan-
dard sum-product inference, this procedure yields exact results for tree-structured
graphs, and approximate solutions for loopy graphs.

1 Introduction

Recent advances in nanoscale devices and biomolecular synthesis have opened up new and excit-
ing possibilities for constructing microscopic systems that can sense and autonomously manipulate
the world. Necessary to such advances is the development of computational mechanisms and asso-
ciated abstractions for algorithmic control of these nanorobots. Work on molecular programming
has resulted inin vitro biomolecular implementations of various such abstractions, including logic
gates [12], artificial neural networks [6, 7, 10], tiled self-assembly models [8, 11], and linear sys-
tems [3, 9, 16]. Similarly,in vivo, gene regulatory networks can be designed that when transformed
into cells implement devices such as oscillators [5], intracellularly coupled oscillators [4], or dis-
tributed algorithms such as pattern formation [1]. Many critical information processing tasks can be
framed in terms of probabilistic inference, in which noisy or incomplete information is accumulated
to produce statistical estimates of hidden structure. In fact, we believe that this particular computa-
tional abstraction is ideally suited to the noisy and often poorly characterized microscopic world. In
this work, we develop a chemical reaction network for performing inference in probabilistic graph-
ical models. We show that conventional message passing schemes, such as belief propagation, map
relatively straightforwardly onto sets of chemical reactions, which we think of as the “assembly lan-
guage” of bothin vitro andin vivo computation at the molecular scale. The long-term possibilities
of such technology are myriad: adaptive and tissue-sensitive drug delivery,in situ chemical sensing,
and identification of disease states.

1



Abstract Problem & Algorithm

ψ1 ψ2

ψ3x1 x2

S(1→1)P(1→1) S(2→2)P(2→2)

P(1→3)

S(3→1)

P(2→3)

S(3→2)

(a)

Low-Level ”Assembly” Language

S(1→1)
1

κr
GGGGB S(1→1)

0

S(1→1)
2

κr
GGGGB S(1→1)

0

.

.

.

S(3→2)
0 + P(1→3)

1

ψ3(1,1)

GGGGGGGB S(3→2)
1 + P(1→3)

1

S(3→2)
0 + P(1→3)

2

ψ3(2,1)

GGGGGGGB S(3→2)
1 + P(1→3)

2

.

.

.

(b)

Physical
Implementation

(c)

Figure 1: Inference at different levels of abstraction. (a)Factor graph over two random variables. In-
ference can be performed efficiently by passing messages (shown as gray arrows) between vertices,
see Section 2. (b) Message passing implemented at a lower level of abstraction. Chemical species
represent the different components message vectors. The dynamics of the CRN constructed in Sec-
tion 3 perform the same computation as the sum-product message passing algorithm. (c) Schematic
representation of DNA strand displacement. The reaction network described in this paper can be
implemented in different physical systems, e.g. DNA stranddisplacement cascades [13].

At the small scales of interest systems are typically modeled as deterministic chemical reaction net-
works or their stochastic counterparts that explicitly model fluctuations and noise. However, chem-
ical reactions are not only models, but can be thought of as specifications or abstract computational
frameworks themselves. For example, arbitrary reaction networks can be simulated by DNA strand
displacement systems [13], where some strands correspond to the chemical species in the specifying
reaction network. By adjusting the toehold length reactions rates in these systems can be adjusted
over many orders of magnitude. We take advantage of this abstraction by ”compiling” the sum-
product algorithm for discrete variable factor graphs intoan chemical reaction network, where the
concentrations of some species represent conditional and marginal distributions of variables in the
graph. In some ways, this representation is very natural: while normalization is a constant concern
in digital systems, our chemical design conserves species within some subsets and thus implicitly
and continuously normalizes its estimates. The computation is complete when the reaction network
reaches equilibrium. Variables in the graph can be conditioned upon by adjusting the reaction rates
corresponding to unary potentials in the graph.

Section 2 provides a brief review of factor graphs and the sum-product algorithm. Section 3 in-
troduces notation and concepts for chemical reaction networks. Section 4 shows how inference on
factor graphs can be compiled into reaction networks, and inSection 5, we show several example
networks and compare the results of molecular simulations to digital inference procedures.

To aid parsing the potentially tangled notation resulting from mixing probabilistic inference tools
with chemical reaction models, this paper follows these general notational guidelines: capital letters
denote constants, such as set sizes, and other quantities, such as tuples and message types; lower
case letters denote parameters, such as reaction rates and indices; bold face letters denote vectors
and subscripts elements of that vector; scripted upper letters indicate sets; random variables are
always denoted byx or their vector version; and species names have a sans-seriffont.

2 Graphical Models and Probabilistic Inference

Graphical models are popular tools for reasoning about complicated probability distributions. In
most types of graphical models, vertices represent random variables and edges reflect dependence
structure. Here, we focus on thefactor graph formalism, in which there are two types of vertices
that have a bipartite structure: variable nodes (typicallydrawn as circles), which represent random
variables, and factor nodes (typically drawn as squares), which represent potentials (also called
compatibility functions) coupling the random variables. Factor graphs, encode the factorization of a
probability distribution and therefore its conditional independence structure. Other graphical mod-
els, such as Bayesian Networks, can be converted to factor graphs, and thus factor graph algorithms
are directly applicable to other types of graphical models,see [2, Ch. 8].

2



LetG be a factor graph overN random variables{xn}Nn=1 wherexn takes one ofKn discrete values.
The globalN -dimensional random variablex takes on values in the (potentially huge) product space
K =

∏N

n=1{1, ...,Kn}. The other nodes ofG are called factors and every edge inG connects
exactly one factor node and one variable node. In general,G can haveJ factors{ψj(xj)}Jj=1 where
we usexj = ne(j) to indicate the subset of random variables that neighbors offactor j. Eachxj

takes on values in the (potentially much smaller) spaceKj =
∏
n∈ne(j){1, ...,Kn}, and eachψj is a

non-negative scalar function onKj. Together the structure ofG and the particular factorsψj define
a joint distribution onx:

Pr(x) = Pr(x1, x2, · · · , xN ) =
1

Z

J∏

j=1

ψj(x
j), (1)

whereZ is the appropriate normalizing constant. Figure 1a shows a simple factor graph with two
variable nodes and three factors. It implies that the the joint distributionx1 andx2 has the form
Pr(x1, x2) =

1
Z
ψ1(x1)ψ2(x2)ψ3(x1, x2).

The sum-product algorithm (belief propagation) is an dynamic programming technique for perform-
ing marginalization in a factor graph. That is, it computes sums of the form:

Pr(xn) =
1

Z

∑

x\xn

J∏

j=1

ψj(x
j). (2)

For tree-structured factor graphs, the sum-product algorithm efficiently recovers the exact
marginals. For more general graphs, the sum-product algorithm often converges to useful approxi-
mations. This approximate situation is calledloopy belief propagation.

The sum-product algorithm proceeds by passing “messages” along the graph edges. There are two
kinds of messages messages from a factor node to a variable node and messages from a variable
node to a factor node. In order to make clear what quantities are represented by chemical species
concentrations in Section 4, we use somewhat unconventional notation. Thekth entry of thesum
message from factor nodej to variable noden is denotedS(j→n)

k and the entireKn-dimensional
vector is denoted byS(j→n). Thekth entry of theproduct message from variablen to factor nodej
is denoted byP(n→j)

k and the entireKj-dimensional vector is denotedP(n→j). Figure 1a shows a
simple factor graph with message names and their directionsshown as gray arrows. Sum messages
from j are computed as the weighted sum of product messages over thedomainKj of ψj :

S
(j→n)
k =

∑

k
j
n=k

ψj(x
j = kj)

∏

n′∈ne(j)\n

P
(n′→j)

k
j

n′

. (3)

where ne(j)\n refers to the variable node neighbors ofj exceptn andkjn = k to the set of all
kj ∈ Kj where the entry in the dimension ofn is fixed tok. Product messages are computed by
taking the component-wise product of incoming sum messages:

P
(n→j)
k =

∏

j′∈ne(n)\j

S
(j′→n)
k , (4)

The variable node marginals can be found using the product ofincoming sum messages:

Pr(xn = k) =
∏

j∈ne(n)

S
(j→n)
k . (5)

The sum-product algorithm corresponds to fixed-point iterations that are minimizing the Bethe free
energy. This observation leads to both partial-update ordamped variants of sum-product, as well
as asynchronous versions [14, Ch.6][15]. The validity of damped asynchronous sum-product is
what enables us to frame the computation as a chemical reaction network. The continuous ODE
description of species concentrations that represent messages can be thought of as an infinitesimally
small version of damped asynchronous update rules.

3 Chemical Reaction Networks

The following model describes how a set ofM chemical species Z = {Z1,Z2, · · · ,ZM} interact
and their concentrations evolve over time. Eachreaction has the general form

3



r1Z1 + r2Z2 + · · ·+ rMZM
κ

GGGGGGGB p1Z1 + p2Z2 + · · ·+ pMZM . (6)

In this generic representation most of the coefficientsrm ∈ N andpm ∈ N are typically zero (where
N indicates non-negative integers). The species on the left with non-zero coefficients are called
reactants and are consumed during the reaction. The species on the right with non-zero entries
are calledproducts and are produced during the reaction. Species that participate in a reaction,
i.e., rm > 0, but where no net consumption or production occurs,rm = pm, are calledcatalysts.
They change the dynamics of a particular reaction without being changed themselves.

A reaction network over a given set of species consists of a set ofQ reactions
R = {R1, R2, · · · , RQ}, where each reaction is a triple of reaction parameters (6),

Rq = (rq , κq,p
q). (7)

For example, in a reactionRq ∈ R where speciesZ1 andZ3 form a new chemical speciesZ5 at a
rate ofκq, the reactant vectorrq is zero everywhere except atrq1 = r

q
3 = 1. The associated product

vectorpq is zero everywhere except atpq5 = 1. In the reaction notation where non-participating
species are dropped reactionRq is can be compactly written as

Z1 + Z3

κq
GGGGGGGB Z5. (8)

3.1 Mass Action Kinetics

The concentration of each chemical speciesZm is denoted by[Zm]. A reaction network describes
the evolution of species concentrations as a set of coupled non-linear differential equations. For each
species concentration[Zm] the rate of change is given bymass action kinetics,

d[Zm]

dt
=

Q∑

q=1

κq

M∏

m′=1

[Zm′ ]r
q

m′ (pqm − rqm). (9)

Based on the fact that reactant coefficients appear as powers, the sum
∑M

m=1 rm is called theorder
of a reaction. For example, if the only reaction in a network were the second order reaction (8), the
concentration dynamics of[Z1] would be

d[Z1]

dt
= −κq[Z1][Z3]. (10)

We design reaction networks where theequilibrium concentration of some species corresponds to the
result we are interested in computing. In general, chemicalsystems can exhibit complex dynamical
behaviors, be dominated non-equilibrium dynamics, and grow without bounds (at least their models
can). As such, we need to be sure that equilibrium solutions exists and that the system will approach
it. The reaction networks in the following section do not contain auto-catalytic reactions, that would
create mass, or require flux of some fuel that provides energy. Instead, we design aclosed system
where different species catalyze one another. By taking a thermodynamic view of this abstracted
physical model, an equilibrium solution is guaranteed to exist and the system will stably approach
it. Non-equilibrium behavior, such as oscillations are at best transient.

4 Representing Graphical Models with Reaction Networks

In the following compilation procedure, each message and marginal probability is represented by a
set distinct chemical species. We design networks that cause them interact in such a way that, at
steady state the concentration of some species represent the marginal distributions of the variable
nodes in a factor graph. When information arrives the network equilibrates to the new, correct,
value. Since messages in the sum-product inference algorithm are computed from other messages,
the reaction networks that implement sending messages describe how species from one message
catalyze the species of another message.

Beliefs and messages are represented as concentrations of chemical species: each component of a
sum message,S(j→n)

k , has an associated chemical speciesS(j→n)
k ; each component of a product

message,P(n→j)
k , has an associated chemical speciesP(n→j)

k ; and each component of a marginal

4



probability distribution,Pr(xn = k), has an associated chemical speciesPnk . In addition, each
message and marginal probability distribution has a chemical species with a zero subscript that rep-
resents unassigned probability mass. Together, the set of species associated with a messages or
marginal probability are called abelief species, and the reaction networks presented in the subse-
quent sections are designed to conserve species – and by extension their concentrations – with each
such set. For example, the concentration of belief speciesPn = {Pnk}

Kn
k=0 of Pr(xn) have a con-

stant sum,
∑Kn

k=0[P
n
k ] = const, determined by the initial concentrations. These sets belief species

are a chemical representation of the left hand sides of Equations 3–5. The next few sections present
reaction networks whose dynamics implement their right hand sides.

4.1 Belief Recycling Reactions

Each set of belief species has an associated set of reactionsthat recycle assigned probabilities to the
unassigned species. By continuously and dynamically re-allocating probability mass, the resulting
reaction network can adapt to changing potential functionsψj , i.e. new information.

For example, the factor graph shown in Figure 1a has 8 distinct sets of belief species – 2 representing
marginal probabilities ofx1 andx2, and 6 (ignoring messages to leaf factor nodes) representing
messages. The associate recycling reactions are

P1
k

κr
GGGGB P1

0 S(1→1)
k

κr
GGGGB S(1→1)

0 S(3→1)
k

κr
GGGGB S(3→1)

0 P(1→3)
k

κr
GGGGB P(1→3)

0

P2
k

κr
GGGGB P20 S(2→2)

k

κr
GGGGB S(2→2)

0 S(3→2)
k

κr
GGGGB S(3→2)

0 P(2→3)
k

κr
GGGGB P(2→3)

0 .

(11)

By choosing a smaller rateκr less of the probability mass will be unassigned at steady state, i.e.
quantities will be closer to normalized, however the speed at which the reaction network reaches
steady state decreases, see Section 5.

4.2 Sum Messages

In the reactions that implement messages from factor to variable nodes, the message species of
incoming messages catalyze the assignment of the outgoing message species and the entry in the
factor table determine the associated rate constant. Thekth message component from a factor node
ψj to the variable nodexn is implemented by a reactions of the form

S(j→n)
0 +

∑

n′∈ne(j)\n

P(n′→j)

k
j

n′

ψj(x
j=kj)

GGGGGGGB S(j→n)
k +

∑

n′∈ne(j)\n

P(n′→j)

k
j

n′

, (12)

where thenth component ofkj is clamped tok, kjn = k. Using the law of mass action, the kinetics
for each sum message species are given by

d[S(j→n)
k ]

dt
=

∑

k
j
n=k

ψj(x
j = kj)[S(j→n)

0 ]
∏

n′∈ne(j)\n

[P(n′→j)

k
j

n′

]− κr[S
(j→n)
k ]. (13)

At steady state the concentration ofS(j→n)
k is given by

κr

[S(j→n)
0 ]

[S(j→n)
k ] =

∑

k
j
n=k

ψj(x
j = kj)

∏

n′∈ne(j)\n

[P(n′→j)

k
j

n′

]. (14)

Where all[S(j→n)
k ] species concentrations have the same factorκr

[S(j→n)
0 ]

. Their relative concentra-

tions are exactly the message according to the to Equation (3). As κr decreases, the concentration
of unassigned probability mass decreases and the concentration normalized by the constant sum of
all the related belief species can be interpreted as a probability. For example, in the simple exam-
ple the four factor-to-variable messages in the simple example graph shown in Figure 1(a) can be
implemented with the reactions

S(1→1)
0

ψ1(k)
GGGGGGGB S(1→1)

k S(3→1)
0 + P(2→3)

k′

ψ3(k,k
′)

GGGGGGGB S(3→1)
k + P(2→3)

k′

S(2→2)
0

ψ2(k)
GGGGGGGB S(2→2)

k S(3→2)
0 + P(1→3)

k′

ψ3(k
′,k)

GGGGGGGB S(3→2)
k + P(1→3)

k′ .

(15)

5



ψ1 ψ2 ψ3

ψ4 ψ5

ψ6

ψ7

x1 x2 x3

x4

(a)

ψ1

ψ2 ψ3

ψ4

ψ5

ψ6

x1

x2 x3

(b)

ψ1(1) ψ1(2)
1 0.1

ψ′

1(1) ψ′

1(2)
0.1 1

ψ2(1) ψ2(2)
1 0.1

ψ3(1) ψ3(2) ψ3(3)
2 1 1

ψ7(1) ψ7(2)
1 1

ψ4(·, 1) ψ4(·, 2)
ψ4(1, ·) 1 0.1
ψ4(2, ·) 0.1 3

ψ5(·, 1) ψ5(·, 2) ψ5(·, 3)
ψ5(1, ·) 0.1 2 0.1
ψ5(2, ·) 3 0.1 1

ψ6(·, 1) ψ6(·, 2)
ψ6(1, ·) 0.1 0.1
ψ6(2, ·) 1 0.1

(c)

Figure 2: Examples of non-trivial factor graphs. (a) Four variable factor graph with binary factors.
The factor leafs can be used to specify information about a particular random variable. (b) Example
of a small three variable cyclic graph. (c) Factors for (a) used in simulation experiments in Sec. 5.1.

4.3 Product Messages

Reaction networks that implement variable to factor node messages have a similar, but slightly
simpler, structure. Again, each components species of the message is catalyzed by all incoming
messages species but only of the same component species. Therate constant for all product message
reactions is the sameκprod resulting in a reactions of the following from for a message from variable
noden to factor nodej,

P(n→j)
0 +

∑

j′∈ne(j)\n

S(j′→n)
k

κprod

GGGGGGGB P(n→j)
k +

∑

j′∈ne(j)\n

S(j′→n)
k (16)

The dynamics of the message component species is given by

d[P(n→j)
k ]

dt
= κprod[P

(n→j)
0 ]

∏

j′∈ne(j)\n

[S(j′→n)
k ]− κr[P

(n→j)
k ]. (17)

At steady state the concentration ofP(n→j)
k is given by

κr

κprod[P
(n→j)
0 ]

[P(n→j)
k ] =

∏

j′∈ne(j)\n

[S(j′→n)
k ]. (18)

Again, since all the component species of product messages have the same multiplier
κr

κprod[P
(n→j)
0 ]

[P(n→j)
k ], the steady state species concentrations compute the correct message according

to Equation 4. For example, the two different sets of variable to factor messages in Figure 1a are

P(1→3)
0 + S(1→1)

k′

κprod

GGGGB P(1→3)
k + S(1→1)

k′ P(2→3)
0 + S(2→2)

k′

κprod

GGGGB P(2→3)
k + S(2→2)

k′ . (19)

Similarly, the reactions to compute the marginal probabilities ofx1 andx2 in Figure 1a are

P1
0 + S(3→1)

k′ + S(1→1)
k′′

κprod

GGGGB P1
k + S(3→1)

k′ + S(1→1)
k′′

P2
0 + S(3→2)

k′ + S(2→2)
k′′

κprod

GGGGB P2
k + S(3→2)

k′ + S(2→2)
k′′ .

(20)

The two global rate constantsκprod andκr can be adjusted to trade-off speed vs. accuracy of the
solution, see Section 5.

Together, reactions for recycling probability mass, implementing sum-product messages, and imple-
menting product messages define a reaction network whose equilibrium computes the messages and

6



Pr(x1) Pr(x2) Pr(x3)

κ
r
=

0
.0
1

κ
r
=

0
.1

Pr(x1) Pr(x2) Pr(x3) Pr(x4)
exact 0.692 0.308 0.598 0.402 0.392 0.526 0.083 0.664 0.336
slow 0.690 0.306 0.583 0.393 0.394 0.520 0.083 0.665 0.333
fast 0.661 0.294 0.449 0.302 0.379 0.508 0.080 0.646 0.326

Figure 3: Inference results for factor graph in Figure 2(a).Colored boxes show the trajectories of
a belief species set in a simulated reaction network. The simulation time (3000sec) is along the
x–dimension. Half way though the simulation the factor attached tox1 changes fromψ1 to ψ′

1, and
the exact marginal distribution for each period is shown as aback-white dashed line. The white area
at the top indicates unassigned probability mass. These plots show the clear tradeoff between speed
(higher value ofκr) and accuracy (less unassigned probability mass). The exact numerical answers
at 3000 sec are given in the table.

marginal probabilities via the sum-product algorithm. As probability mass is continuously recycled,
messages computed on partial information will re-adjust and settle to the correct value. There is a
clear dependence of messages. Sum messages from leaf nodes do not depend on any other mes-
sages. Once they are computed, i.e. the reactions have equilibrated, the message species continue to
catalyze the next set of messages until they have reached thethe correct value, etc.

5 Simulation Experiments

This section presents simulation results of factor graphs that have been compiled into reaction net-
works via the procedure in Section 4. All simulations were performed using the SimBiology Toolbox
in Matlab with the ’sundials’ solver. The conserved concentration for all sets of belief species were
set to 1, so plots of concentrations can be directly interpreted as probabilities. Figure 2 shows the
two graphical models for which we present detailed simulation results in the next two sections.

5.1 Tree-Structured Factor Graphs

To demonstrate the functionality and features of the compilation procedure described in Section 4,
we compiled the 4 variable factor graph shown in Figure 2a into a reaction network. Whenx1, x2, x3
andx4 have discrete statesK1 = K2 = K4 = 2 andK3 = 3, the resulting network has 64 chemical
species and 105 reactions. The largest reaction is of5th order to compute the marginal distribution
of x2. We instantiated the factors as shown in Figure 2c and initialized all message and marginal
species to be uniform. To show that the network continuouslyperforms inference and can adapt
to new information, we changed the factorψ1 to ψ′

1 half way through the simulation. In terms of
information, the new factor implies thatPr(x1 = 2) suddenly more likely. In terms of reactions the

change means thatS(1→1)
0 is now more likely to turn intoS(1→1)

2 . In a biological reaction network,
such a change could be induced by up-regulating, or activating a catalyst due to a new chemical
signal. This new information changes the probability distribution of all the variable in the graph and
the network equilibrates to these new values, see Figure 3.

The only two free parameters areκprod andκr. Since onlyκr has an direct effect on all sets of belief
species, we fixedκprod = 50 and variedκr. Small values ofκr results in better approximation as less
of the probability mass in each belief species set is in an unassigned state. However, small values of
κr slow the dynamics of the network. Larger values ofκr result in faster dynamics, but more of the
probability mass remains unassigned, top white area in Figure 3. We should note, that at equilibrium,
the relative assignments of probabilities are still correct, see Equation 14 and Equation 18.

The compilation procedure also works for factor graphs withlarger factors. When replacing the two
of the binary factorsψ5 andψ6 in Figure 2a with a new tertiary factorψ′

5 that is connected tox2,x3,

7



(a) (b)

Figure 4: (a) The belief ofPr(x1 = 1) as function of iteration in loopy belief propagation. All
messages are updated simultaneously at every time step. After 100 iterations the oscillations abate
and the belief converges to the correct estimate indicated by the dashed line. (b) Trajectory ofPAi
species concentrations. The simulation time is 3000 sec andthe different colors indicate the belief
of about either of the two states. The dotted line indicates the exact marginal distribution ofx1.

andx4 the compiled reaction network has 58 species and 115 reactions. The largest reaction is of
order 4. Larger factors can reduce the number of species since there are fewer edges and associated
messages to represent, however, the domain sizesKj of the individual factors grows exponentially
and in the number of neighbors and thus require more reactions to implement.

5.2 Loopy Belief Propagation
These networks can also be used on factor graphs that are not trees. Figure 2b shows a cyclic graph
which we compiled to reactions and simulated. WhenKn = 2 for all variables the resulting reaction
network has 54 species and 84 reactions. We chose factor tables that anti-correlate neighbors and
leaf factors that prefer the same state.

Figure 4 shows the results of performing both loopy belief propagation and simulation results for
the compiled reaction network. Both exhibit decaying oscillations, but settle to the correct marginal
distribution. Since the reaction network is essentially performing damped loopy belief propagation
with an infinitesimal time step, the reaction network implementation should always converge.

6 Conclusion

We present a compilation procedure for taking arbitrary factor graphs over discrete random vari-
ables and construct a reaction network that performs the sum-product message passing algorithm
for computing marginal distributions.

These reaction networks exploit the fact that the message structure of the sum-product algorithm
maps neatly onto the model of mass action kinetics. By construction, conserved sets of belief species
in the network perform implicit and continuous normalization of all messages and marginal distri-
butions. The correct behavior of the network implementation relies on higher order reactions to
implement multiplicative operations. However, physically high order reaction are exceedingly un-
likely to proceed in a single step. While we can simulate and validate our implementation with
respect to the mass action model, a physical implementationwill require an additional translation
step, e.g. along the lines of [13] with intermediate speciesof binary reactions.

One aspect that this paper did not address, but we believe is important, is how parameter uncer-
tainty and noise affect the reaction network implementations of inference algorithms. Ideally, they
would be robust to parameter uncertainty and random fluctuations. To address the former one could
directly compute the parameter sensitivity in this deterministic model. To address the latter, we
plan to look at other semantic interpretations of chemical reaction networks, such as the linear noise
approximation or the stochastic chemical kinetics model.

In addition to further analyzing this particular algorithmwe would like to implement others, e.g.
max-product, parameter learning, and dynamic state estimation, as reaction networks. We believe
that statistical inference provides the right tools for tackling noise and uncertainty at a microscopic
level, and that reaction networks are the right language forspecifying systems at that scale.

Acknowledgements

We are grateful to Wyss Institute for Biologically InspiredEngineering at Harvard, especially Prof.
Radhika Nagpal, for supporting this research. We would alsolike to thank our colleagues and
reviewers for their helpful feedback.

8



References

[1] Subhayu Basu, Yoram Gerchman, Cynthia H. Collins, Frances H. Arnold, and Ron Weiss. A
synthetic multicellular system for programmed pattern formation. Nature, 434:1130–1134,
2005.

[2] Christopher M. Bishop.Pattern Recognition and Machine Learning. Information Science and
Statistics. Springer, 2006.

[3] Ho-Lin Chen, David Doty, and David Soloveichik. Deterministic function computation with
chemical reaction networks. In Darko Stefanovic and AndrewTurberfield, editors,DNA Com-
puting and Molecular Programming, volume 7433 ofLecture Notes in Computer Science,
pages 25–42. Springer Berlin Heidelberg, 2012.

[4] Tal Danino, Octavio Mondragon-Palomino, Lev Tsimring,and Jeff Hasty. A synchronized
quorum of genetic clocks.Nature, 463:326–330, 2010.

[5] Michael B. Elowitz and Stanislas Leibler. A synthetic oscillatory network of transcriptional
regulators.Nature, 403:335–338, 2000.

[6] A Hjelmfelt, E D Weinberger, and J Ross. Chemical implementation of neural networks and
turing machines.Proceedings of the National Academy of Sciences, 88(24):10983–10987,
1991.

[7] Erik Winfree Jongmin Kim, John J. Hopfield. Neural network computation by in vitro tran-
scriptional circuits. InAdvances in Neural Information Processing Systems 17 (NIPS 2004).
MIT Press, 2004.

[8] Chengde Mao, Thomas H. LaBean, John H. Reif, and Nadrian C. Seeman. Logical computa-
tion using algorithmic self-assembly of dna triple-crossover molecules.Nature, 407:493–496,
2000.

[9] K. Oishi and E. Klavins. Biomolecular implementation oflinear i/o systems.Systems Biology,
IET, 5(4):252–260, 2011.

[10] Lulu Qian, Erik Winfree, and Jehoshua Bruck. Neural network computation with dna strand
displacement cascades.Nature, 475:368–372, 2011.

[11] Paul W. K Rothemund, Nick Papadakis, and Erik Winfree. Algorithmic self-assembly of dna
sierpinski triangles.PLoS Biol, 2(12):e424, 12 2004.

[12] Georg Seelig, David Soloveichik, David Yu Zhang, and Erik Winfree. Enzyme-free nucleic
acid logic circuits.Science, 314(5805):1585–1588, 2006.

[13] David Soloveichik, Georg Seelig, and Erik Winfree. Dnaas a universal substrate for chemical
kinetics.Proceedings of the National Academy of Sciences, 107(12):5393–5398, 2010.

[14] Benjamin Vigoda.Analog Logic: Continuous-Time Analog Circuits for Statistical Signal Pro-
cessing. PhD thesis, Massachusetts Institute of Technology, 2003.

[15] Jonathan S. Yedidia, W.T. Freeman, and Y. Weiss. Constructing free-energy approximations
and generalized belief propagation algorithms.Information Theory, IEEE Transactions on,
51(7):2282–2312, 2005.

[16] David Yu Zhang and Georg Seelig. Dna-based fixed gain amplifiers and linear classifier
circuits. In Yasubumi Sakakibara and Yongli Mi, editors,DNA Computing and Molecular
Programming, volume 6518 ofLecture Notes in Computer Science, pages 176–186. Springer
Berlin Heidelberg, 2011.

9


