
  
Abstract—Cardiovascular variables such as heart rate (HR) 

and blood pressure (BP) are robustly regulated by an 
underlying control system. Time series of HR and BP exhibit 
distinct dynamical patterns of interaction in response to 
perturbations (e.g., drugs or exercise) as well as in pathological 
states (e.g., excessive sympathetic activation). A question of 
interest is whether “similar” dynamical patterns can be 
identified across a heterogeneous patient cohort. In this work, 
we present a technique based on switching linear dynamical 
systems for identification of shared dynamical patterns in the 
time series of HR and BP recorded from a patient cohort. The 
technique uses a mixture of linear dynamical systems, the 
components of which are shared across all patients, to capture 
both nonlinear dynamics and non-Gaussian perturbations. We 
present exploratory results based on a simulation study of the 
cardiovascular system, and real recordings from 10 healthy 
subjects undergoing a tilt-table test.  These results demonstrate 
the ability of the proposed technique to identify similar 
dynamical patterns present across multiple time series.  
 

Index Terms— Cardiovascular control, switching linear 
dynamical systems, baroreflex 

I. INTRODUCTION 
 

HYSIOLOGICAL systems often involve many 
variables which are both subject to noise and interaction 
via feedback. The resulting multivariate time series of 

such physiological variables exhibit rich dynamical patterns, 
which are altered under pathological conditions [1].  A long-
term objective of physiological data analysis is to 
automatically discover these pathology-driven alterations 
and use them to inform clinical decisions.  This paper 
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examines the problem of segmenting physiological time 
series into stereotypical dynamics across a cohort of 
patients, with the objective of extracting features that will be 
useful for predicting physiological properties that cannot be 
directly observed. 

Models of these physiological time series have been used 
by several authors to infer the properties (e.g., transfer 
functions, phase relationships, etc) of the underlying 
dynamical systems [2-5]. For instance, several authors have 
used the time series of heart rate (HR) and blood pressure 
(BP) to obtain estimates of baroreflex gain [6-8], or more 
generally to characterize the feedback control system 
regulating the cardiovascular variables [9]. The linear 
techniques commonly used (often based on variants of 
autoregressive modeling) have the advantage of revealing 
the individual relationships among the observed variables 
(e.g., the baroreflex gain describes the relationship between 
HR and BP, excluding the possible influence of respiration). 
On the other hand, nonlinear indices of complexity are 
capable of capturing a richer set of dynamical behavior [10, 
11], but often lack physiological interpretability in terms of 
specific underlying mechanisms. 

In this work, we assume that, although the underlying 
dynamical system may be nonlinear and the stochastic noise 
components can be non-Gaussian, the dynamics can be well 
approximated by a mixture of linear dynamical systems.  We 
will refer to the components of such a mixture as modes. 
Specifically, we present a technique based on a switching 
linear dynamical system [12], that is: (i) sufficiently simple 
to allow for a physiologically-interpretable model for the 
interaction between HR and BP, (ii) sufficiently complex to 
provide a realistic representation of the underlying 
physiology, and (iii) provides a framework for defining a 
measure of similarity among multivariate physiological time 
series based on their underlying shared dynamics.  

The mixture modeling approach provides a framework for 
automatic segmentation of time series into regions with 
similar dynamics (i.e., time-dependent rules describing how 
the future state of the system evolves from the current state). 
Furthermore, we assume that “similar subjects” respond 
similarly to perturbations (such as tilting), and therefore they
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share dynamical modes. The latter assumption allows us to 
define a notion of similarity across segments from multiple 
time series. This approach provides a potential improvement 
over time series similarity measures which are based on 
symbolic representations [13] or simple trend-detection [14]. 
These measures often ignore the joint temporal information 
that is embedded in the dynamics of interaction among 
physiological variables. 

I. METHODS 

A. Cardiovascular Simulation 
We simulated time series of cardiovascular control system 

variables based on a delay recruitment model of the 
cardiovascular control system, as described in Fowler & 
McGuinness [15] and McSharry et al. [16]. The model 
included a coupled system of nonlinear delayed differential 
equations, controlling HR and BP, with respiration as an 
exogenous input. We simulated 10 different multivariate 
time series of HR and mean arterial BP (MAP), each 
including three different dynamics that become dominant in 
a random order and last for a variable length of time. The 
three dynamics (color-coded as red, blue, and black, 
respectively, in Fig. 1) approximate aging-related autonomic 
changes; a progressive reduction in parasympathetic gain 
(from 0.40 to 0.13 to 0.07 in normalized units; see [15]) and 
an increase in sympathetic delay (from 3 to 5 seconds).  

B. Tilt-Table Experiment 
Time series of HR and MAP were acquired from 10 

healthy subjects undergoing a tilt-table experiment. The 
details of the protocol is described in Heldt et al. [17]. 
Briefly, subjects were placed in supine position and secured 
to the table with straps. Tilting was performed from 

horizontal position to vertical position and back to supine. 
Examples of the resulting time series are shown in Fig. 2.  

C. Data Pre-processing 
Since we are interested in the dynamics of interaction 

between HR and MAP in the frequency range pertinent to 
sympathetic and parasympathetic regulation [18], time series 
of HR and MAP were high-pass filtered to remove the 
steady-state baseline and any oscillation in the time series 
slower than 100 beats/cycle.  This filtering was done using a 
7th order Butterworth digital filter with cutoff frequency of 
0.01 cycles/beat. All time-series were further normalized to 
have a standard deviation of one.  

D. Switching Kalman Filter with Dynamic Sharing 
Our starting point for the modeling of physiological time 

series is the multivariate autoregressive (AR) model.  Let yt 
be a K-dimensional vector of physiological variables at time 
t.  An AR model captures their discrete-time dynamics via: 

tptp
p

t wyHy +−∑
P

1=
= ,    w ~ N(0, Q0),   (1) 

where p is the time lag, up to the model order P (P=3 in the 
present study). The Hp are K×K matrices of linear dynamics 
relating yt-p to yt; wt captures variations in yt that are not 
explained by the linear dynamics of the physiological 
variables, and are therefore considered to be noise.  Models 
of the type described by Eq. (1) have been successfully used 
by researchers to model the cardiovascular [6, 7] and 
respiratory [5] control systems, with appropriate 
physiological constraints imposed on the model coefficients. 
Note that, Eq. (1) does not explicitly model measurement-
related noise. Moreover, it assumes a static linear model 
with stationary Gaussian noise. Unfortunately, recordings of 
physiological variables are often corrupted by measurement-

 
Figure 1. Simulation study of the cardiovascular system. Three examples (out of the 10 simulated time series) of HR and MAP (after filtering) are shown in 
panels A, B and C. In each case, the actual dynamics are color coded. The horizontal gray lines show the inferred segmentations based on the switching 
Kalman filter (SKF). Note that, the SKF consistently assigned modes 2, 3 and 4 to the dynamics color-coded as black, blue and red, across all the simulated 
time series 



 

 

 

related artifacts and noise due to, e.g., muscle artifacts, 
electrode movement, etc. A solution to this problem is 
provided by the switching Kalman filter (SKF) framework 
[12], where a bank of M different linear models, along with 
transition dynamics between them is used to explain the 
observed data.  Under this setup, nonlinear dynamics can be 
approximated in terms of switches between linear models, 
and non-Gaussian noise can be approximated using a 
mixture of Gaussians. 

To facilitate this approach, we cast the model of Eq. (1) 
into a state-space framework and use machine learning tools 
to identify the model parameters. Vector AR models can be 
described in a state-space form [19]: 

 ttt qAxx +=+1 ,    q ~ N(0,Q)       (2)  

 ttt vCxy += ,      v ~ N(0,R),       (3) 
where A are the AR coefficients (perhaps with application-
dependent physiological constraints), C relates the latent 
state of the system, xt, to the observations yt, qt is the AR 
noise, and vt is measurement noise. 

Let us define a mode (or dynamic) as a set of model 
parameters Θ={A, C, Q, R}. We further assume a set of 
indicator (switching) variables st that specify which of the M 
modes is active at time t. We take M=4 in both studies. The 
SKF algorithm [12] assumes st follows a Markov chain with 
transition matrix Z (M×M) and initial distribution vector π 
(1×M).  

In practice, we neither know the set of switching variables 
(i.e., segmentation of the time series) nor the modes. In this 
work, we performed expectation-maximization (EM) [12] to 
find the maximum-likelihood set of model parameters. EM 
also provides us with a factored estimate of the posterior 
distribution over the latent switching variables. Here we skip 

the details of EM algorithm, but highlight the main intuition 
behind EM, as well as our modification to impose 
physiological constraints on the dynamics for each mode and 
learn sharing of the modes across all the patients.  

 Consider a set of N patients with time series y(n) of 
length Tn. EM is an iterative procedure for finding a 
maximum likelihood estimate.  We choose a random 
initialization of Θ(m), Z, and π. The E-step involves 
constructing an approximating distribution over the hidden 
states xt

(n) and the corresponding switching variables st
(n), 

using a modified Kalman smoother [12]. We run the E-step 
separately on each of the N time series.  

Next, given the observations yt
(n), and the approximate 

distributions over  xt
(n) and s(n)(t), the M-step maximizes the 

expected complete data log likelihood by adjusting the 
model parameters across all the modes (via constrained least 
squares optimization to maintain the structure of the A 
matrices), as well as the Markov chain parameters Z and π. 
Therefore, learning of the model parameters is done by 
pooling together all the observed and inferred hidden 
variables across all the subjects. Iteration through several 
steps of the EM algorithm will result in learning a set of M 
shared modes and a global transition matrix Z for all the 
patients. In addition, to minimize the influence of 
initialization on the final learned parameters and to reduce 
the chance of trapping in local minima, we implemented a 
deterministic annealing step within the EM algorithm [12]. 

II. RESULTS 

A. Simulation study 
Fig. 1 A-C shows three examples of simulated time series 

with the inferred SKF-based segmentations. In all 10 

 
Figure 2. Tilt-table study. Two examples out of the 10 recording of HR and MAP from the tilt-table experiment are shown in panels A, B. Within each 
panel, from top to bottom, HR and MAP (actual values in gray and filtered values in black), and SKF-based segmentation are shown. In each case, the 
actual true dynamics are color coded (green to cyan: slow tilt up and down to supine; red to pink: rapid tilt up and down to supine; yellow: stand up and 
back to supine). Note that the SKF consistently assigns the modes one and two to the supine and non-supine states, respectively. The other two modes 
seem to capture the high-frequency noise components of the time series. 



 

 

 

simulated cases the SKF algorithm was able to find the 
correct segmentation of each time series, as well as the 
sharing of the dynamics across multiple time series. 

B. Tilt-table experiment 
We constructed a binary classification problem of 

determining supine versus non-supine segments (see Fig. 2). 
There were a total of seven supine positions and six non-
supine positions per subject (total of 13×10=130 binary 
outcomes). We used the average probability of belonging to 
each of the four SKF states (M=4) as our feature vector (i.e., 
average value of P(st) within each position), resulting in a 
130×4 input matrix. Application of logistic regression with 
10-fold cross-validation yielded an AUC of 0.97±0.01, 
indicating an excellent discriminatory power. 

III. DISCUSSION AND FUTURE DIRECTION 
 

We presented a technique for extracting shared 
physiological dynamics within a cohort. It was shown that 
quantum changes in the dynamics of HR and BP, either as a 
result of an altered underlying control system (decreased 
sympathetic regulation) or due to external perturbations 
(tilting), can be captured in an automated fashion.  

Since an AR model of HR and BP regulation was used, 
the proposed framework allows us to extract useful indices 
of baroreflex activity from the learned AR coefficients [5, 
9]. Therefore, the discovered dynamical patterns are 
physiologically interpretable. 

Future work involves exploring the full potential of the 
SKF framework to model nonlinear dynamics and non-
Gaussian physiological and measurement-related noise. The 
technique is most useful in modeling systems with rapid 
transition among physiological states (e.g., study of changes 
in autonomic regulation with sleep stages).  

Other possible applications include monitoring of 
patients’ “state” in a hospital setting, where transition to 
certain “high risk” dynamical modes could be used to sound 
alarms. Such modes can be learned from a database of 
patients were outcome measures are available. Therefore, 
real-time monitoring can be achieved by only doing a 
forward E-step to infer the most probable patient state, given 
a dictionary of dynamics previously learned.  
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