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Abstract

The ability to learn from past experiences and adapt one’s behavior accordingly within

an environment or context to achieve a certain goal is a characteristic of a truly

intelligent entity. Developing efficient, robust, and reliable learning algorithms towards

that end is an active area of research and a major step towards achieving artificial

general intelligence. In this thesis, we research learning algorithms for optimal decision

making in two different contexts, Reinforcement Learning in Part I and Auction Design

in Part II.

Reinforcement learning (RL) is an area of machine learning that is concerned with

how an agent should act in an environment in order to maximize its cumulative reward

over time. In Chapter 2, inspired by statistical physics, we develop a novel approach

to RL that not only learns optimal policies with enhanced desirable properties but also

sheds new light on maximum entropy RL. In Chapter 3, we tackle the generalization

problem in RL using a Bayesian perspective. We show that imperfect knowledge of

the environment’s dynamics effectively turn a fully-observed Markov Decision Process

(MDP) into a Partially Observed MDP (POMDP) that we call the Epistemic POMDP.

Informed by this observation, we develop a new policy learning algorithm LEEP which

has improved generalization properties.

An auction is the process of organizing the buying and selling of products and

services that is of great practical importance. Designing an incentive compatible,

individually rational auction that maximizes revenue is a challenging and intractable

problem. Recently, a deep learning based approach was proposed to learn optimal

auctions from data. While successful, this approach suffers from a few limitations,

including sample inefficiency, lack of generalization to new auctions, and training

difficulties. In Chapter 4, we construct a symmetry preserving neural network

architecture, EquivariantNet, suitable for anonymous auctions. EquivariantNet is not

only more sample efficient but is also able to learn auction rules that generalize well to
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other settings. In Chapter 5, we propose a novel formulation of the auction learning

problem as a two player game. The resulting learning algorithm, ALGNet, is easier to

train, more reliable and better suited for non stationary settings.
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Chapter 1

Introduction

1.1 Overview

Reinforcement learning (RL) is an area of machine learning that is concerned with how

an agent should act in an environment in order to maximize its cumulative reward over

time. Whenever the agent takes an action, the state of the environment changes and

the agent is rewarded accordingly. Based on observations of the dynamics, the agent

gains a better understanding of its environment, which enables it to refine its strategy,

also called policy, by choosing actions that are increasingly closer to optimality. The

difficulty in reinforcement learning is that the dynamics of the environment and their

associated rewards (the rules of the game) are unknown to the agent in advance;

they can only be inferred through trial and error. This translates in practice to a

tension between two types of behavior: exploration and exploitation. Exploration

consists of trying new strategies with the hope of finding better ones or gaining a

better knowledge of the rules of the game. Exploitation on the other hand is a more

conservative attitude that consists of accumulating rewards via strategies that are

already known to be good. Optimally balancing these two behaviors is at the core of

RL and remains a major open question to this day.
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Recent advancements on this challenging problem resulted in successes on tasks

that were thought to be out of reach for our current technology. One of the most

notable examples is AlphaGo Zero (Silver et al., 2017), a computer program that

achieved super-human performance in the traditional board game of Go through

self-play. The scope of reinforcement learning is, however, not limited to games; RL

offers a very general framework to reason about a broad range of problems such as

robotic manipulation and dexterity (Andrychowicz et al., 2020), data center cooling

(Lazic et al., 2018), and optimizing chemical reactions (Zhou et al., 2017). Recently

RL has been successfully applied on various physics problems including optimal jet

grooming (Carrazza and Dreyer, 2019), quantum state preparation (Bukov et al.,

2018; Bukov, 2018; Albarrán-Arriagada et al., 2018), quantum gate design (Niu et al.,

2019) and quantum error correction (Fösel et al., 2018), often outperforming previous

optimization methods.

Many approaches could be taken to tackle a reinforcement learning problem. Most

of the successful ones however end up learning a quantity called a value function in one

way or another. A value function is a function that takes a state of the environment

and returns the expected cumulative rewards an agent can achieve starting from that

state. A more technical definition of the value function can be found in Section 1.3.

In a game of chess or Go, a value function could for example look at the state of the

board and compute the probability that Black wins.

Rewards and value functions have a very similar flavor to energies - they are

extensive quantities and the agent is trying to find a path that maximizes them. Many

natural phenomena can be understood via an extremization principle. For example,

in classical mechanics or electrodynamics, the principle of least action dictates that a

mass or light will follow the path that minimizes a physical quantity called the action.

Similarly, in thermodynamics, a system with many degrees of freedom—such as a

gas—will explore its configuration space in search of a configuration that minimizes
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its free energy. In RL, value functions are often treated as the central object of study.

This stands in contrast to statistical physics formulations of such problems in which a

quantity called the partition function is the primary abstraction, from which all the

relevant thermodynamic quantities—average energy, entropy, heat capacity—can be

derived. A natural question to ask is whether there exists a theoretical framework

for reinforcement learning that is centered on a partition function, in which value

functions can be interpreted via average energies?

This question is explored in Chapter 2. Inspired by the construction of partition

functions in Statistical Physics, we construct a partition function for every state of

the environment from the ensemble of possible trajectories spanning from that state.

Although value functions can be derived from these partition functions and interpreted

via average energies, we show that our purely partition function based approach can

form the basis of alternative dynamic programming approaches.

Compared to classical reinforcement learning methods, our approach has three main

benefits. First, in deterministic environments, partition functions obey linear Bellman

equations allowing direct solutions that were unavailable for the nonlinear equations

associated with the use of traditional value functions. Second, our approach is able

to treat all rewards equally over time, which contrasts with traditional approaches

that need to discount future rewards in order to get well defined Bellman equations.

Third, our approach learns policies that are qualitatively different from the ones found

by classical RL algorithms. These policies not only optimize for energy (the sum of

future rewards) but also take entropy into account, favoring states from which many

good outcomes are possible. To illustrate that point, let’s consider a simple setting in

which an agent is trying to go from point A to point B. At point A, two actions are

possible: going up or going down. If the agent chooses up then there is only one path

that leads to B, but if he chooses down then there are 99 valid paths that lead to B.

Let’s further assume that all these paths are equally good. Traditional RL approaches
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will not have a preference between going up or going down as both of them lead to B.

Our approach however will prefer going down and even prescribes choosing the down

action 99 times more frequently than the up action. Such policies are desirable for

their exploratory and robustness properties.

From this example, we can see that our statistical physics based approach to

reinforcement learning naturally leads our agent to select action in a stochastic way

- this is referred to as a stochastic policy. In contrast, a policy is deterministic if

the agent always selects the same action given a certain state. If an environment is

known and Markovian, commonly referred to as a Markov Decision Process (MDP),

one could prove that there always exists a deterministic policy that acts optimally in

that environment. As a result, one could think that learning a deterministic policy is

optimal (Sutton and Barto, 2018). However, when the environment is not fully known,

this is not the case and deterministic policies can then fail in a miserable way.

To illustrate that, consider a simple task in which an agent is first presented with

an image of an animal and then has identify it with as few guesses as possible. In

this example, a policy is just a mapping from images to guesses or labels. During the

training phase, the agent is presented with images of dogs, cats and other animals

from the training set and learns how to identify them. During the testing phase the

agent is presented with new images of the same animals. In the hypothetical case

where the training set is exhaustive, containing every picture of every animal from

every angle, background and lighting condition, a deterministic policy learned on the

training set will perform equally as good on the testing set. In real life however, data

is limited and it is very unlikely that the agent will be able to learn a perfect classifier

that correctly generalizes to new images with perfect accuracy. As a result, during the

testing phase, the agent will at some point encounter an image that he is unable to

classify correctly, not only in his first guess but in all the subsequent infinite number

of available guesses as well because the policy is deterministic. This is problematic,
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especially given that even a completely random guessing policy will eventually guess

the correct label.

This simple toy experiment seems to indicate that there is a benefit in learning a

stochastic policy to improve generalization. In fact, many successful RL algorithms

encourage the agent to learn a stochastic policy by explicitly regularizing the entropy

of the policy in the optimization objective. Adding uniform randomness everywhere

is, however, sub optimal. The randomness in the agent’s policy should reflect his

uncertainty and confidence about his decision making. In Chapter 3 we study the

generalization problem in Reinforcement Learning from a Bayesian perspective by

modeling the uncertainty the agent has about the environment. We show how

incomplete and imperfect knowledge of the environment implicitly turns a fully

observed and Markovian environment (MDP), into a Partially Observed MDP

(POMDP) (Sondik, 1971) which we call the Epistemic POMDP. This novel point of

view allows us to derive a new RL algorithm, LEEP, with improved generalization

properties.

Having robust, data efficient, and reliable learning algorithms is a necessary

ingredient to solve real world problems with RL. An equally important and crucial

ingredient is having a good reward function. After all, this is the quantity that RL

algorithms are trying to optimize. Many real world problems do not come with natural

reward functions - these are usually crafted by humans. Even in situations where there

is a natural reward function to optimize, there is still some benefit in engineering a new

reward function that makes the optimization problem easier to solve. For instance in

the game of chess, a natural reward function is to reward an agent with a +1 for win, 0

for a draw and -1 for a loss. This is an example of a sparse reward function because

the agent only gets rewarded at the end of the game without intermediate feedback.

Sparse reward functions are hard to optimize and it is sometimes helpful to introduce

intermediate rewards that are positive when the agent captures an opponents’ piece
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and negative when they lose one. While it’s helpful to introduce intermediate rewards

and more generally handcraft a reward function, reward shaping introduces human

bias into the problem and in many cases, the policy that the agent learns will exploit

the reward function in ways that the designer did not foresee. In some cases, the policy

that maximizes the human engineered reward function does not solve the original task.

One example of that is a game called Coast Runners where boats compete to finish a

race as quickly as possible. To help them, intermediate targets were designed along

the racetrack that not only help them get speed boosts but also reward them with

extra bonus points when they are hit. It turned out that these intermediate targets

disincentivized the agent from learning to win the race. The highest possible score

is achieved by ignoring the race and focusing on hitting these intermediate targets

(Clark and Amodei, 2016).

Unintended negative consequences of an incentive are not restricted to games or RL,

they can be found in many real life societal policies as well. The Cobra effect (Siebert,

2001) is a historical anecdote used to illustrate perverse incentives that presumably

occurred in India during the British rule. The British government, concerned about

the increasing number of venomous cobras in Delhi, offered a bounty incentive for

every dead cobra in hopes of reducing their numbers. This policy was very successful

at reducing the number of cobras until the people realized that they could significantly

increase their income by breeding cobras. The policy was subsequently canceled and

the final situation was worse than the starting point.

Designing reward functions that are robust to these perverse incentives is not a

very well studied subject within reinforcement learning. It is however a central theme

in Mechanism Design, a sub field of Game Theory. Game Theory studies the emergent

macroscopic behavior resulting from known microscopic interactions between agents.

Mechanism Design goes the other way - it starts from a desirable macroscopic behavior

and then tries to design mechanisms and incentives, or the rules of the game, that
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would result in this global behavior, assuming individuals act rationally. That’s why

it’s sometimes referred to as reverse game theory. Mechanism design has been applied

to many fields from economics and politics to many problems such as market design,

auction theory, social choice theory, voting systems, networked-systems, and many

others. In this thesis, we will focus on Auction Theory, and while some of the ideas

and methods we introduce are specific to that domain, others are more generally

applicable to other domains in mechanism design.

An auction is a process of organizing the buying and selling of products and services

that is of great practical importance in many private and public sectors. Examples

include the sales of treasury bills by the US government, radio wave frequencies by

the FCC, art by Christie’s, or ads by Google. A simple auction model goes as follows:

at the start of the auction, each one of the bidders place a bid on each one of the

items. All of these bids are then collected by the Auctioneer who decides the item

allocation as well as the amount each bidder has to pay for their participation in the

auction. While any mapping from bids to allocations and from bids to payments could

constitute a valid auction mechanism, in practice, we prefer auctions that verify some

desirable properties.

The first desirable property is called incentive compatibility. An incentive

compatible auction mechanism is one where the utility of each bidder is maximized

by bidding truthfully on each one of the items. This means that the optimal bid

on an item is exactly the amount of money that the bidder is willing to pay for

the item. If an auction is not incentive compatible, bidders could strategically

choose their bids and potentially bid untruthfully to maximize the value they get

from participating in the auction. Enforcing incentive compatibility disincentivises

any strategic behavior and as a result levels the playing field for all the bidders,

irrespective of their experience, motivation, and means. Incentive compatible auctions

are sometimes referred to as strategy-proof auctions.
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The second desirable property is called individual rationality. An individually

rational auction is one where a bidder is never worse off after participating in the

auction as long as their bid is truthful. For instance, this means that a bidder will

not be charged for participating in the auction if she didn’t end up getting any of the

items. More generally, the value of the items that a truthful bidder gets is always

greater than or equal to the amount she has to pay to the auctioneer. Individual

rationality encourages participation in the auction.

How to design an incentive compatible, individually rational auction mechanism

that maximizes revenue for the auctioneer? Despite its apparent simplicity, this

problem turns out to be surprisingly hard. In the case where there is a single item

for sale, the solution is known from Myerson’s seminal piece of work (Myerson, 1981).

Beyond the single item setting, the problem is not completely resolved even for auctions

as simple as two bidders and two items, despite forty years of mathematical research.

Another line of work to confront this theoretical hurdle consists in building automated

methods to find the optimal auction, typically by framing the problem as a linear

program. However, this approach suffers from severe scalablility issues as the number

of constraints and variables grows exponentially with the number of bidders and items

(Guo and Conitzer, 2010).

A recent line of work initiated by Duetting et al. (2019) leverages the expressivity

and scalibility of neural networks to go beyond the limitations of linear programs.

Their idea is to parametrize the allocation and payment functions with deep neural

networks and use gradient descent to learn an incentive compatible, individually

rational auction mechanism that maximizes revenue. Their algorithm, RegretNet is

capable of finding near-optimal results in several known settings and obtaining new

mechanisms in unknown cases. While very successful, RegretNet suffers from two

weakness. In practice, the algorithm is sample inefficient and hard to train.
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RegretNet can require a large number of samples to learn an optimal auction.

Furthermore, it is incapable of generalizing to new auctions with a different number

of bidders and items. An optimal mechanism learned by RegretNet for an auction

consisting of 𝑛 bidders and 𝑚 items can only be used on auctions with 𝑛 bidders and

𝑚 items because the neural network expects inputs of a specific dimension. If an

additional bidder were to join or leave the auction or a new item was added or removed,

then we would have to build and train a new auction mechanism from scratch. In

Chapter 4, we tackle these two issues in the case of symmetric auctions. These are

auctions which are invariant to the relabeling of the items or bidders. More specifically,

such auctions are anonymous (in that they can be executed without any information

about the bidders, or labeling them) and item-symmetric (in that it only matters what

bids are made for an item, and not its a priori label). We prove that these auctions

always admit optimal allocation and payment functions that are equivariant and then

proceed to build equivariant neural network architectures that respect this symmetry.

Our algorithm, EquivariantNet, is more sample efficient than RegretNet and can also

generalize to different auctions.

The loss function in RegretNet is non stationary. It depends on several

hyperparameters whose values change over time according to a predefined schedule.

This makes RegretNet hard to train in practice. We also observe experimentally that

the algorithm is very sensitive to the choice of these hyperparameters, converging to a

suboptimal mechanism when these are not picked appropriately. Furthermore, these

hyperparameters are setting dependent, their values depend on the number of bidders

and items in the auction, and are currently found through an expensive hyperpameter

search. In Chapter 5, we construct a novel, stationary, and hyperparameter-free loss

function inspired by recent theoretical results from Auction Theory and propose

a novel formulation of the auction learning problem as a two player game. The

first player, the Auctioneer, proposes new auction rules. The second player, the

9



Misreporter, is trying to exploit these rules and find optimal ways to bid untruthfully.

These two players interact and over time, the Misreporter becomes better at finding

optimal bids and the Auctioneer becomes better at proposing auction mechanisms

that increasingly get closer to being incentive compatible. We call this algorithm

ALGNet and we show that it’s as good or better than RegretNet, while being nearly

hyper-parameter free.

1.2 Summary of Contributions

The contributions of this dissertation are summarized below:

• In Chapter 2, we propose a novel approach to the Reinforcement Learning

problem. Inspired by Statistical Physics, we construct a partition function for

each state of the environment and derive the corresponding Bellman equation.

Our approach has three main benefits. First, it results in simpler equations,

especially if the environment is deterministic. Second, it is able to treat all

rewards equally over time (no need for a discount factor). Third, it learns policies

that not only optimize for rewards but also take entropy into account, favoring

states from which many good outcomes are possible.

Chapter 2 is based on the following work:

Jad Rahme and Ryan P. Adams. A theoretical connection between statistical

physics and reinforcement learning. arXiv preprint arXiv:1906.10228, 2019.

• In Chapter 3, we study the generalization problem in Reinforcement Learning

from a Bayesian perspective by modeling the uncertainty the agent has about

the environment. We show how incomplete and imperfect knowledge of the

environment implicitly turns a fully observed and Markovian environment

(MDP) into a Partially Observed MDP (POMDP), which we call the Epistemic

10



POMDP. This novel point of view allows us to derive a new RL algorithm,

LEEP, with improved generalization properties.

Chapter 3 is based on the following work (* indicates equal contribution):

Dibya Ghosh*, Jad Rahme*, Aviral Kumar, Amy Zhang, Ryan P. Adams, and

Sergey Levine. Why generalization in rl is difficult: Epistemic pomdps and implicit

partial observability. Advances in Neural Information Processing Systems, 34,

2021.

• In Chapter 4, we prove that symmetric auctions always admit optimal allocation

and payment functions that are equivariant and then proceed to build an

equivariant neural network architecture that respects this symmetry. We show

that our algorithm, EquivariantNet, is not only more sample efficient than

previous methods but can also generalize well to different auctions.

Chapter 4 is based on the following work:

Jad Rahme, Samy Jelassi, Joan Bruna, and S. Matthew Weinberg. A

permutation-equivariant neural network architecture for auction design.

Proceedings of the AAAI Conference on Artificial Intelligence, 35(6):5664–5672,

May 2021a. URL https: // ojs. aaai. org/ index. php/ AAAI/ article/

view/ 16711 .

• In Chapter 5, we construct a novel, stationary, and hyperparameter-free loss

function for the auction learning problem inspired by recent theoretical results

from auction theory, and propose a novel formulation of the auction learning

problem as a two player game (similar to GANs, (Goodfellow et al., 2014)). We

show that the resulting algorithm ALGNet is as good or better than RegretNet,

while being nearly hyper-parameter free.

Chapter 5 is based on the following work:

11
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Jad Rahme, Samy Jelassi, and S. Matthew Weinberg. Auction learning as a

two-player game. In 9th International Conference on Learning Representations,

ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021c. URL

https: // openreview. net/ forum? id= YHdeAO61l6T .

The following two sections cover some background material on Reinforcement Learning

and Auction Theory.
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1.3 Background in Reinforcement Learning

In this section, we review the setup of the Reinforcement Learning problem as well

as some of its basic concepts and approaches. A good reference on Reinforcement

Learning can be found in Sutton and Barto (2018).

1.3.1 The RL Problem

RL as a Markov Decision Problem

Figure 1.1: Representation of the agent–environment interaction in a Markov decision
process.

Reinforcement Learning (RL) is an area of Machine Learning (ML) that studies

how agents should behave in an environment in order to maximize their cumulative

reward. The agent’s sequential decision-making process is usually modeled as a Markov

Decision Process (MDP).

At every time step 𝑡, the agent observes the state of the environment, 𝑠𝑡 , and

then decides what action to take, 𝑎𝑡 . This action has two effects - first, it changes

the state of the environment from 𝑠𝑡 to 𝑠𝑡+1 and second, it rewards the agent with a

reward 𝑟𝑡 . The state 𝑠𝑡+1 and the reward 𝑟𝑡 are random variables - the same causes

don’t necessarily results in the same effects. In an MDP, the environment’s dynamics

are allowed to be stochastic but they have to be Markovian. This means that the
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distribution of states 𝑠𝑡+1 that the agents lands in after taking action 𝑎𝑡 from state 𝑠𝑡

only depends on 𝑠𝑡 and 𝑎𝑡 , and not on past states {𝑠𝑡 ′}𝑡 ′<𝑡 or past actions {𝑎𝑡 ′}𝑡 ′<𝑡 .

This also holds for the reward 𝑟𝑡 : its distribution is only a function of the initial

state 𝑠𝑡 , the action taken 𝑎𝑡 , and the landing state 𝑠𝑡+1.

More formally, an MDP is defined by the objects (S,A,R,P) where:

• S is the set of states the environment can be in,

• A is the set of actions an agent can take,

• P(𝑠, 𝑎, 𝑠′) = P(𝑠′ | 𝑠, 𝑎) is the probability of landing in state 𝑠′ after taking

action 𝑎 while still in state 𝑠,

• R(𝑠, 𝑎, 𝑠′) is the reward resulting from the transition 𝑠
a−→ 𝑠′. R(𝑠, 𝑎, 𝑠′) is a

random variable. We usually assume that all rewards are bounded from above

by Rmax.

Deterministic MDPs: An MDP is deterministic if P(𝑠, 𝑎, 𝑠′) is 0 for all

states 𝑠′ except one, which will be conveniently denoted by 𝑠′ = 𝑠 + 𝑎. In this case

we have P(𝑠, 𝑎, 𝑠′) = 𝛿𝑠+𝑎 (𝑠′) and we will concisely denote R(𝑠, 𝑎, 𝑠 + 𝑎) by R(𝑠, 𝑎).

R(𝑠, 𝑎) is also assumed to be deterministic.

Policies

In RL, the policy 𝜋 describes how the agent acts in the environment. 𝜋(𝑎 | 𝑠) denotes

the probability that the agent picks action 𝑎 while in state 𝑠. If we denote the reward

resulting from the 𝑡-th transition by 𝑟𝑡 , so that 𝑟𝑡 B R(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1), we can express the

cumulative reward Rtotal(𝜋) of such a policy as:

Rtotal(𝜋) = E 𝑎𝑡∼𝜋(.|𝑠𝑡 )
𝑠𝑡+1∼P(.|𝑠𝑡 ,𝑎𝑡 )

[ +∞∑︁
𝑡=0

𝛾𝑡𝑟𝑡

]
, (1.1)
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where the expectations are taken with respect to the realized sequences of states and

actions, according to the policy and environment dynamics. Here 𝛾 ∈ [0, 1) is called

the discount factor that can be interpreted as a preference for immediate rewards

over future ones. The discount factor 𝛾 is also necessary for mathematical reasons:

without this discount factor, many quantities in RL are not well defined. For example,

the infinite series determining Rtotal(𝜋) could diverge.

The RL Objective

The goal of RL is to find an optimal policy 𝜋∗ that maximizes Rtotal(𝜋):

𝜋∗ = argmax
𝜋

Rtotal(𝜋) .

There are two main approaches to solving a RL problem: value function type

approaches and policy gradient type approaches. In the following sections we will

give a quick exposition of both of these approaches. These sections are not meant

to be exhaustive or extensive by any measure, their goal is to give the reader some

background that could help them contrast traditional approaches to RL with the novel

approaches and methods that we propose in Chapters 2 and 3.

1.3.2 Value Function Approaches

Value functions associated with a policy

The value function 𝑉 associated with a policy 𝜋 is a function of the state 𝑠 that

measures the expected cumulative reward an agent will get by following the policy 𝜋

starting from state 𝑠:

𝑉𝜋 (𝑠) = E 𝑎𝑡∼𝜋(.|𝑠𝑡 )
𝑠𝑡+1∼P(.|𝑠𝑡 ,𝑎𝑡 )

[ +∞∑︁
𝑡=0

𝛾𝑡𝑟𝑡 | 𝑠0 = 𝑠
]
.
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The value functions at different states are connected by a recursion called the Bellman

equation:

𝑉𝜋 (𝑠) = E 𝑎∼𝜋(.|𝑠)
𝑠′∼P(.|𝑠,𝑎)

[R(𝑠, 𝑎, 𝑠′) + 𝛾 𝑉𝜋 (𝑠′)] .

In the Bellman equation above, the expectation is taken with respect to a single

action and a single state transition. Similar to 𝑉𝜋, we can define another type of

value function 𝑄𝜋 (the “Q-function”) which is a function of a state-action pair (𝑠, 𝑎),

now measuring expected cumulative reward from following the policy 𝜋 after taking

action 𝑎 from state 𝑠:

𝑄𝜋 (𝑠, 𝑎) = E𝑠𝑡+1∼P(.|𝑠𝑡 ,𝑎𝑡 )
𝑎𝑡+1∼𝜋(.|𝑠𝑡+1)

[ +∞∑︁
𝑡=0

𝛾𝑡𝑟𝑡 | 𝑠0 = 𝑠, 𝑎0 = 𝑎
]
.

𝑄𝜋 also follows a Bellman equation given by:

𝑄𝜋 (𝑠, 𝑎) = E𝑠′∼P(.|𝑠,𝑎)
𝑎′∼𝜋(.|𝑠′)

[R(𝑠, 𝑎, 𝑠′) + 𝛾 𝑄𝜋 (𝑠′, 𝑎′)] .

Optimal value functions

When the policy 𝜋 is optimal, 𝜋 = 𝜋∗, the Bellman equations for 𝑉 and 𝑄 are referred

to as the optimal Bellman equations and are given by:

𝑉∗(𝑠) = max
𝑎∈A

E𝑠′∼P(.|𝑠,𝑎) [R(𝑠, 𝑎, 𝑠′) + 𝛾𝑉∗(𝑠′)] ,

𝑄∗(𝑠, 𝑎) = E𝑠′∼P(.|𝑠,𝑎)
[
R(𝑠, 𝑎, 𝑠′) + 𝛾max

𝑎′∈A
𝑄∗(𝑠′, 𝑎′)

]
.

(1.2)

These optimal Bellman equations are fixed point equations. The mapping underlying

these fixed point equations is called the Bellman operator. One can show that

when 0 ⩽ 𝛾 < 1, these Bellman operators are contractions of norm 𝛾. As a result,

when the Bellman operator is known, one can converge to 𝑉∗ and 𝑄∗ by successive
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iterations of their Bellman operators starting from any initialization (via the Banach

fixed-point theorem). The optimal policy 𝜋∗ can then be recovered from the optimal

value function, as:

𝜋∗(𝑎 | 𝑠) =


1 if 𝑎 = argmax𝑎′∈A 𝑄∗(𝑠, 𝑎′) ,

0 otherwise .

Finding the optimal value function through iteration of the Bellman operator is

not always possible. In most settings, the dynamics of the MDP, P, and the reward

function, R, are not fully known and as a result, it’s not possible to solve the RL

problem through an exact fixed point iteration scheme. Furthermore, even when the

dynamics of the environment are known, it is not always possible to proceed through

fixed point iteration and this is especially true for MDPs with large state and actions

spaces.

Exploration

When the dynamics of the environment (R and P) are unknown, the expectations in

the Bellman equations cannot be computed exactly; they can only be estimated using

samples collected through interactions with the environment.

The policy 𝜋exploration used by the agent to collect these samples and learn about

the environment is called the exploration policy. Depending on the problem, some

exploration policies can be better than others. Two of the most popular exploration

policies are:

• 𝜀-greedy: Pick argmax𝑎′∈A 𝑄(𝑠, 𝑎′) with probability 1 − 𝜀, and any action

uniformly at random with probability 𝜀.

• Boltzmann exploration of parameter 𝛽: At state 𝑠, pick action 𝑎 proportionally

to exp [𝛽 𝑄(𝑠, 𝑎)].
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Both of these exploration policies use current estimates of the 𝑄-function. In the

beginning, when the agent only had a few interactions with the environment, the

estimate for the optimal 𝑄-function is very uncertain, and typical values for 𝜀 and 𝛽

are chosen to be 1 and 0 respectively. This corresponds to taking actions uniformly at

random. As the agent interacts more with the environment and collects more data, 𝜀

is decreased to 0 and 𝛽 is increased to a large number. This reflects our confidence

that the 𝑄-function is becoming more accurate over time.

Some RL algorithms (e.g. 𝑄-learning) only use the latest transition seen by the

exploration policy to update the 𝑄 values and as a result don’t need to store past

past transitions. Other algorithms (e.g. DQN) don’t limit themselves to the latest

transition but also use previously seen transitions to update their current 𝑄 values.

When that is the case, all the interactions with the environment are recorded and

stored in a dataset called a Replay Buffer. A typical entry in the replay buffer takes

the form a tuple (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑟𝑡 , 𝑓𝑡), where 𝑓𝑡 is a Boolean entry that indicates whether

the episode ended or is still ongoing.

𝑄-learning

The 𝑄-learning algorithm is a popular value function based, RL learning algorithm

first introduced in Watkins (1989). 𝑄-learning does not assume that the dynamics of

the environment are known - it’s a model-free algorithm.

The algorithm goes as follows: Initially, all 𝑄 values are initialized to arbitrary

values (or randomly). Then, at each time step 𝑡, the agent looks at the state 𝑠𝑡 of

the environment, takes action 𝑎𝑡 , and observes the next state, 𝑠𝑡+1, and the reward

associated with the transition, 𝑟𝑡 . The algorithm then updates the 𝑄 value of the

state-action pair (𝑠𝑡 , 𝑎𝑡) according the following learning rule:
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𝑄(𝑠𝑡 , 𝑎𝑡)︸    ︷︷    ︸
updated value

←− 𝑄(𝑠𝑡 , 𝑎𝑡)︸    ︷︷    ︸
old value

+ 𝛼𝑡︸︷︷︸
learning rate

©­­­­­­­­­­­«
𝑟𝑡 + 𝛾︸︷︷︸

discount factor

× max
𝑎∈A

𝑄(𝑠𝑡+1, 𝑎)︸             ︷︷             ︸
optimal Q value at 𝑠𝑡+1︸                                             ︷︷                                             ︸

target

−𝑄(𝑠𝑡 , 𝑎𝑡)︸    ︷︷    ︸
old value

ª®®®®®®®®®®®¬
.

(1.3)

The parameter 𝛼𝑡 ∈ (0, 1) in this equation is called the learning rate and can be

time-dependent. Intuitively, this update rule is trying to close the gap between the left

hand side and the right hand side of the optimal Bellman equations for the 𝑄-function

(Equation 1.2). The 𝑄-learning algorithm is summarized in Algorithm 1.1:

Algorithm 1.1 𝑄 learning

1: Initialize 𝑄(𝑠, 𝑎) for all 𝑠 ∈ S and 𝑎 ∈ A arbitrarily.

2: If 𝑠 is a terminal state, set 𝑄(𝑠, 𝑎) = 0 for all actions 𝑎.

3: for each episode do

4: while episode has not ended do

5: Observe 𝑠𝑡 and choose action 𝑎𝑡 according to an exploration policy.

6: Take action 𝑎𝑡 and observe 𝑠𝑡+1 and 𝑟𝑡 .

7: Update 𝑄(𝑠𝑡 , 𝑎𝑡) according to the update rule 1.3.

8: Return 𝑄.

The 𝑄-learning algorithm provably learns the optimal 𝑄 function under some

reasonable assumptions:

• The learning rate 𝛼𝑡 has to decrease to 0 but not too fast (
∑
𝛼𝑡 should diverge

and
∑
𝛼2𝑡 should converge).

• Each state action pair (𝑠, 𝑎) must be visited an infinite number of times by the

exploration policy.
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A more technical statement of these assumptions and a proof of the convergence result

can be found in Watkins and Dayan (1992).

𝑄-learning works well for MDPs with small state and action spaces but becomes

intractable in larger ones. In the following section, we will see how to scale 𝑄-learning

to larger MDPs with the help of function approximations and deep learning.

Deep 𝑄 Networks (DQN)

In the previous section, the learning algorithm had to learn a table of |S| × |A| 𝑄 values,

one for each state-action pair (𝑠, 𝑎). This is not possible for MDPs with a large state

and action space, such as MDPs with continuous state spaces. This is where function

approximations become useful.

The idea is to parametrize the 𝑄 function with a family of functions {𝑄𝜃}𝜃∈R𝑑 ,

typically a neural network, and then learn the optimal value of the parameter 𝜃 such

that we have 𝑄𝜃 (𝑠, 𝑎) ≈ 𝑄∗(𝑠, 𝑎). Note that this problem is tractable because the

dimensionality of the learning problem, 𝑑, is independent of the size of the MDP. The

optimal value of the parameter 𝜃 is learned by minimizing the Bellman error with (a

variant of) gradient descent:

L(𝜃) = E𝑠𝑡 ,𝑎𝑡 ,𝑠𝑡+1 [ (𝑄𝜃 (𝑠𝑡 , 𝑎𝑡) − [𝑟𝑡 + 𝛾 ×max
𝑎′∈A

𝑄𝜃 (𝑠𝑡+1, 𝑎′)︸                            ︷︷                            ︸
target

] )2 ] . (1.4)

The expectation in L(𝜃) is empirically estimated by sampling a batch of random

transitions from the replay buffer. Optimizing L(𝜃) is not as straightforward as it

seems and many tricks are required to stabilize the learning algorithm. For instance,

when computing the gradient of L(𝜃), the target is treated as a constant and does not

contribute to the overall gradient. In fact, the target is computed using a “delayed”

version of the parameter 𝜃.
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The details of the training procedure and the empirical tricks needed to stabilize

the learning algorithm can be found in the original DQN paper (Mnih et al., 2013).

Many additional improvements to the DQN algorithm were discovered since its initial

publication and some of the major ones are reported in Hessel et al. (2018).

1.3.3 Policy Gradient Approaches

Instead of learning an optimal value function from which an optimal policy can be

inferred, policy gradient approaches tackle the RL problem by learning the optimal

policy directly. In the following we will paramatrize the policy space by a family of

functions {𝜋𝜃}𝜃∈R𝑑 .

REINFORCE

The RL objective (Equation 1.1) can be re-written more explicitly as an expectation

over trajectories 𝜏 = {(𝑠𝑡 , 𝑎𝑡𝑠𝑡+1)}0⩽𝑡⩽𝑇 , as:

𝐽 (𝜃) = E𝜏∼𝜌𝜃 [𝑅(𝜏)] ,

where 𝑅(𝜏) = ∑
𝑡 𝛾

𝑡𝑟𝑡 is the total reward encountered by the trajectory 𝜏, and:

𝜌𝜃 (𝜏) := 𝑝0 (𝑠0)︸  ︷︷  ︸
distribution of the initial state

𝑇∏
𝑡=0

𝜋𝜃 (𝑎𝑡 | 𝑠𝑡) P [𝑠𝑡+1 | 𝑠𝑡 , 𝑎𝑡]

is the probability of observing trajectory 𝜏 by following the policy 𝜋𝜃 . Using the log

trick, ∇𝜃𝜌𝜃 (𝜏) = 𝜌𝜃 (𝜏)∇𝜃 log 𝜌𝜃 (𝜏), we can write ∇𝜃𝐽 (𝜃) as:

∇𝜃𝐽 (𝜃) = E𝜏∼𝜌𝜃 [∇𝜃 log 𝜌𝜃 (𝜏)𝑅(𝜏)] .
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Since P [𝑠𝑡+1 | 𝑠𝑡 , 𝑎𝑡] does not depend on 𝜃, we have:

∇𝜃 log 𝜌𝜃 (𝜏) =
𝑇∑︁
𝑡=0

∇𝜃 log 𝜋𝜃 (𝑠𝑡 , 𝑎𝑡) ,

and finally we find a very simple estimate of ∇𝜃𝐽 (𝜃):

∇𝜃𝐽 (𝜃) = E𝜏∼𝜌𝜃

[
𝑇∑︁
𝑡=0

∇𝜃 log 𝜋𝜃 (𝑠𝑡 , 𝑎𝑡) 𝑅(𝜏)
]
. (1.5)

This result was first derived by Williams (1992). Optimizing 𝐽 (𝜃) by following an

empirical estimate of the gradient above (Equation 1.5) is known at the REINFORCE

algorithm.

Algorithm 1.2 Vanilla REINFORCE

1: Set: 𝛼: learning rate, 𝑁: number of iterations, 𝐵: sample size.

2: Initialize 𝜋𝜃 .

3: for i from 1 to N do

4: Set ∇𝜃𝐽 (𝜃) = 0.

5: for b from 1 to B do

6: Sample one trajectory 𝜏 and compute its total rewards 𝑅(𝜏).

7: Gradient accumulation: ∇𝜃𝐽 (𝜃) ←− ∇𝜃𝐽 (𝜃) + 1
𝐵

∑𝑇
𝑡=0 ∇𝜃 log 𝜋𝜃 (𝑠𝑡 , 𝑎𝑡) 𝑅(𝜏).

8: Update 𝜃: 𝜃 ←− 𝜃 + 𝛼∇𝜃𝐽 (𝜃).

9: Return 𝜋𝜃 .

Beyond REINFORCE

The gradient estimates in REINFORCE are usually very noisy as they suffer from

high variance which can destabilise the learning process. The algorithm can be made

more reliable through the usage of variance reduction schemes. These usually involve

introducing value function estimates inside the REINFORCE formula. For instance,
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further analysis of Equation 1.5 shows that it can be re-written as:

∇𝜃𝐽 (𝜃) = E𝑠∼𝜌𝜃 ,𝑎∼𝜋𝜃 [∇𝜃 log 𝜋𝜃 (𝑠, 𝑎)𝑄𝜋𝜃 (𝑠, 𝑎)] ,

where 𝑄𝜋𝜃 is the 𝑄 function of policy 𝜋𝜃 and 𝜌𝜃 is the state marginal distribution

resulting from following the policy 𝜋𝜃 . This expression could be further re-written as:

∇𝜃𝐽 (𝜃) = E𝑠∼𝜌𝜃 ,𝑎∼𝜋𝜃 [∇𝜃 log 𝜋𝜃 (𝑠, 𝑎)𝐴𝜋𝜃 (𝑠, 𝑎)] , (1.6)

where 𝐴𝜋𝜃 (𝑠, 𝑎) := 𝑄𝜋𝜃 (𝑠, 𝑎) −𝑉𝜋𝜃 (𝑠) is called the advantage function. The advantage

function measures how good an action is at a given state. A positive (negative)

advantage indicates that the action is better (worse) than average. Using Equation 1.6

to estimate gradients leads to less noisy estimates and results in a more stable and

improved policy learning algorithm. Further details on how to estimate 𝐴𝜋𝜃 as well as

a technical analysis of variance reduction schemes in policy gradient methods can be

found in Schulman et al. (2015b) and Greensmith et al. (2004).

REINFORCE minimizes the RL objective by taking a step in the direction of the

gradient ∇𝜃𝐽 (𝜃). While this can provably improve the policy in the limit of small

step sizes, it is not necessarily the best direction to follow. Indeed, the gradient

points towards the direction of steepest ascent when distances are measured using

the Euclidean distance in the parameter space, 𝑑 (𝜃1, 𝜃2) = | |𝜃1 − 𝜃2 | |2. Without any

additional assumptions on the mapping 𝜃 → 𝜋𝜃 , measuring distances in the parameter

space might not be appropriate. Small differences in the parameter 𝜃 could lead

to large differences in the policy space and as a result, in the agent’s performance.

Conversely, large changes in 𝜃 could correspond to infinitesimal policy changes and

imperceptible changes of the agent’s behavior.

Consequently, it seems more appropriate to measure distances at the policy level

instead of the underlying parameter’s level. This results in a different gradient called
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the natural gradient and a different policy gradient algorithm called the Natural

Policy Gradient (NPG) (Kakade, 2001). Many policy gradient methods were then

developed following up and improving on that line of work, including Trust Region

Policy Optimization (TRPO) by Schulman et al. (2015a), Proximal Policy Optimization

(PPO) by Schulman et al. (2017), and Actor-Critic using Kronecker-factored Trust

Region (ACKTR) by Wu et al. (2017).
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1.4 Background in Auction Theory

In this section, we give a brief high level introduction to auction theory that gives more

context for Chapters 4 and 5. A good reference on auction theory and mechanism

design more generally can be found in Nisan et al. (2007) or Roughgarden (2016).

1.4.1 A Simple Model For Auctions

Figure 1.2: Illustration of the auction mechanics.

Setting

An auction consists of 𝑛 bidders and 𝑚 items. Let 𝑁 := {1, · · · , 𝑛} and 𝑀 := {1, · · · , 𝑚}

denote the set of bidders and items respectively. At the start of the auction, each one

of the bidders bids a sum of money on each one of the items. We will denote the bid

of bidder 𝑖 on item 𝑗 by 𝑏𝑖 𝑗 . These bids can be grouped into a matrix 𝐵 = {𝑏𝑖 𝑗 }𝑖∈𝑁, 𝑗∈𝑀

called the bid matrix.

The allocation and payment functions

An auction mechanism is characterized by two functions, the allocation function

𝑔 : R𝑛×𝑚 → [0, 1]𝑛×𝑚 and the payment function 𝑝 : R𝑛×𝑚 → R𝑛, both of which have

the bid matrix 𝐵 as an input.
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The allocation function computes the allocation matrix 𝑔(𝐵) where 𝑔(𝐵)𝑖 𝑗 is the

probability that bidder 𝑖 gets item 𝑗 . Since it’s possible for an item to not be allocated

to any of the bidders, we have ∀ 𝑗 ∈ 𝑀, ∑
𝑖 𝑔(𝐵)𝑖 𝑗 ⩽ 1. It is sometimes convenient to

denote the allocation function restricted to bidder 𝑖, by by 𝑔𝑖, i.e. 𝑔𝑖 (𝐵) = [𝑔(𝐵)𝑖 𝑗 ] 𝑗∈𝑀 .

The payment function computes the payment vector 𝑝(𝐵) where 𝑝(𝐵)𝑖 is the

amount of money bidder 𝑖 has to pay to the Auctioneer. The revenue of the Auctioneer

𝑃 is the sum of the payments made by all the bidders, 𝑃 =
∑𝑛
𝑖=1 𝑝(𝐵)𝑖.

Additive auctions

A subset of items 𝑆 ⊆ 𝑀 does not have the same value for each one of the bidders.

Each bidder 𝑖 has his own valuation function, 𝑣𝑖 : 2
𝑀 → R, where 𝑣𝑖 (𝑆) denotes how

much bidder 𝑖 values the subset of items 𝑆. In principle 𝑣𝑖 can be arbitrary, assigning

arbitrary values to each one of the possible subsets.

Depending on the context, it makes sense to consider simpler valuation functions

that have more structure to them. For example, we could consider valuation functions

in which the value of a basket of items is equal to the highest individual item value in

that basket: 𝑣𝑖 (𝑆) = max 𝑗∈𝑆 𝑣𝑖 ({ 𝑗}). This is called a unit-demand valuation function.

Other examples are value functions in which the value of a basket of items is equal to

the sum of the values of its components: 𝑣𝑖 (𝑆) =
∑
𝑗∈𝑆 𝑣𝑖 ({ 𝑗}). Such valuations are

called additive. Additive valuations are among the most studied valuation functions

in auction theory and will be the main focus of this thesis.

An additive valuation function is fully specified by the individual values for each

one of the items. In the following, we denote the value that bidder 𝑖 gives for item 𝑗 by

𝑣𝑖 𝑗 . These values can be grouped into a matrix 𝑉 = {𝑣𝑖 𝑗 }𝑖∈𝑁, 𝑗∈𝑀 called the valuation

matrix. Note that in general, the bid matrix can be different than the value matrix.

In the following we will denote the 𝑖-th row of the value matrix 𝑉 by ®𝑣𝑖.
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The utility of a bidder

The utility of a bidder is the net amount of value obtained as a result of his participation

in the auction. We can compute it as the difference between the total value of the

items that the bidder got and the amount he had to pay to the auctioneer. The utility

of bidder 𝑖, 𝑢𝑖, is given by :

𝑢𝑖 (𝑣𝑖, 𝐵) = 𝑣𝑖 (𝑔(𝐵))︸    ︷︷    ︸
Value received by bidder i

− 𝑝(𝐵)𝑖︸︷︷︸
Payment of bidder i

.

Notice that the total value received by bidder 𝑖 in this expression is computed

using the valuation function of bidder 𝑖. For additive auction, this expression can be

re-written as:

𝑢𝑖 (®𝑣𝑖, 𝐵) =
𝑚∑︁
𝑗=1

𝑔(𝐵)𝑖 𝑗 [®𝑣𝑖] 𝑗 − 𝑝(𝐵)𝑖 =
𝑚∑︁
𝑗=1

𝑔(𝐵)𝑖 𝑗𝑉𝑖 𝑗 − 𝑝(𝐵)𝑖 . (1.7)

1.4.2 Problem Statement

While there exist infinite choices of allocation functions 𝑔 and payment functions 𝑝

that constitute a valid auction mechanism, in practice, we care about auctions that

satisfy certain desirable properties. In the following we will focus on two desirable

properties, incentive compatibility and individual rationality.

Notation: Given a matrix 𝐵 ∈ R𝑛×𝑚 and 𝑖 ∈ {1, · · · , 𝑛} we will denote the 𝑖-th

row of the matrix 𝐵 by ®𝑏𝑖 and the (𝑛 − 1) × 𝑚 matrix that one gets from 𝐵 by

removing 𝑖-th row by 𝐵−𝑖. Given a vector ®𝑏𝑖
′
∈ R𝑚 , we will denote the matrix that

we get by replacing row ®(𝑏)𝑖 with ®𝑏𝑖
′
in 𝐵 by (®𝑏′

𝑖
, 𝐵−𝑖). The rows of (®𝑏′

𝑖
, 𝐵−𝑖) are

[®𝑏1, · · · , ®𝑏𝑖−1, ®𝑏𝑖
′
, ®𝑏𝑖+1, · · · , ®𝑏𝑛].
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If 𝐵 is a bid matrix, then ®𝑏𝑖 is the vector of bids of bidder 𝑖, 𝐵−𝑖 is the bid matrix of

all the bidders except bidder 𝑖, and ( ®𝑏𝑖
′
, 𝐵−𝑖) is a bid matrix that we get if bidder 𝑖

modifies his bid from ®𝑏𝑖 to ®𝑏𝑖
′
.

Incentive Compatibility

Strategic bidders seek to maximize their utility and may report bids that are different

from their true valuations (®𝑏𝑖 ≠ ®𝑣𝑖). In hindsight, once all the bids are known, the

optimal bid of bidder 𝑖, ®𝑏∗
𝑖
, is given by:

®𝑏∗𝑖 = argmax
®𝑏𝑖
′∈R𝑚

𝑢𝑖

(
®𝑣𝑖,

(
®𝑏′𝑖, 𝐵−𝑖

))
.

In general, we should expect that ®𝑏∗
𝑖
is different from ®𝑣𝑖. In some auctions however,

the utility of a bidder is always maximized when his bid is truthful regardless of the

other bids and we have ®𝑏∗
𝑖
= ®𝑣𝑖. These auctions are called dominant strategy incentive

compatible auctions (DSIC). The following provides a formal definition.

Definition 1. An auction (𝑔, 𝑝) is dominant strategy incentive compatible (DSIC)

if each bidder’s utility is maximized by reporting truthfully no matter what the other

bidders report. For every bidder 𝑖, valuation ®𝑣𝑖, bid ®𝑏𝑖 ′ and bids 𝐵−𝑖, we have:

𝑢𝑖 (®𝑣𝑖, (®𝑣𝑖, 𝐵−𝑖)) ⩾ 𝑢𝑖 (®𝑣𝑖, (®𝑏𝑖 ′, 𝐵−𝑖)).

DSIC is a desirable property because it levels the playing field to all the bidders.

It not only makes it easier for bidders to bid optimally (by bidding truthfully),

but also makes it easier for the auctioneer to predict the outcome of an auction

since the optimal bids are easily characterized. DSIC auctions are sometimes called

strategy-proof auctions.
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Individual Rationality

The payment function 𝑝 in an auction can, in principle, charge a positive amount of

money to a bidder who has not been allocated any of the items. It can also charge

a bidder more than the total value of the items he got from the auction. In both of

these cases, the utility of the bidder is negative, which means that the bidder is worse

off after participating in the auction. An individually rational auction guarantees that

such cases cannot happen to a bidder as long as he’s bidding truthfully. A truthful

bidder always has a non negative utility function regardless of what the other bidders

decide to do. The following provides a formal definition.

Definition 2. An auction is individually rational (IR) if for all 𝑖, ®𝑣𝑖 and 𝐵−𝑖 we have:

𝑢𝑖 (®𝑣𝑖, (®𝑣𝑖, 𝐵−𝑖)) ⩾ 0. (1.8)

Individually rational auctions are desirable because they encourage bidder

participation in the auction.

The auction learning problem

Each bidder knows how much each item is worth to them. This information is not

known to the other bidders nor to the auctioneer. This setting is referred to as a

private value auction. However, a common assumption is that each bidder draws

their value vector, ®𝑣𝑖, from some prior probability distribution, 𝐷𝑖, which is common

knowledge.

The goal of the auctioneer is to design an incentive compatible, individually rational

auction that maximizes his expected revenue given a prior on the bidder’s value vectors

(®𝑣1, · · · , ®𝑣𝑛) ∼ (𝐷1, · · · , 𝐷𝑛).
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Formally, we can rewrite the problem as:

min
(𝑔,𝑝)∈M

− E𝑉∼𝐷

[
𝑛∑︁
𝑖=1

𝑝𝑖 (𝑉)
]

s.t. (𝑔, 𝑝) is a DSIC auction ,

(𝑔, 𝑝) is a IR auction .

1.4.3 Optimal Single Item Auction

This section is intended to give the curious reader a peek into one of the most

celebrated results in auction theory. While reading this section is not strictly necessary

to understand the work presented in this thesis, it could be interesting to contrast the

analytical approach to finding the optimal auction presented in this section with the

machine learning based approaches of Chapters 4 and 5.

Finding the optimal single item auction was fully resolved by Myerson in his seminal

1981 paper (Myerson, 1981). In this section, we include a high level derivation of

Myerson’s result that makes some simplifying assumptions. A complete and technical

derivation can be found in Myerson’s orginal paper (Myerson, 1981).

The allocation function is monotonic.

Our goal in this section is to prove that the optimal allocation function is monotonic

non-decreasing with respect to the bids of each one of the bidders:

The function: 𝑏𝑖 → [𝑔((𝑏𝑖, 𝐵−𝑖))]𝑖 is monotonic non-decreasing .

We remind the reader that since we’re in a single item setting, ®𝑏𝑖 is a real number that

we conveniently represent by 𝑏𝑖 . Intuitively this result makes sense. A bidder can

expect to increase the probability of getting the item by increasing his bid, assuming

that all the other bids remain constant. We will see that this result follows naturally
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from the DSIC property.

Notation: In the following, we will fix a bidder 𝑖 and the bids of all the

other bidders 𝐵−𝑖. This allows us to adopt the following convenient notations:

𝑔(𝑏) := [𝑔(𝑏, 𝐵−𝑖)]𝑖, 𝑝(𝑏) := [𝑝(𝑏, 𝐵−𝑖)]𝑖 and 𝑢(𝑣, 𝑏) := 𝑢𝑖 (𝑣, (𝑏, 𝐵−𝑖)) = 𝑔(𝑏)×𝑣−𝑝(𝑏).

With these simplifying notations, our goal is to prove that the function 𝑏 → 𝑔(𝑏) is

monotonic non decreasing.

For a DSIC auction, we have 𝑢(𝑣, 𝑣) ⩾ 𝑢(𝑏, 𝑣) for all 𝑣 and 𝑏. Through simple

manipulations we can re-write this inequality as:

𝑢(𝑣, 𝑣) ⩾ 𝑢(𝑏, 𝑣) ⇐⇒ 𝑔(𝑣) × 𝑣 − 𝑝(𝑣) ⩾ 𝑔(𝑏) × 𝑣 − 𝑝(𝑏) ,

⇐⇒ (𝑔(𝑣) − 𝑔(𝑏)) × 𝑣 ⩾ 𝑝(𝑣) − 𝑝(𝑏) .

By permuting the roles of 𝑏 and 𝑣, we also get that (𝑔(𝑣) −𝑔(𝑏)) × 𝑏 ⩽ 𝑝(𝑣) − 𝑝(𝑏).

We conclude that:

(𝑔(𝑣) − 𝑔(𝑏)) × 𝑣 ⩾ 𝑝(𝑣) − 𝑝(𝑏) ⩾ (𝑔(𝑣) − 𝑔(𝑏)) × 𝑏 . (1.9)

This inequality implies that (𝑔(𝑣) − 𝑔(𝑏)) × (𝑣 − 𝑏) ⩾ 0 which proves that the

function 𝑔 is monotonic non decreasing as claimed.

A relation between the allocation and payment functions

In this section, we derive a relation between the allocation function 𝑔 and payment

function 𝑝 for a truthful mechanism. For the sake of simplicity, we will make the

assumption that the function 𝑔 is differentiable. While this assumption simplifies the

proof, it is not a necessary one. Only the monotonicity of 𝑔 is required in the more

general proof (Myerson, 1981).
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Taking 𝑏 < 𝑣, we can rewrite equation 1.9 as:

(𝑔(𝑣) − 𝑔(𝑏))
𝑣 − 𝑏 × 𝑣 ⩾ (𝑝(𝑣) − 𝑝(𝑏))

𝑣 − 𝑏 ⩾
(𝑔(𝑣) − 𝑔(𝑏))

𝑣 − 𝑏 × 𝑏 . (1.10)

In the limit of 𝑏 → 𝑣, we find that:

𝑑

𝑑𝑧
𝑝(𝑧) = 𝑧 × 𝑑

𝑑𝑧
𝑔(𝑧) . (1.11)

For an individually rational auction, we have 𝑝(0) = 0 and we get:

𝑝(𝑏) =
∫ 𝑏

0
𝑑𝑧 𝑧 × 𝑑

𝑑𝑧
𝑔(𝑧) . (1.12)

Going back to our original (non simplified) notation, we can rewrite this equation

as:

[𝑝(𝑏𝑖, 𝐵−𝑖)]𝑖 =
∫ 𝑏𝑖

0
𝑑𝑏 𝑏 × 𝑑

𝑑𝑏
𝑔(𝑏, 𝐵−𝑖) . (1.13)

Equation 1.13 shows that given an allocation function 𝑔 there is at most one

candidate payment function 𝑝 such that the mechanism defined by (𝑔, 𝑝) is incentive

compatible and individually rational. Conversely, one can prove that given a monotonic

non decreasing allocation function 𝑔, the mechanism defined by (𝑔, 𝑝) where 𝑝 is given

by equation 1.13 is DSIC and IR.

Deriving the optimal allocation function

Now that we have the characterization of the space of incentive compatible individually

rational auctions, we move on to finding the revenue maximizing auction.

Let’s denote by (𝐷1, · · · , 𝐷𝑛) the probability distributions from which the bidders’

value is sampled: (𝑣1, · · · , 𝑣𝑛) ∼ (𝐷1, · · · , 𝐷𝑛). Since we’re in a single-item setting,

the distribution 𝐷𝑖 is a probability distribution over the real numbers. To simplify

the derivation, we will assume that all values are bounded by 𝑣max and that 𝐷𝑖 has a
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continuous probability density function which we’ll denote as 𝑓𝑖. We will use 𝐹𝑖 to

denote the corresponding cumulative distribution function.

Conditioned on 𝐵−𝑖, the expected payment of bidder 𝑖, 𝑝𝑖, is given by:

𝑝𝑖 = E𝑣𝑖∼𝐷𝑖 [𝑝𝑖 (𝑣𝑖, 𝐵−𝑖)] ,

=

∫ 𝑣max

0
𝑝𝑖 (𝑣𝑖, 𝐵−𝑖) 𝑓𝑖 (𝑣𝑖) 𝑑𝑣𝑖 ,

=

∫ 𝑣max

0

[∫ 𝑣𝑖

0
𝑧 × 𝑔′𝑖 (𝑧, 𝐵−𝑖) 𝑑𝑧

]
𝑓𝑖 (𝑣𝑖) 𝑑𝑣𝑖 ,

(1.14)

where in the last equality we used the characterization of the payment function in

terms of the allocation function as found in equation 1.13. This expression can be

further simplified by first permuting the order of integration and then by integrating

by parts:

∫ 𝑣max

0

[∫ 𝑣𝑖

0
𝑧 × 𝑔′𝑖 (𝑧, 𝐵−𝑖) 𝑑𝑧

]
𝑓𝑖 (𝑣𝑖) 𝑑𝑣𝑖 =

∫ 𝑣max

0

[∫ 𝑣max

𝑧

𝑓𝑖 (𝑣𝑖) 𝑑𝑣𝑖
]
𝑧 × 𝑔′𝑖 (𝑧, 𝐵−𝑖) 𝑑𝑧 ,

=

∫ 𝑣max

0
(1 − 𝐹𝑖 (𝑧)) × 𝑧 × 𝑔′𝑖 (𝑧, 𝐵−𝑖) 𝑑𝑧 ,

= −
∫ 𝑣max

0
𝑔𝑖 (𝑧, 𝐵−𝑖) × (1 − 𝐹𝑖 (𝑧) − 𝑧 𝑓𝑖 (𝑧)) 𝑑𝑧 ,

=

∫ 𝑣max

0

(
𝑧 − 1 − 𝐹𝑖 (𝑧)

𝑓𝑖 (𝑧)

)
︸              ︷︷              ︸

:=𝜑𝑖 (𝑧)

×𝑔𝑖 (𝑧, 𝐵−𝑖) × 𝑓𝑖 (𝑧)𝑑𝑧 .

The quantity 𝜑𝑖 (𝑧) that appears under the integral is called the virtual valuation

of bidder 𝑖. Note that this quantity only depends on bidder 𝑖, it does not depend on

any of the other bidders, and it can be negative.

The total expected revenue for the auctioneer is then given by:

𝑃 = E𝑉∼𝐷

[
𝑛∑︁
𝑖=1

𝑝𝑖 (𝑉)
]
= E𝑉∼𝐷

[
𝑛∑︁
𝑖=1

𝜑𝑖 (𝑣𝑖) × 𝑔(𝑉)𝑖

]
. (1.15)
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From equation 1.15 we can see that the expected revenue is a linear combination

of the virtual values.

If all these virtual values are negative, then the optimal allocation is 𝑔(𝑉)𝑖 = 0 for

all bidders. Otherwise, optimality is reached by allocating the item to the bidder with

the highest virtual value. The optimal payment function can then be inferred using

equation 1.13.

An example

To illustrate how that works in practice, let’s consider the case where 𝐷1 = · · · = 𝐷𝑛 =

Uniform( [0, 1]). The virtual valuation function is then given by 𝜑(𝑏) = 2𝑏 − 1.

If all the bids are smaller than 𝑟 = 1
2 , then all the virtual bids are negative and the

item is not allocated, so none of the bidders have to pay any amount of money to the

auctioneer. 𝑟 is called the reserve price, which is the value under which the auctioneer

is not willing to sell his item.

If this is not the case, then there is at least one bidder that bid more than 𝑟.

Without loss of generality we can assume that bidder 1 has the highest bid and bidder 2

has the second highest bid. In this case, bidder 1 gets the item. The allocation function

of bidder 1 is given by:

𝑔1(𝑏1) =


0 if 𝑏1 < max(𝑟, 𝑣2) ,

1 if 𝑏1 ⩾ max(𝑟, 𝑣2) .

Its derivative is given by 𝑔′1(𝑏1) = 𝛿min(𝑟,𝑣2) (𝑏1) where 𝛿 is the Dirac function.

By plugging this expression into equation 1.13, we find that bidder 1 has to pay

𝑝1 = min(𝑟, 𝑣2) to the auctioneer. The optimal auction can be summed up by the
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following two cases:


If all the bids are below 𝑟 : no one gets the item and no one pays.

Else: the highest bidder gets the item and pays max(𝑟, second highest bid).

This is called a second price auction with a reserve price.

Generalizing these results to larger auctions is not straightforward. In fact, despite

decades of research, there is no known analytical derivation that would enable us to

systematically derive optimal mechanism for a general auction. In Chapter 4 and 5

we will see a machine learning based approach to approximate optimal auctions.
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Part I

Reinforcement Learning
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Chapter 2

A Theoretical Connection Between

Statistical Physics and

Reinforcement Learning

2.1 Abstract

Sequential decision making in the presence of uncertainty and stochastic dynamics

gives rise to distributions over state/action trajectories in reinforcement learning (RL)

and optimal control problems. This observation has led to a variety of connections

between RL and inference in probabilistic graphical models (PGMs). Here we explore

a different dimension to this relationship, examining reinforcement learning using the

tools and abstractions of statistical physics. The central object in the statistical physics

abstraction is the idea of a partition function Z, and here we construct a partition

function from the ensemble of possible trajectories that an agent might take in a Markov

decision process. Although value functions and 𝑄-functions can be derived from this

partition function and interpreted via average energies, the Z-function provides an

object with its own Bellman equation that can form the basis of alternative dynamic
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programming approaches. Moreover, when the MDP dynamics are deterministic,

the Bellman equation for Z is linear, allowing direct solutions that are unavailable

for the nonlinear equations associated with traditional value functions. The policies

learned via these Z-based Bellman updates are tightly linked to Boltzmann-like policy

parameterizations. In addition to sampling actions proportionally to the exponential

of the expected cumulative reward as Boltzmann policies would, these policies take

entropy into account favoring states from which many outcomes are possible.

2.2 Introduction

One of the central challenges in the pursuit of machine intelligence is robust sequential

decision making. In a stochastic and uncertain environment, an agent must capture

information about the distribution over ways they may act and move through the

state space. Indeed, the algorithmic process of planning and learning itself can lead

to a well-defined distribution over state/action trajectories. This observation has

led to a variety of connections between reinforcement learning (RL) and inference in

probabilistic graphical models (PGMs) (Levine, 2018). In some ways this connection is

unsurprising: belief propagation (and its relatives such as the sum-product algorithm)

is understood to be an example of dynamic programming (Koller and Friedman, 2009)

and dynamic programming was developed to solve control problems (Bellman, 1966;

Bertsekas, 1995). Nevertheless, the exploration of the connection between control

and inference has yielded fruitful insights into sequential decision making algorithms

(Kalman, 1960; Attias, 2003; Ziebart, 2010; Kappen, 2011; Levine, 2018).

In this chapter, we present another point of view on reinforcement learning as a

distribution over trajectories, one in which we draw upon useful abstractions from

statistical physics. This view is in some ways a natural continuation of the agenda

of connecting control to inference, as many insights in probabilistic graphical models
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have deep connections to, e.g., spin glass systems (Hopfield, 1982; Yedidia et al., 2001;

Zdeborová and Krzakala, 2016). More generally, physics has often been a source of

inspiration for ideas in machine learning (MacKay, 2003; Mezard and Montanari,

2009). Boltzmann machines (Ackley et al., 1985), Hamiltonian Monte Carlo (Duane

et al., 1987; Neal et al., 2011; Betancourt, 2017) and, more recently, tensor networks

(Stoudenmire and Schwab, 2016) are a few examples. In addition to direct inspiration,

physics provides a compelling framework to reason about certain problems. The

terms momentum, energy, entropy, and phase transition are ubiquitous in machine

learning. However, abstractions from physics have generally not been so far helpful for

understanding reinforcement learning models and algorithms. That is not to say there

is a lack of interaction; RL is being used in some experimental physics domains, but

physics has not yet as directly informed RL as it has, e.g., graphical models (Carleo

et al., 2019).

Nevertheless, we should expect deep connections between reinforcement learning

and physics: an RL agent is trying to find a policy that maximizes expected reward

and many natural phenomena can be viewed through a minimization principle. For

example, in classical mechanics or electrodynamics, a mass or light will follow a

path that minimizes a physical quantity called the action, a property known as the

principle of least action. Similarly, in thermodynamics, a system with many degrees

a freedom—such as a gas—will explore its configuration space in the search for a

configuration that minimizes its free energy. In reinforcement learning, rewards and

value functions have a very similar flavor to energies, as they are extensive quantities

and the agent is trying to find a path that maximizes them. In RL, however, value

functions are often treated as the central object of study. This stands in contrast to

statistical physics formulations of such problems in which the partition function is the

primary abstraction, from which all the relevant thermodynamic quantities—average

energy, entropy, heat capacity—can be derived. It is natural to ask, then, is there
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a theoretical framework for reinforcement learning that is centered on a partition

function, in which value functions can be interpreted via average energies?

In this chapter, we show how to construct a partition function for a reinforcement

learning problem. In a deterministic environment (Section 2.3), the construction is

elementary and very natural. We explicitly identify the link between the underlying

average energies associated with these partition functions and value functions of

Boltzmann-like stochastic policies. As in the inference-based view on RL, moving

from deterministic to stochastic environments introduces complications. In Section

2.4.2, we propose a construction for stochastic environments that results in realistic

policies. Finally, in Section 2.5, we show how the partition function approach leads to

an alternative model-free reinforcement learning algorithm that does not explicitly

represent value functions.

We model the agent’s sequential decision-making task as a Markov decision

process (MDP), as is typical. The agent selects actions in order to maximize its

cumulative expected reward until a final state is reached. The MDP is defined by

the objects (S,A,R,P). S and A are the sets of states and actions, respectively.

P(𝑠, 𝑎, 𝑠′) = P(𝑠′ | 𝑠, 𝑎) is the probability of landing in state 𝑠′ after taking action 𝑎

from state 𝑠. R(𝑠, 𝑎, 𝑠′) is the reward resulting from this transition. We also make the

following additional assumptions:

1. S is finite,

2. all rewards R(𝑠, 𝑎, 𝑠′) are bounded from above by Rmax and are deterministic,

3. the number of available actions is uniformly bounded over all states by 𝑑.

We also allow for terminal states to have rewards even though there are no further

actions and transitions. We denote these final-state rewards by R(𝑠 𝑓 ). By shifting

all rewards by Rmax we can assume without loss of generality that Rmax = 0 making
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all transition rewards R(𝑠, 𝑎, 𝑠′) non positive. The final state rewards R(𝑠 𝑓 ) are still

allowed to be positive however.

2.3 Partition Functions for Deterministic MDPs

Our starting point is to consider deterministic Markov decision processes. Deterministic

MDPs are those in which the transition probability distributions assign all their mass

to one state. Deterministic MDPs are a widely studied special case (Madani, 2002; Wen

and Van Roy, 2013; Dekel and Hazan, 2013) and they are realistic for many practical

control problems, such as robotic manipulation and locomotion, drone maneuver or

machine-controlled scientific experimentation. For the deterministic setting, we will

use 𝑠 + 𝑎 to denote the state that follows the taking of action 𝑎 in state 𝑠. Similarly,

we will denote the reward more concisely as R(𝑠, 𝑎).

2.3.1 Construction of State-Dependent Partition Functions

To construct a partition function, two ingredients are needed: a statistical

ensemble, and an energy function 𝐸 on that ensemble. We will construct our

ensembles from trajectories through the MDP; a trajectory 𝜔 is a sequence of

tuples 𝜔 = (𝑠0, 𝑎0, 𝑟0), (𝑠1, 𝑎1, 𝑟1), . . . , (𝑠𝑇 , 𝑎𝑇 , 𝑟𝑇 ) such that state 𝑠𝑇+1 is a terminal

state. We use the notation 𝑠𝑡 (𝜔), 𝑎𝑡 (𝜔), and 𝑟𝑡 (𝜔) to indicate the state, action, and

reward, respectively, of trajectory 𝜔 at step 𝑡. Each state-dependent ensemble Ω(𝑠) is

then the set of all trajectories that start at 𝑠, i.e., for which 𝑠0(𝜔) = 𝑠. We will use

these ensembles to construct a partition function for each state 𝑠 ∈ S. Taking |𝜔| to

be the length of the trajectory, we write the energy function as

𝐸 (𝜔) = −
|𝜔 |−1∑︁
𝑡=0

𝑟𝑡 (𝜔) − 𝑅(𝑠 |𝜔 |) = −
|𝜔|∑︁
𝑡=0

𝑟𝑡 (𝜔) . (2.1)

41



The form on the right takes a notational shortcut of defining 𝑟 |𝜔| (𝜔) := 𝑅(𝑠𝑇+1) for the

reward of the terminal state. Since the agent is trying to maximize their cumulative

reward, 𝐸 (𝜔) is a reasonable measure of the agent’s preference for a trajectory in

the sense that lower energy solutions accumulate higher rewards. Note in particular

that the ground state configurations are the most rewarding trajectories for the agent.

With the ingredients Ω(𝑠) and 𝐸 (𝜔) defined, we get the following partition function

Z(𝑠, 𝛽) =
∑︁

𝜔∈Ω(𝑠)
𝑒−𝛽 𝐸 (𝜔) (2.2)

=
∑︁

𝜔∈Ω(𝑠)
𝑒𝛽

∑ |𝜔 |
𝑡=0 𝑟𝑡 (𝜔) . (2.3)

In this expression, 𝛽 ⩾ 0 is a hyper-parameter that can be interpreted as the inverse

of a temperature. (This interpretation comes from statistical physics where 𝛽 = 1
𝐾𝐵𝑇

,

where 𝐾𝐵 is the Boltzmann constant.) This partition function does not distinguish

between two trajectories having identical cumulative rewards but different lengths.

However, among equivalently rewarding trajectories, it seems natural to prefer shorter

trajectories. One way to encode this preference is to add an explicit penalty 𝜇 ⩽ 0 on

the length |𝜔| of a trajectory, leading to a partition function

Z(𝑠, 𝛽) =
∑︁

𝜔∈Ω(𝑠)
𝑒−𝛽 𝐸 (𝜔)+𝜇 |𝜔| . (2.4)

In statistical physics, 𝜇 is called a chemical potential and it measures the tendency

of a system (such as a gas) to accept new particles. It is sometimes inconvenient to

reason about systems with a fixed number of particles, adding a chemical potential

offers a way to relax that constraint, allowing a system to have a varying number of

particles while keeping the average fixed.

Note that since MDPs can allow for both infinitely long trajectories and infinite

sets of finite trajectories, Ω(𝑠) can be infinite even in relatively simple settings. In
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Appendix 2.A.1, we find that a sufficient condition for Z(𝑠, 𝛽) to be well defined is

taking 𝜇 < − log 𝑑. As written, the partition function in Eq. 2.4 is ambiguous for final

states. For clarity we define Z(𝑠 𝑓 , 𝛽) := 𝑒𝛽 𝑅(𝑠 𝑓 ) for a terminal state 𝑠 𝑓 . We will refer

to these as the boundary conditions.

Mathematically, the parameter 𝜇 has a similar role as the one played by 𝛾, the

discount rate commonly used in reinforcement learning problems. They both make

infinite series convergent in an infinite horizon setting, and ensure that the Bellman

operators are contractions in their respective frameworks (Appendices 2.A.3 and 2.B.3).

However, when using 𝛾, the order in which the rewards are observed can have an

impact on the learned policy which does not happen when 𝜇 is used. This could be

a desirable property for some problems as it uncouples rewards from preferences for

shorter paths.

2.3.2 A Bellman Equation for Z

As we have defined an ensemble Ω(𝑠) for each state 𝑠 ∈ S, there is a partition

function Z(𝑠, 𝛽) defined for each state. These partition functions are all related

through a Bellman-like recursion:

Z(𝑠, 𝛽) =
∑︁
𝑎

𝑒𝛽R(𝑠,𝑎)+𝜇 Z(𝑠 + 𝑎, 𝛽) , (2.5)

where, as before, 𝑠 + 𝑎 indicates the state deterministically following from taking

action 𝑎 in state 𝑠. This Bellman equation can be easily derived by decomposing each

trajectory 𝜔 ∈ Ω(𝑠) into two parts: the first transition resulting from taking initial

action 𝑎 and the remainder of the trajectory 𝜔′ which is a member of Ω(𝑠 + 𝑎). The

total energy and length can also be decomposed in the same way, so that:
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Z(𝑠, 𝛽) =
∑︁

𝜔∈Ω(𝑠)
𝑒−𝛽 𝐸 (𝜔)+𝜇 |𝜔|

=
∑︁

𝜔∈Ω(𝑠)
𝑒𝛽

∑ |𝜔 |
𝑡=0 𝑟𝑡 (𝜔)+𝜇 |𝜔|

=
∑︁
𝑎∈A

𝑒𝛽R(𝑠,𝑎)+𝜇
∑︁

𝜔′∈Ω(𝑠+𝑎)
𝑒𝛽

∑ |𝜔 |
𝑡=1 𝑟𝑡 (𝜔)+𝜇( |𝜔|−1)

=
∑︁
𝑎∈A

𝑒𝛽R(𝑠,𝑎)+𝜇
∑︁

𝜔′∈Ω(𝑠+𝑎)
𝑒−𝛽 𝐸 (𝜔

′)+𝜇 |𝜔′ |

=
∑︁
𝑎

𝑒𝛽R(𝑠,𝑎)+𝜇 Z(𝑠 + 𝑎, 𝛽) .

Note in particular that this Bellman recursion is linear in Z.

2.3.3 The Underlying Value Function and Policy

The partition function can be used to compute an average energy to shed light on

the behavior of the system. This average is computed under the Boltzmann (Gibbs)

distribution induced by the energy on the ensemble of trajectories :

P(𝜔 | 𝛽, 𝜇, 𝑠0(𝜔) = 𝑠) =
1Ω(𝑠) (𝜔)
Z(𝑠, 𝛽) 𝑒

−𝛽 𝐸 (𝜔)+𝜇 |𝜔| . (2.6)

In probabilistic machine learning, this is usually how one sees the partition function:

as the normalizer for an energy-based learning model or an undirected graphical

model (see, e.g., Murray and Ghahramani (2004)). Under this probability distribution,

high-reward trajectories are the most likely but sub-optimal ones could still be sampled.

This approach is closely related to the soft-optimality approach to RL (Levine, 2018).

This distribution over trajectories allows us to compute an average energy for state 𝑠

either as an explicit expectation or as the partial derivative of the log partition function
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with respect to the inverse temperature:

⟨𝐸⟩ =
∑︁

𝜔∈Ω(𝑠)

1

Z(𝑠, 𝛽) 𝑒
−𝛽 𝐸 (𝜔)+𝜇 |𝜔|𝐸 (𝜔)

= − 𝜕
𝜕𝛽

logZ(𝑠, 𝛽) . (2.7)

The negative of the average energy is the value function:

𝑉 (𝑠, 𝛽) := −⟨𝐸⟩ = 𝜕

𝜕𝛽
logZ(𝑠, 𝛽).

This is an intuitive result: recall that the energy 𝐸 (𝜔) is low when the trajectory 𝜔

accumulates greater rewards, so lower average energy indicates that the expected

cumulative reward—the value—is greater. Since the partition functions {Z(𝑠, 𝛽)}𝑠∈𝑆

are connected by a Bellman equation, we expect that the underlying value

functions {𝑉 (𝑠, 𝛽)}𝑠∈𝑆 would be connected in a similar way, and there is indeed a

non-linear Bellman recursion:

𝑉 (𝑠, 𝛽) = 𝜕

𝜕𝛽
logZ(𝑠, 𝛽)

=
1

Z(𝑠, 𝛽)
𝜕

𝜕𝛽
Z(𝑠, 𝛽)

=
1

Z(𝑠, 𝛽)
𝜕

𝜕𝛽

∑︁
𝑎∈A

𝑒𝛽R(𝑠,𝑎)+𝜇 Z(𝑠 + 𝑎, 𝛽)

=
1

Z(𝑠, 𝛽)
∑︁
𝑎∈A

𝑒𝛽R(𝑠,𝑎)+𝜇
𝜕

𝜕𝛽
Z(𝑠 + 𝑎, 𝛽) + R(𝑠, 𝑎)𝑒𝛽R(𝑠,𝑎)+𝜇 Z(𝑠 + 𝑎, 𝛽) .

The derivative rule for natural log gives us:

𝜕

𝜕𝛽
Z(𝑠, 𝛽) = Z(𝑠, 𝛽) 𝜕

𝜕𝛽
logZ(𝑠, 𝛽)

= Z(𝑠, 𝛽) 𝑉 (𝑠, 𝛽)
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and as a result we have:

𝑉 (𝑠, 𝛽) = 1

Z(𝑠, 𝛽)
∑︁
𝑎∈A

𝑒𝛽R(𝑠,𝑎)+𝜇Z(𝑠 + 𝑎, 𝛽)𝑉 (𝑠 + 𝑎, 𝛽) + R(𝑠, 𝑎)𝑒𝛽R(𝑠,𝑎)+𝜇 Z(𝑠 + 𝑎, 𝛽)

=
1

Z(𝑠, 𝛽)
∑︁
𝑎∈A

𝑒𝛽R(𝑠,𝑎)+𝜇Z(𝑠 + 𝑎, 𝛽) [𝑉 (𝑠 + 𝑎, 𝛽) + R(𝑠, 𝑎)] . (2.8)

Note that the quantities 𝑒𝛽R(𝑠,𝑎)+𝜇Z(𝑠+ 𝑎, 𝛽) inside the summation of Equation 2.8 are

positive and sum to Z(𝑠, 𝛽) due to the Bellman recursion for Z(𝑠, 𝛽) from Equation 2.5.

Thus we can view this Bellman equation for 𝑉 (𝑠, 𝛽) as an expectation under a

distribution on actions, i.e., a policy :

𝑉 (𝑠, 𝛽) =
∑︁
𝑎∈A

𝜋(𝑎 | 𝑠) [𝑉 (𝑠 + 𝑎, 𝛽) + R(𝑠, 𝑎)] (2.9)

𝜋(𝑎 | 𝑠) = Z(𝑠 + 𝑎, 𝛽)
Z(𝑠, 𝛽) 𝑒𝛽R(𝑠,𝑎)+𝜇 . (2.10)

The policy 𝜋 resembles a Boltzmann policy but strictly speaking it is not. A Boltzmann

policy 𝜋𝐵 selects actions proportionally to the exponential of their expected cumulative

reward:

𝜋B(𝑎 | 𝑠) ∝ exp (𝛽 [R(𝑠, 𝑎) +𝑉 (𝑠 + 𝑎)]).

In particular, 𝜋𝐵 does not take entropy into account: if two actions have the same

expected optimal value, they will be picked with equal probability regardless of the

possibility that one of them could achieve this optimality in a larger number of ways.

In the partition function view, 𝜋 does take entropy into account and to clarify this

difference we will look at the two extreme cases 𝛽→ {0,∞}.

When 𝛽→ 0, where the temperature of the system is infinite, rewards become

irrelevant and we find that: 𝜋(𝑎 | 𝑠) ∝ ∑
𝜔∈Ω(𝑠+𝑎) 𝑒

𝜇 |𝜔|. This means that 𝜋 is picking

action 𝑎 proportionally to the number of trajectories that begin with 𝑠 + 𝑎. Here the
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counting of trajectories happens in a weighted way: longer trajectories contribute less

than shorter ones. This is different from a Boltzmann policy that would pick actions

uniformly at random.

𝑆0

𝑆1

𝑆4 𝑆5

𝑆2

𝑆6

𝑆3

𝑆7

Figure 2.1: Decision Tree MDP

When 𝛽→∞, the low-temperature limit,

we find in Section 2.A.2 that:

𝜋(𝑎 | 𝑠) ∝ 𝑁max(𝑠 + 𝑎) exp (𝛽 [R(𝑠, 𝑎) +𝑉 (𝑠 + 𝑎)])

where 𝑁max(𝑠 + 𝑎) is a weighted count of

the number of optimal trajectories that

begin at the state 𝑠 + 𝑎. Boltzmann policies

completely ignore the 𝑁max entropic factor.

To illustrate this difference more clearly, we consider the deterministic decision

tree MDP shown in Figure 2.1 where 𝑆0 is the initial state and the leafs 𝑆4, 𝑆5, 𝑆6,

and 𝑆7 are the final states. The arrows represent the actions available at each state.

There are no rewards and the boundary conditions are: R(𝑆4) = R(𝑆5) = R(𝑆6) = 1

and R(𝑆7) = 0. This gives us the boundary condition:

Z(𝑆4, 𝛽) = Z(𝑆5, 𝛽) = Z(𝑆6, 𝛽) = 𝑒𝛽 and Z(𝑆7, 𝛽) = 1.

Computing the Z-functions at the intermediate states 𝑆1, 𝑆2 and 𝑆3 we find:

Z(𝑆1, 𝛽) = 2𝑒𝛽+𝜇, Z(𝑆2, 𝛽) = 𝑒𝛽+𝜇, Z(𝑆3, 𝛽) = 𝑒𝜇 .
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Finally we have Z(𝑆0, 𝛽) = 3𝑒𝛽+2𝜇 + 𝑒2𝜇. The underlying policy for picking the first

action is given by:

𝜋𝛽 (1 | 0) =
2𝑒𝛽+2𝜇

3𝑒𝛽+2𝜇 + 𝑒2𝜇
𝜋𝛽 (2 | 0) =

𝑒𝛽+2𝜇

3𝑒𝛽+2𝜇 + 𝑒2𝜇
𝜋𝛽 (3 | 0) =

𝑒2𝜇

3𝑒𝛽+2𝜇 + 𝑒2𝜇
.

(2.11)

When 𝛽→ 0, we get:

𝜋0(1 | 0) =
1

2
, 𝜋0(2 | 0) =

1

4
, 𝜋0(3 | 0) =

1

4

. A Boltzmann policy would pick these three actions with equal probability. The

policy 𝜋 is biased towards the heavier subtree.

When 𝛽→∞ we get:

𝜋∞(1 | 0) =
2

3
, 𝜋∞(2 | 0) =

1

3
, 𝜋∞(3 | 0) = 0.

A Boltzmann policy would pick action 1 and 2 with a probability of 1
2 . 𝜋 prefers

states from which many possible optimal trajectories are possible.

2.3.4 A Planning Algorithm

When the dynamics of the environment are known, it is possible to to learn Z(𝑠, 𝛽) by

exploiting the Bellman equation (2.5). We denote by 𝑠→ 𝑠′ the property that there

exists an action 𝑎 that takes an agent from state 𝑠 to state 𝑠′. The reward associated

with this transition will be denoted R(𝑠→ 𝑠′). Let Z(𝛽) = [Z(𝑠, 𝛽)]𝑠∈S be the vector

of all partition functions and 𝐶 (𝛽) ∈ R|S|×|S| be the matrix:

𝐶 (𝛽)𝑠,𝑠′ = 1𝑠→𝑠′𝑒
𝛽R(𝑠→𝑠′)+𝜇 + 1𝑠=𝑠′=final state (2.12)
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𝐶 (𝛽) is a matrix representation of the Bellman operator in Equation 2.5. With these

notations, the Bellman equations in (2.5) can be compactly written as:

Z(𝛽) = 𝐶 (𝛽) Z(𝛽) (2.13)

highlighting the fact that Z(𝛽) is a fixed point of the map:

𝜑 : 𝑋 → 𝐶 (𝛽) 𝑋. (2.14)

In Appendix 2.A.3, we show that 𝜑 is a contraction which makes it possible to

learn Z(𝛽) by starting with an initial vector Z0 having compatible boundary conditions

and successively iterating the map 𝜑: Z𝑛+1 = 𝐶 (𝛽) Z𝑛. We could also interpret Z(𝛽)

as an eigenvector of 𝐶 (𝛽). In this context, this algorithm is simply doing a power

method.

Interestingly, we can learn Z(𝛽) by solving the underdetermined linear

system [𝐼 |S| − 𝐶 (𝛽)] Z(𝛽) = 0|S| with the right boundary conditions. We show

in Appendix 2.A.2 that the policies learned are related to Boltzmann policies which

produce non linear Bellman equations at the value function level:

𝑉 (𝑠, 𝛽) =
∑︁
𝑎

𝑒𝛽(R(𝑠,𝑎)+𝛾𝑉 (𝑠+𝑎,𝛽))

W(𝑠, 𝛽) [𝑟 (𝑠,𝑎) + 𝛾𝑉 (𝑠 + 𝑎, 𝛽)] (2.15)

where 𝛾 is the discount factor and W(𝑠, 𝛽) = ∑
𝑎 𝑒

𝛽(R(𝑠,𝑎)+𝛾𝑉 (𝑠+𝑎,𝛽)) is a normalization

constant different from Z(𝑠, 𝛽). By working with partition functions we transformed a

non linear problem into a linear one. This remarkable result is reminiscent of linearly

solvable MDPs (Todorov, 2007).

Once Z is learned the agent’s policy is given by: P(𝑎 | 𝑠) ∝ 𝑒𝛽R(𝑠,𝑎)Z(𝑠 + 𝑎, 𝛽).
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2.4 Partition functions for Stochastic MDPs

We now move to the more general MDP setting. The dynamics of the environment

can now be stochastic. However, as mentioned at the end of the introduction, we

still assume that given an initial state 𝑠, an action 𝑎, and a landing state 𝑠′, the

reward R(𝑠, 𝑎, 𝑠′) is deterministic.

2.4.1 A First Attempt: Averaging the Bellman Equation

A first approach to incorporating the stochasticity of the environment is to average

the right-hand side of the Bellman Equation 2.5 and define Z(𝑠, 𝛽) as the solution of:

Z(𝑠, 𝛽) =
∑︁
𝑎

E𝑠′ |𝑠,𝑎
[
𝑒𝛽R(𝑠,𝑎,𝑠

′)+𝜇 Z(𝑠′, 𝛽)
]

=
∑︁
𝑎,𝑠′
P(𝑠′ | 𝑠, 𝑎) 𝑒𝛽R(𝑠,𝑎,𝑠′)+𝜇 Z(𝑠′, 𝛽) .

(2.16)

Interestingly, the solution of this equation can be constructed in the same spirit of

Section 2.3.1 by summing a functional over the set of trajectories. If we define 𝐿 (𝜔)

to be the log likelihood of a trajectory: 𝐿 (𝜔) = ∑|𝜔|−1
𝑡=0 log P(𝑠𝑡+1 | 𝑠𝑡 , 𝑎𝑡) then Z(𝑠, 𝛽)

is defined by

Z(𝑠, 𝛽) =
∑︁

𝜔∈Ω(𝑠)
𝑒−𝛽𝐸 (𝜔)+𝜇 |𝜔 |+𝐿 (𝜔) , (2.17)

satisfies the Bellman Equation 2.16. The proof can be found in Appendix 2.B.1. In

Appendix 2.B.2 we derive the Bellman equation satisfied by the underlying value

function 𝑉 (𝑠, 𝛽) and we find:

𝑉 (𝑠, 𝛽) =
∑︁
𝑎,𝑠′

𝑒𝛽R(𝑠,𝑎,𝑠
′)+𝜇 Z(𝑠′, 𝛽)
Z(𝑠, 𝛽) × P(𝑠′ | 𝑠, 𝑎) × (R(𝑠, 𝑎, 𝑠′) +𝑉 (𝑠′, 𝛽)) . (2.18)
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This Bellman equation does not correspond to a realistic policy; the policy depends

on the landing state 𝑠′ which is a random variable. The agent’s policy and

the environment’s transitions cannot be decoupled. This is not surprising, from

Equation 2.17 we see that Z puts rewards and transition probabilities on an equal

footing. As a result an agent believes they can choose any available transition as long

as they are willing to pay the price in log probability. This encourages risky behavior:

the agent is encouraged to bet on highly unlikely but beneficial transitions. These

observations were also noted in Levine (2018).

2.4.2 A Variational Approach

Constructing a partition function for a stochastic MDP is not straightforward because

there are two types of randomness: the first comes from the agent’s policy and the

second from stochasticity of the environment. Mixing these two sources of randomness

can lead to unrealistic policies as we saw in Section 2.4.1. A more principled approach

is needed.

We construct a new deterministic MDP (S̃, Ã, R̃, P̃) from (S,A,R,P). We

take S̃ to be the space of probability distributions over S, similar to belief state

representations for partially-observable MDPs (Astrom, 1965; Sondik, 1978; Kaelbling

et al., 1998). We make the assumption that the actions A are the same for all

states and take Ã = A. For 𝜌 ∈ S̃ and 𝑎 ∈ Ã we define P̃(𝜌, 𝑎) := 𝑃𝑎𝑇 𝜌 where 𝑃𝑎 is

the transition matrix corresponding to choosing action 𝑎 in the original MDP. We

define R̃(𝜌, 𝑎) := E𝑠∼𝜌
[
E𝑠′ |𝑠,𝑎 [R(𝑠, 𝑎, 𝑠′)]

]
.

S being finite, it has a finite number 𝑀 of final states which we denote { 𝑓𝑖}𝑖∈{1,··· ,𝑀}.

The final states of S̃ are of the form 𝜌 𝑓 =
∑𝑀
𝑖=1 𝛼𝑖𝛿 𝑓𝑖 where 0 ⩽ 𝛼𝑖 ⩽ 1 verify

∑𝑀
𝑖=1 𝛼𝑖 = 1

and 𝛿 𝑓𝑖 is a Dirac delta function at state 𝑓𝑖. The intrinsic value 𝜌 𝑓 of such a final state
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is then given by R(𝜌 𝑓 ) =
∑𝑀
𝑖=1 𝛼𝑖R( 𝑓𝑖). This leads to the boundary conditions:

Z(𝜌 𝑓 ) = exp

(
𝛽

𝑀∑︁
𝑖=1

𝛼𝑖R(𝑠 𝑓𝑖 )
)

=

𝑀∏
𝑖=1

Z( 𝑓𝑖, 𝛽)𝛼𝑖 .
(2.19)

This new MDP (S̃, Ã, R̃, P̃) is deterministic, and we can follow the same approach of

Section 2.3 and construct a partition function Z(𝜌, 𝛽) on S̃. Z(𝑠, 𝛽) can be recovered

by evaluating Z(𝛿𝑠, 𝛽). From this construction we also get that Z(𝜌, 𝛽) satisfies the

following Bellman equation:

Z(𝜌, 𝛽) =
∑︁
𝑎

𝑒𝛽R(𝜌,𝑎)+𝜇 Z(𝑃𝑎𝑇 𝜌, 𝛽) . (2.20)

Just as it is the case for deterministic MDPs, the Bellman operator associated with this

equation is a contraction. This is proved in Appendix 2.B.3. However S̃ is now infinite

which makes solving Equation 2.20 intractable. We adopt a variational approach

which consists in finding the best approximation of Z(𝜌, 𝛽) within a parametric

family {Z𝜃}𝜃∈Θ. We measure the fitness of a candidate through the following loss

function:

Δ(𝜃) = 1

|S|
∑︁
𝑠∈S

(
Z𝜃 (𝛿𝑠, 𝛽) −

∑︁
𝑎

𝑒𝛽R(𝛿𝑠 ,𝑎)+𝜇 Z𝜃 (𝑃𝑎𝑇𝛿𝑠, 𝛽)
)2

.

For illustration purposes, and inspired by the form of the boundary conditions

(Equation 2.19), we consider a simple parametric family given by the partition functions

of the form Z𝜃 (𝜌) =
∏|S|
𝑖=1 𝜃𝑖

𝜌𝑖 , where 𝜃 ∈ R|S|. The optimal 𝜃 can be found using usual

optimization techniques such as gradient descent. By evaluation of Z𝜃 at 𝜌 = 𝛿𝑆𝑖 we see

that we must have 𝜃𝑖 = Z(𝛿𝑆𝑖 ) = Z(𝑆𝑖) and consequently we have Z𝜃 (𝜌) =
∏|S|
𝑖=1 Z(𝑆𝑖)

𝜌𝑖 .
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The optimal solution satisfies the following Bellman equation:

Z(𝑠, 𝛽) ≈
∑︁
𝑎

∏
𝑠′∈S

[
𝑒𝛽R(𝑠,𝑎,𝑠

′)+𝜇 Z(𝑠′, 𝛽)
]P(𝑠′ |𝑠,𝑎)

(2.21)

The underlying value function verifies:

𝑉 (𝑠, 𝛽) ≈
∑︁
𝑎,𝑠′

𝜋(𝑎 | 𝑠) P(𝑠′ | 𝑠, 𝑎) (R(𝑠, 𝑎, 𝑠′) +𝑉 (𝑠′, 𝛽))

where the policy 𝜋 is given by 𝜋(𝑎 | 𝑠) ∝∏
𝑠′∈S

[
𝑒𝛽R(𝑠,𝑎,𝑠

′)+𝜇 Z(𝑠′, 𝛽)
]P(𝑠′ |𝑠,𝑎)

. This

approach leads to a realistic policy as its only dependency is on the current state, not

a future one, unlike the policies arising from Equation 2.18.

2.5 The Model-Free Case

2.5.1 Construction of State-Action-Dependent Partition

Function

In a model free setting, where the transition dynamics are unknown, state-only

value functions such as 𝑉 (𝑠) are less useful than state-action value functions such

as 𝑄(𝑠, 𝑎). Consequently, we will extend our construction to state-action partition

functions Z(𝑠, 𝑎, 𝛽). For a deterministic environment, we extend the construction in

Section 2.3 and define Z(𝑠, 𝑎, 𝛽) by

Z(𝑠, 𝑎, 𝛽) =
∑︁

𝜔∈Ω(𝑠,𝑎)
𝑒−𝛽𝐸 (𝜔)+𝜇 |𝜔 | (2.22)

=
∑︁

𝜔∈Ω(𝑠,𝑎)
𝑒𝛽

∑ |𝜔 |
𝑖=0 𝑟𝑖+𝜇 |𝜔| (2.23)

where Ω(𝑠, 𝑎) denotes the set of trajectories having (𝑠0, 𝑎0) = (𝑠, 𝑎). Since

Ω(𝑠) = ⋃
𝑎∈AΩ(𝑠, 𝑎), we have Z(𝑠, 𝛽) = ∑

𝑎 Z(𝑠, 𝑎, 𝛽). As a consequence of this
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construction, Z(𝑠, 𝑎, 𝛽) satisfies the following linear Bellman equation:

Z(𝑠, 𝑎, 𝛽) = 𝑒𝛽R(𝑠,𝑎)+𝜇
∑︁
𝑎′

Z(𝑠 + 𝑎, 𝑎′, 𝛽) . (2.24)

This Bellman equation can be easily derived by decomposing each trajectory 𝜔 ∈ Ω(𝑠, 𝑎)

into two parts: the first transition resulting from taking initial action 𝑎 and the

remainder of the trajectory 𝜔′ which is a member of Ω(𝑠+𝑎, 𝑎′) for some action 𝑎′ ∈ A

. The total energy and length can also be decomposed in the same way, so that:

Z(𝑠, 𝑎, 𝛽) =
∑︁

𝜔∈Ω(𝑠,𝑎)
𝑒−𝛽𝐸 (𝜔)+𝜇 |𝜔|

=
∑︁

𝜔∈Ω(𝑠,𝑎)
𝑒𝛽

∑ |𝜔 |
𝑖=0 𝑟𝑖+𝜇 |𝜔|

= 𝑒𝛽R(𝑠,𝑎)+𝜇
∑︁

𝜔∈Ω(𝑠,𝑎)
𝑒𝛽

∑ |𝜔 |
𝑡=1 𝑟𝑡 (𝜔)+𝜇( |𝜔|−1)

= 𝑒𝛽R(𝑠,𝑎)+𝜇
∑︁

𝜔′∈Ω(𝑠+𝑎)
𝑒−𝛽 𝐸 (𝜔

′)+𝜇 |𝜔′ |

= 𝑒𝛽R(𝑠,𝑎)+𝜇
∑︁
𝑎′∈A

∑︁
𝜔′∈Ω(𝑠+𝑎,𝑎′)

𝑒−𝛽 𝐸 (𝜔
′)+𝜇 |𝜔′ |

= 𝑒𝛽R(𝑠,𝑎)+𝜇
∑︁
𝑎′∈A

Z(𝑠 + 𝑎, 𝑎′, 𝛽).

In the same spirit of Section 2.3.3, one can show that the average underlying value

function 𝑄(𝑠, 𝑎, 𝛽) = 𝜕
𝜕𝛽

logZ(𝑠, 𝑎, 𝛽) satisfies a Bellman equation:

𝑄(𝑠, 𝑎, 𝛽) = R(𝑠, 𝑎) +
∑︁
𝑎′
𝜋(𝑎′ | 𝑠 + 𝑎) 𝑄(𝑠 + 𝑎, 𝑎′, 𝛽) (2.25)

𝜋(𝑎 | 𝑠) = Z(𝑠, 𝑎, 𝛽)∑
𝑎′ Z(𝑠, 𝑎′, 𝛽)

(2.26)

𝑄(𝑠, 𝑎, 𝛽) can be then reinterpreted as the 𝑄-function of the policy 𝜋. Similarly to

the results of Section 2.3.3 and Appendix 2.A.2, the policy 𝜋 can be thought of a

Boltzmann policy of parameter 𝛽 that takes entropy into account. This construction
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can be extend to a stochastic environments by following the same approach used in

Section 2.4.2.

In the following we show how learning the state-action partition function Z(𝑠, 𝑎, 𝛽)

leads to an alternative approach to model-free reinforcement learning that does not

explicitly represent value functions.

2.5.2 A Learning Algorithm

In 𝑄-Learning, the update rule typically consists of a linear interpolation between the

current value estimate and the one arising a posteriori :

𝑄(𝑠𝑡 , 𝑎𝑡) ← (1 − 𝛼)𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼
(
𝑟𝑡 + 𝛾max

𝑎𝑡+1
𝑄(𝑠𝑡+1, 𝑎𝑡+1)

)
(2.27)

where 𝛼 ∈ [0, 1] is the learning rate and 𝛾 is the discount factor. For Z-functions we

will replace the linear interpolation with a geometric one. We take the update rule

for Z-functions to be the following:

Z(𝑠𝑡 , 𝑎𝑡 , 𝛽) ← Z(𝑠𝑡 , 𝑎𝑡 , 𝛽)1−𝛼 ×
(
𝑒𝛽𝑟𝑡+𝜇

∑︁
𝑎𝑡+1

Z(𝑠𝑡+1, 𝑎𝑡+1, 𝛽)
)𝛼
. (2.28)

To understand what this update rule is doing, it is insightful to look at how how the

underlying 𝑄-function, 𝑄(𝑠, 𝑎) = 𝜕
𝜕𝛽

logZ(𝑠𝑡 , 𝑎𝑡 , 𝛽) is updated. We find:

𝑄(𝑠𝑡 , 𝑎𝑡 , 𝛽) ← (1 − 𝛼)𝑄(𝑠𝑡 , 𝑎𝑡 , 𝛽) + 𝛼
(
𝑟𝑡 +

∑︁
𝑎𝑡+1

Z(𝑠𝑡+1, 𝑎𝑡+1, 𝛽)∑
𝑎′ Z(𝑠𝑡+1, 𝑎′, 𝛽)

𝑄(𝑠𝑡+1, 𝑎𝑡+1, 𝛽)
)
.

(2.29)

We see that we recover a weighted version of the SARSA update rule. This update rule

is referred to as expected SARSA. Expected SARSA is known to reduce the variance
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in the updates by exploiting knowledge about stochasticity in the behavior policy and

hence is considered an improvement over vanilla SARSA (Van Seijen et al., 2009).

Since the underlying update rule is equivalent to the expected SARSA update rule,

we can use any exploration strategy that works for expected SARSA. One exploration

strategy could be 𝜀-greedy which consists in taking action 𝑎 = argmax𝑎∈AZ(𝑠, 𝑎, 𝛽)

with probability 1 − 𝜀 and picking an action uniformly at random with probability 𝜀.

Another possibility would be a Boltzmann-like exploration which consists in taking

action 𝑎 with probability P(𝑎 | 𝑠) ∝ Z(𝑠, 𝑎, 𝛽).

We would like to emphasize that even though the expected SARSA update is not

novel, the learned policies through this updates rule are proper to the partition-function

approach. In particular, the learned policies 𝜋(𝑎 | 𝑠) ∝ Z(𝑠, 𝑎, 𝛽) are Boltzmann-like

policies with some entropic preference properties as described in Section 2.3.3 and

Appendix 2.A.2.

2.6 Conclusion

In this chapter we discussed how planning and reinforcement learning problems can

be approached through the tools and abstractions of statistical physics. We started by

constructing partition functions for each state of a deterministic MDP and then showed

how to extend that definition to the more general stochastic MDP setting through a

variational approach. Interestingly, these partition functions have their own Bellman

equation making it possible to solve planning and model-free RL problems without

explicit reference to value functions. Nevertheless, conventional value functions can be

derived from our partition function and interpreted via average energies. Computing

the implied value functions can also shed some light on the policies arising from these

algorithms. We found that the learned policies are closely related to Boltzmann policies

with the additional interesting feature that they take entropy into consideration by
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favoring states from which many trajectories are possible. Finally, we observed that

working with partition functions is more natural in some settings. In a deterministic

environment for example, near-optimal Bellman equations become linear which is not

the case in a value-function-centric approach.
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Appendix

2.A Deterministic MDPs

2.A.1 Z(𝑠, 𝛽) is well defined

Proposition 1. Z(𝑠, 𝛽) = ∑
𝜔∈Ω(𝑠) 𝑒

𝛽
∑ |𝜔 |
𝑖=0 𝑟𝑖+𝜇 |𝜔| is well defined for 𝜇 < − log 𝑑.

Proof. The MDP being finite, S has a finite number of final state we can then find a

constant 𝐾 such that, for all final states 𝑠 𝑓 we have R(𝑠 𝑓 ) ⩽ 𝐾.

Z(𝑠, 𝛽) =
∑︁

𝜔∈Ω(𝑠)
𝑒𝛽

∑ |𝜔 |
𝑖=0 𝑟𝑖+𝜇 |𝜔|

=
∑︁

𝜔∈Ω(𝑠)
𝑒𝛽

∑ |𝜔 |−1
𝑖=0 𝑟𝑖+𝛽R(𝑠 |𝜔 |)+𝜇 |𝜔|

⩽ 𝑒𝛽𝐾
∑︁

𝜔∈Ω(𝑠)
𝑒𝛽

∑ |𝜔 |−1
𝑖=0 𝑟𝑖+𝜇 |𝜔|

⩽ 𝑒𝛽𝐾
∑︁

𝜔∈Ω(𝑠)
𝑒𝜇 |𝜔|

⩽ 𝑒𝛽𝐾
∑︁
𝑛∈N

𝑒𝜇𝑛
∑︁

𝜔∈Ω(𝑠), |𝜔|=𝑛
1

⩽ 𝑒𝛽𝐾
∑︁
𝑛∈N

𝑒𝜇𝑛𝑑𝑛

= 𝑒𝛽𝐾
∑︁
𝑛∈N
(𝑒𝜇+log 𝑑)𝑛
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Where used the fact that all rewards {𝑟𝑖}𝑖∈{0,...,|𝜔 |−1} are non positive and that the

number of available actions at each state is bounded by 𝑑. When 𝜇 < − log 𝑑, the sum∑
𝑛∈N(𝑒𝜇+log 𝑑)𝑛 becomes convergent and Z(𝑠, 𝛽) is well defined. □

Remark 2.A.1. 𝜇 < − log 𝑑 is a sufficient condition, but not a necessary one. Z(𝑠, 𝛽)

could be well defined for all values of 𝜇. This happens for instance when Ω(𝑠) is finite

for all 𝑠.

2.A.2 The underlying policy is Boltzmann-like

For high values of 𝛽, the sum
∑
𝜔∈Ω(𝑠) 𝑒

𝛽
∑ |𝜔 |
𝑖=0 𝑟𝑖+𝜇 |𝜔| will become dominated by the

contribution of few of its terms. As 𝛽 → +∞, the sum will be dominated by the

contribution of the paths with the biggest reward. We have

logZ(𝑠, 𝛽) ∼
𝛽→∞

𝛽 max

{ |𝜔|∑︁
𝑖=0

𝑟𝑖 (𝜔), 𝜔 ∈ Ω(𝑠)
}

We see that 𝑉 (𝑠, 𝛽) = 𝜕
𝜕𝛽

logZ(𝑠, 𝛽) →
𝛽→∞

max
{∑|𝜔|

𝑖=0 𝑟𝑖 (𝜔), 𝜔 ∈ Ω(𝑠)
}
.

Since the MDP is finite and deterministic, it has a finite number of transitions

and rewards. Consequently, the set
{∑|𝜔|

𝑖=0 𝑟𝑖 (𝜔), 𝜔 ∈ Ω(𝑠)
}
takes discrete values, in

particular, there is a finite gap Δ between the maximum value and the second biggest

value of this set. Let’s denote by Ωmax(𝑠) the set of trajectories that achieve this

maximum and by 𝑁max(𝑠) =
∑

𝜔∈Ωmax (𝑠)
𝑒𝜇 |𝜔| .

𝑁max(𝑠) counts the number of trajectories Ωmax(𝑠) in a weighted way: longer

trajectories contribute less than shorter ones. It is a measure of the size of Ωmax(𝑠)

that takes into account our preference for shorter trajectories. Putting everything

together we get:

(
Z(𝑠, 𝛽)
𝑒𝛽𝑉 (𝑠,𝛽)

− 𝑁max(𝑠)
)
⩽

𝛽→∞
𝑒−𝛽Δ

∑︁
𝜔∈Ω(𝑠)

𝑒𝜇 |𝜔| →
𝛽→∞

0
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This shows that Z(𝑠, 𝛽) ∼
𝛽→∞

𝑁max(𝑠) 𝑒𝛽𝑉 (𝑠,𝛽), which results in the following policy

for 𝛽 >> 1:

𝜋(𝑎 | 𝑠) ∝
𝛽→∞

𝑁max(𝑠 + 𝑎)𝑒𝛽(R(𝑠,𝑎)+𝑉 (𝑠+𝑎,𝛽))

𝜋 differs from a traditional Boltzmann policy in the following way: if we have two

actions 𝑎1 and 𝑎2 such that R(𝑠, 𝑎1) +𝑉 (𝑠 + 𝑎1, 𝛽) = R(𝑠, 𝑎2) +𝑉 (𝑠 + 𝑎2, 𝛽) but there

are twice more optimal trajectories spanning from 𝑠 + 𝑎1 than there are from 𝑠 + 𝑎2

then action 𝑎1 will be chosen twice as often as 𝑎2. This is to contrast with the usual

Boltzmann policy that will pick 𝑎1 and 𝑎2 with equal probability. When 𝑁max(𝑠) is

the same for all 𝑠, we recover a Boltzmann policy. When 𝛽→ +∞ the policy converges

to a an optimal policy and 𝑉 converges to the optimal value function.

2.A.3 𝑋 → 𝐶 (𝛽)𝑋 is a contraction

Proposition 2. Let X(𝛽) =
{
𝑍 ∈ R|S|+ such for all final states 𝑠 𝑓 we have 𝑍𝑠 𝑓 = 𝑒

𝛽R(𝑠 𝑓 )
}

and let 𝐶 (𝛽)𝑠,𝑠′ = 1𝑠→𝑠′𝑒𝛽R(𝑠→𝑠
′)+𝜇 + 1𝑠=𝑠′=final state. The map defined by

𝜓 :


X(𝛽) → X(𝛽)

𝑋 → 𝐶 (𝛽) 𝑋

is a contraction for the sup-norm: | |𝑥 | |∞ = max
𝑖∈{1,··· ,|S|}

|𝑥𝑖 |.

Proof. X(𝛽) is the set of all possible partition functions with compatible boundary

conditions. The matrix 𝐶 (𝛽) is more explicitly defined by:

𝐶 (𝛽)𝑠,𝑠′ =



1 if s = s’ and state s is a final state.

0 if there is no one step transition from state s to state s’.

𝑒𝛽R(𝑠→𝑠
′)+𝜇 if the transition from state s to state s’ has reward R(𝑠→ 𝑠′).
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Because 𝐶 (𝛽)𝑠,𝑠 = 1 when 𝑠 is a final state, the map 𝜓 is well defined

(i.e. X(𝛽) → X(𝛽)). Since the MDP is finite, it has a finite number of final

state so there exists a constant 𝐾 such that, for all final states 𝑠 𝑓 we have R(𝑠 𝑓 ) ⩽ 𝐾.

Let 𝑋1, 𝑋2 ∈ X(𝛽) we have:

∥𝜓(𝑋1) − 𝜓(𝑋2)∥∞ = max
𝑖∈{1,··· ,|S|}

��(𝐶 (𝛽)𝑋1 − 𝐶 (𝛽)𝑋2)𝑖��
Without loss of generality we can assume that the MDP has 𝑚 final states that are

labeled |S| − 𝑚 + 1, · · · , |S|. Under this assumption we have:

max
𝑖∈{1,··· ,|S|}

| (𝑋1 − 𝑋2)𝑖 | = max
𝑖∈{1,··· ,|S|−𝑚}

| (𝑋1 − 𝑋2)𝑖 |

This is because 𝑋1 and 𝑋2 have the same boundary conditions:

∀ 𝑠 𝑓 ∈ {|S| − 𝑚 + 1, · · · , |S|}, (𝑋1)𝑠 𝑓 = (𝑋2)𝑠 𝑓

. Since 𝐶 (𝛽)𝑠 𝑓 ,𝑠 𝑓 = 1 if 𝑠 𝑓 is the index a final state, 𝐶 (𝛽)𝑋1 and 𝐶 (𝛽)𝑋2 still have the

same boundary conditions, we have:

∀𝑠 𝑓 ∈ {|S| − 𝑚 + 1, · · · , |S|}, [𝐶 (𝛽)𝑋1]𝑠 𝑓 = [𝐶 (𝛽)𝑋2]𝑠 𝑓

. This gives us:

max
𝑠∈{1,··· ,|S|}

��(𝐶 (𝛽)𝑋1 − 𝐶 (𝛽)𝑋2)𝑠�� = max
𝑠∈{1,··· ,|S|−𝑚}

��(𝐶 (𝛽)𝑋1 − 𝐶 (𝛽)𝑋2)𝑠��
For 𝑠 ∈ {1, · · · , |S|}, we have:

��(𝐶 (𝛽)𝑋1 − 𝐶 (𝛽)𝑋2)𝑠�� = ���∑|S|𝑠′=1 [𝐶 (𝛽)]𝑠,𝑠′ (𝑋1 − 𝑋2)𝑠′���.
Since there are at most 𝑑 available actions at each state and the environment
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is deterministic, at most 𝑑 coefficients 𝐶 (𝛽)𝑠,𝑠′ in this sum are non zero. Because the

rewards are non positive, the non zero ones can be bounded by 𝑒𝜇.

Putting all these pieces together we can write:

����� |S|∑︁
𝑠′=1

[𝐶 (𝛽)]𝑠,𝑠′ (𝑋1 − 𝑋2)𝑠′
����� ⩽ 𝑑 × 𝑒𝜇∥𝑋1 − 𝑋2∥∞

.

Finally we get:

∥𝐶 (𝛽)𝑋1 − 𝐶 (𝛽)𝑋2∥∞ ⩽ 𝑑 × 𝑒𝜇︸ ︷︷ ︸
<1 because 𝜇<− log 𝑑

∥𝑋1 − 𝑋2∥∞

This proves that 𝜓 is a contraction. □

Remark 2.A.2. We see here another mathematical similarity between the discount

factor 𝛾 < 1 usually used in RL and the chemical potential 𝜇 < − log 𝑑. They both

ensure that the Bellman operators are contractions.
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2.B Stochastic MDPs

2.B.1 Averaging the Bellman Equation and adding a

likelihood cost are equivalent

Proposition 3. The partition function Z(𝑠, 𝛽) defined by Z(𝑠, 𝛽) := ∑
𝜔∈Ω(𝑠) 𝑒

−𝛽𝐸 (𝜔)+𝜇 |𝜔|+𝐿 (𝜔)

satisfies the following Bellman equation:

Z(𝑠, 𝛽) =
∑︁
𝑎

E𝑠′ |𝑠,𝑎
[
𝑒𝛽R(𝑠,𝑎,𝑠

′)+𝜇 Z(𝑠′, 𝛽)
]

Proof. The proof follows the same path as the one in Section 2.3.2. We decompose

each trajectory 𝜔 ∈ Ω into two parts: the first transition resulting from taking a first

action 𝑎 and the rest of the trajectory 𝜔′. The energy, the length and the likelihood

of the trajectory can be decomposed in a similar way as the sum of the contribution

of the first transition and the contribution of the rest of the trajectory. We get:

Z(𝑠, 𝛽) =
∑︁

𝜔∈Ω(𝑠)
𝑒−𝛽𝐸 (𝜔)+𝜇 |𝜔|+𝐿 (𝜔)

=
∑︁
𝑎,𝑠′

𝑒𝛽R(𝑠,𝑎,𝑠
′)+𝜇+log(P(𝑠′ |𝑠,𝑎)

∑︁
𝜔′∈Ω(𝑠′)

𝑒−𝛽𝐸 (𝜔
′)+𝜇 |𝜔′ |+𝐿 (𝜔′)

=
∑︁
𝑎,𝑠′

𝑒𝛽R(𝑠,𝑎,𝑠
′)+𝜇+log(P(𝑠′ |𝑠,𝑎) Z(𝑠′, 𝛽)

=
∑︁
𝑎,𝑠′
P(𝑠′ | 𝑠, 𝑎) 𝑒𝛽R(𝑠,𝑎,𝑠′)+𝜇 Z(𝑠′, 𝛽)

=
∑︁
𝑎

E𝑠′ |𝑠,𝑎
[
𝑒𝛽R(𝑠,𝑎,𝑠

′)+𝜇 Z(𝑠′, 𝛽)
]

This proves the equivalence. □
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2.B.2 Deriving the Unrealistic Bellman Equation

Proposition 4. The value function 𝑉 (𝑠, 𝛽) = 𝜕
𝜕𝛽

logZ(𝑠, 𝛽) where

Z(𝑠, 𝛽) =
∑︁

𝜔∈Ω(𝑠)
𝑒−𝛽𝐸 (𝜔)+𝜇 |𝜔|+𝐿 (𝜔)

satisfies the following Bellman equation:

𝑉 (𝑠, 𝛽) =
∑︁
𝑎,𝑠′

𝑒𝛽R(𝑠,𝑎,𝑠
′)+𝜇 Z(𝑠′, 𝛽)

Z(𝑠, 𝛽) P(𝑠′ | 𝑠, 𝑎) [R(𝑠, 𝑎, 𝑠′) +𝑉 (𝑠′, 𝛽)]

Proof. From Appendix 2.B.1 we known that Z(𝑠, 𝛽) satisfies the Bellman equation:

Z(𝑠, 𝛽) = ∑
𝑎 E𝑠′ |𝑠,𝑎

[
𝑒𝛽R(𝑠,𝑎,𝑠

′)+𝜇 Z(𝑠′, 𝛽)
]
.

𝑉 (𝑠, 𝛽) = 𝜕

𝜕𝛽
logZ(𝑠, 𝛽)

=
𝜕

𝜕𝛽
log

(∑︁
𝑎

E𝑠′ |𝑠,𝑎
[
𝑒𝛽R(𝑠,𝑎,𝑠

′)+𝜇 Z(𝑠′, 𝛽)
] )

=
1

Z(𝑠, 𝛽)
𝜕

𝜕𝛽

(∑︁
𝑎

E𝑠′ |𝑠,𝑎
[
𝑒𝛽R(𝑠,𝑎,𝑠

′)+𝜇 Z(𝑠′, 𝛽)
] )

=
1

Z(𝑠, 𝛽)
∑︁
𝑎

E𝑠′ |𝑠,𝑎

[
𝜕

𝜕𝛽

(
𝑒𝛽R(𝑠,𝑎,𝑠

′)+𝜇 Z(𝑠′, 𝛽)
)]

=
1

Z(𝑠, 𝛽)
∑︁
𝑎

E𝑠′ |𝑠,𝑎

[
R(𝑠, 𝑎, 𝑠′) 𝑒𝛽R(𝑠,𝑎,𝑠′)+𝜇 Z(𝑠′, 𝛽) + 𝑒𝛽R(𝑠,𝑎,𝑠′)+𝜇 𝜕

𝜕𝛽
Z(𝑠′, 𝛽)

]
=

1

Z(𝑠, 𝛽)
∑︁
𝑎

E𝑠′ |𝑠,𝑎

[(
R(𝑠, 𝑎, 𝑠′) +

𝜕
𝜕𝛽
Z(𝑠′, 𝛽)

Z(𝑠′, 𝛽)

)
𝑒𝛽R(𝑠,𝑎,𝑠

′)+𝜇 Z(𝑠′, 𝛽)
]

=
1

Z(𝑠, 𝛽)
∑︁
𝑎

E𝑠′ |𝑠,𝑎

[(
R(𝑠, 𝑎, 𝑠′) + 𝜕

𝜕𝛽
logZ(𝑠′, 𝛽)

)
𝑒𝛽R(𝑠,𝑎,𝑠

′)+𝜇 Z(𝑠′, 𝛽)
]

=
1

Z(𝑠, 𝛽)
∑︁
𝑎

E𝑠′ |𝑠,𝑎
[
(R(𝑠, 𝑎, 𝑠′) +𝑉 (𝑠′, 𝛽)) 𝑒𝛽R(𝑠,𝑎,𝑠′)+𝜇 Z(𝑠′, 𝛽)

]
=

∑︁
𝑎,𝑠′

𝑒𝛽R(𝑠,𝑎,𝑠
′)+𝜇 Z(𝑠′, 𝛽)

Z(𝑠, 𝛽) P(𝑠′ | 𝑠, 𝑎) [R(𝑠, 𝑎, 𝑠′) +𝑉 (𝑠′, 𝛽)]

□
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2.B.3 The Bellman operator of Z(𝜌, 𝛽) is a contraction

Proposition 5. Let D = {𝛼 ∈ R|S| such that ∀𝑖 ∈ 1, · · · , |S|, 0 ⩽ 𝛼𝑖 ⩽ 1 and
∑,|S|
𝑖=1 𝛼𝑖 = 1}

and

X(𝛽) ={𝑋 ∈ 𝐶0 (D,R) s.t. 𝑋 (𝜌 𝑓 ) = exp

[
𝛽

𝑀∑︁
𝑖=1

𝛼𝑖R( 𝑓𝑖)
]

for mixtures of final states 𝜌 𝑓 =
𝑀∑︁
𝑖=1

𝛼𝑖𝛿 𝑓𝑖} .

The map defined by

𝜓 :



X(𝛽) → X(𝛽)

𝑋 →


D → R

𝜌 → ∑
𝑎 𝑒

𝛽R(𝜌,𝑎)+𝜇 𝑋 (𝑃𝑎𝑇 𝜌, 𝛽)

is a contraction for the sup-norm: ∥𝑋 ∥∞ = max
𝜌∈D
|𝑋 (𝜌) |.

Proof. D is the standard ( |S| − 1)-simplex in R|S| and X(𝛽) be the set of continuous

functions on D satisfying the right boundary conditions. The original MDP is

finite, consequently it has a finite number 𝑀 of final state and it is possible to find a

constant 𝐾 such that, for all final states 𝑠 𝑓 we have R(𝑠 𝑓 ) ⩽ 𝐾.

Let 𝑋1, 𝑋2 ∈ X(𝛽). 𝑋1 and 𝑋2 have the same boundary conditions by construction.

Not only that, 𝜓(𝑋1) and 𝜓(𝑋2) have also the same boundary conditions since the

map 𝜓 doesn’t alter boundary conditions. Consequently we have:

∥𝜓(𝑋1) − 𝜓(𝑋2)∥∞ = max
𝜌∈D
|𝜓(𝑋1) (𝜌) − 𝜓(𝑋2) (𝜌) | = max

𝜌∈D, 𝜌 non final
|𝜓(𝑋1) (𝜌) − 𝜓(𝑋2) (𝜌) |
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Finally we can write:

∥𝜓(𝑋1) − 𝜓(𝑋2)∥∞ = max
𝜌∈D, 𝜌 non final

|𝜓(𝑋1) (𝜌) − 𝜓(𝑋2) (𝜌) |

= max
𝜌∈D, 𝜌 non final

�����∑︁
𝑎

𝑒𝛽R(𝜌,𝑎)+𝜇
[
𝑋1(𝑃𝑎𝑇 𝜌, 𝛽) − 𝑋2(𝑃𝑎𝑇 𝜌, 𝛽)

] �����
⩽ max

𝜌∈D, 𝜌 non final

�����∑︁
𝑎

𝑒𝛽R(𝜌,𝑎)+𝜇

����� × ∥𝑋1 − 𝑋2∥∞
⩽ 𝑑 × 𝑒𝜇︸ ︷︷ ︸
<1 because 𝜇<− log 𝑑

∥𝑋1 − 𝑋2∥∞

Where we use the fact that all rewards are non positive and that the number of

available actions is bounded by 𝑑. This concludes the proof that the Bellman operator

of Z(𝜌, 𝛽) is a contraction.

This proof is generalization of the proof presented in Appendix 2.A.3 for MDPs with

finite state spaces. □
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Chapter 3

Why Generalization in RL is

Difficult: Epistemic POMDPs and

Implicit Partial Observability

Abstract

Generalization is a central challenge for the deployment of reinforcement learning (RL)

systems in the real world. In this chapter, we show that the sequential structure of

the RL problem necessitates new approaches to generalization beyond the well-studied

techniques used in supervised learning. While supervised learning methods can

generalize effectively without explicitly accounting for epistemic uncertainty, we show

that, perhaps surprisingly, this is not the case in RL. We show that generalization to

unseen test conditions from a limited number of training conditions induces implicit

partial observability, effectively turning even fully-observed MDPs into POMDPs.

Informed by this observation, we recast the problem of generalization in RL as solving

the induced partially observed Markov decision process, which we call the epistemic

POMDP. We demonstrate the failure modes of algorithms that do not appropriately
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handle this partial observability, and suggest a simple ensemble-based technique for

approximately solving the partially observed problem. Empirically, we demonstrate

that our simple algorithm derived from the epistemic POMDP achieves significant

gains in generalization over current methods on the Procgen benchmark suite.

3.1 Introduction

Generalization is a central challenge in machine learning. However, much of the

research on reinforcement learning (RL) has been concerned with the problem of

optimization: how to master a specific task through online or logged interaction.

Generalization to new test-time contexts has received comparatively less attention,

although several works have observed empirically (Farebrother et al., 2018; Zhang

et al., 2018c; Justesen et al., 2018; Song et al., 2020) that generalization to new

situations poses a significant challenge to RL policies learned from a fixed training

set of situations. In standard supervised learning, it is known that in the absence of

distribution shift and with appropriate inductive biases, optimizing for performance on

the training set (i.e., empirical risk minimization) translates into good generalization

performance. It is tempting to suppose that the generalization challenges in RL can be

solved in the same manner as empirical risk minimization in supervised learning: when

provided a training set of contexts, learn the optimal policy within these contexts and

then use that policy in new contexts at test-time.

Perhaps surprisingly, we show that such “empirical risk minimization” approaches

can be sub-optimal for generalizing to new contexts in RL, even when these new

contexts are drawn from the same distribution as the training contexts. As an

anecdotal example of why this sub-optimality arises, imagine a robotic zookeeper for

feeding otters that must be trained on some set of zoos. When placed in a new zoo,

the robot must find and enter the otter enclosure. It can use one of two strategies:
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either peek through all the habitat windows looking for otters, which succeeds with

95% probability in all zoos, or to follow an image of a hand-drawn map of the zoo that

unambiguously identifies the otter enclosure, which will succeed as long as the agent

is able to successfully parse the image. In every training zoo, the otters can be found

more reliably using the image of the map, and so an agent trained to seek the optimal

policy in the training zoos would learn a classifier to predict the identity of the otter

enclosure from the map, and enter the predicted enclosure. This classification strategy

is optimal on the training environments because the agent can learn to perfectly

classify the training zoo maps, but it is sub-optimal for generalization, because the

learned classifier will never be able to perfectly classify every new zoo map at test-time.

Note that this task is not partially observed, because the map provides full state

information even for a memoryless policy. However, if the learned map classifier

succeeds on anything less than 95% of new zoos at test-time, the strategy of peeking

through the windows, although always sub-optimal in the training environments, turns

out to be a more reliable strategy for finding the otter habitat in a new zoo, and

results in higher expected returns at test-time.

Although with enough training zoos, the zookeeper can learn a policy by solving

the map classification problem, to generalize optimally when given a limited number of

zoos requires a more intricate policy that is not learned by standard RL methods. How

can we more generally describe the set of behaviors needed for a policy to generalize

from a finite number of training contexts in the RL setting? We make the observation

that, even in fully-observable domains, the agent’s epistemic uncertainty renders the

environment implicitly partially observed at test-time. In the zookeeper example,

although the hand-drawn map provides the exact location of the otter enclosure (and so

the enclosure’s location is technically fully observed), the agent cannot identify the true

parameters of the map classifier from the small set of maps seen at training time, and

so the location of the otters is implicitly obfuscated from the agent. We formalize this
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Figure 3.1.1: Visualization of the robotic zookeeper example. Standard RL algorithms
learn the classifier strategy, since it is optimal in every training zoo, but this strategy is sub-optimal
for generalization because peeking generalizes better than the classifier at test-time. This failure
occurs due to the following disconnect: while the task is fully-observed since the image uniquely
specifies the location of the otter habitat, to an agent that has limited training data, the location
is implicitly partially observed at test-time because of the agent’s epistemic uncertainty about the
parameters of the image classifier.

observation, and show that generalizing optimally at test-time corresponds to solving

a partially-observed Markov decision process that we call an epistemic POMDP,

induced by the agent’s epistemic uncertainty about the test environment.

That uncertainty about MDP parameters can be modelled as a POMDP is

well-studied in Bayesian RL when training and testing on a single task in an online

setting, primarily in the context of exploration (Dearden et al., 1998; Duff and Barto,

2002; Strens, 2000; Ghavamzadeh et al., 2015). However, as we will discuss, this

POMDP interpretation has significant consequences for the generalization problem in

RL, where an agent cannot collect more data online, and must instead learn a policy

from a fixed set of training contexts that generalizes to new contexts at test-time. We

show that standard RL methods that do not explicitly account for this implicit partial

observability can be arbitrarily sub-optimal for test-time generalization in theory and
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in practice. The epistemic POMDP underscores the difficulty of the generalization

problem in RL, as compared to supervised learning, and provides an avenue for

understanding how we should approach generalization under the sequential nature

and non-uniform reward structure of the RL setting. Maximizing expected return

in an approximation of the epistemic POMDP emerges as a principled approach to

learning policies that generalize well, and we propose LEEP, an algorithm that uses an

ensemble of policies to approximately learn the Bayes-optimal policy for maximizing

test-time performance.

The primary contribution of this chapter is to use Bayesian RL techniques to reframe

generalization in RL as the problem of solving a partially observed Markov decision

process, which we call the epistemic POMDP. The epistemic POMDP highlights

the difficulty of generalizing well in RL, as compared to supervised learning. We

demonstrate the practical failure modes of standard RL methods, which do not reason

about this partial observability, and show that maximizing test-time performance

may require algorithms to explicitly consider the agent’s epistemic uncertainty during

training. Our work highlights the importance of not only finding ways to help neural

networks in RL generalize better, but also on learning policies that degrade gracefully

when the underlying neural network eventually does fail to generalize. Empirically,

we demonstrate that LEEP, which maximizes return in an approximation to the

epistemic POMDP, achieves significant gains in test-time performance over standard

RL methods on several ProcGen benchmark tasks.

3.2 Related Work

Many empirical studies have demonstrated the tendency of RL algorithms to overfit

significantly to their training environments (Farebrother et al., 2018; Zhang et al.,

2018c; Justesen et al., 2018; Song et al., 2020), and the more general increased
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difficulty of learning policies that generalize in RL as compared to seemingly similar

supervised learning problems (Zhang et al., 2018b,a; Whiteson et al., 2011; Liu et al.,

2020). These empirical observations have led to a newfound interest in algorithms

for generalization in RL, and the development of benchmark RL environments that

focus on generalization to new contexts from a limited set of training contexts sharing

a similar structure (state and action spaces) but possibly different dynamics and

rewards (Nichol et al., 2018; Cobbe et al., 2019; Kuttler et al., 2020; Cobbe et al.,

2020; Stone et al., 2021).

Generalization in RL. Approaches for improving generalization in RL have fallen

into two main categories: improving the ability of function approximators to generalize

better with inductive biases, and incentivizing behaviors that are easier to generalize

to unseen contexts. To improve the representations learned in RL, prior work has

considered imitating environment dynamics (Jaderberg et al., 2017; Stooke et al.,

2020), seeking bisimulation relations (Zhang et al., 2020; Agarwal et al., 2021), and

more generally, addressing representational challenges in the RL optimization process

(Igl et al., 2019; Jiang et al., 2020). In image-based domains, inductive biases imposed

via neural network design have also been proposed to improve robustness to certain

factors of variation in the state (Lee et al., 2020a; Kostrikov et al., 2020; Raileanu et al.,

2020). The challenges with generalization in RL that we will describe in this chapter

stem from the deficiencies of MDP objectives, and cannot be fully solved by choice of

representations or functional inductive biases. In the latter category, one approach is

domain randomization, varying environment parameters such as coefficients of friction

or textures, to obtain behaviors that are effective across many candidate parameter

settings (Sadeghi and Levine, 2017; Tobin et al., 2017; Rajeswaran et al., 2017; Peng

et al., 2018; Kang et al., 2019). Domain randomization sits within a class of methods

that seek robust policies by injecting noise into the agent-environment loop, whether

in the state (Stulp et al., 2011), the action (e.g., via max-entropy RL) (Cobbe et al.,
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2019), or intermediary layers of a neural network policy (e.g., through information

bottlenecks) (Igl et al., 2019; Lu et al., 2020). In doing so, these methods effectively

introduce partial observability into the problem; while not necessarily equivalent to

that of the epistemic POMDP, it may indicate why these methods generalize well

empirically.

Bayesian RL: Our work recasts generalization in RL within the Bayesian RL

framework, the problem of acting optimally under a belief distribution over MDPs (see

Ghavamzadeh et al. (Ghavamzadeh et al., 2015) for a survey). Bayesian uncertainty

has been studied in many sub-fields of RL (Ramachandran and Amir, 2007; Lazaric

and Ghavamzadeh, 2010; Jeon et al., 2018; Zintgraf et al., 2020), the most prominent

being for exploration and learning efficiently in the online RL setting. Bayes-optimal

behavior in RL is often reduced to acting optimally in a POMDP, or equivalently, a

belief-state MDP (Duff and Barto, 2002), of which our epistemic POMDP is a specific

instantiation. Learning the Bayes-optimal policy exactly is intractable in all but the

simplest problems (Weber, 1992; Poupart et al., 2006), and many works in Bayesian RL

have studied relaxations that remain asymptotically optimal for learning, for example

with value of perfect information (Dearden et al., 1998, 1999) or Thompson sampling

(Strens, 2000; Osband et al., 2013; Russo and Roy, 2014). Our main contribution is to

revisit these classic ideas in the context of generalization for RL. We find that the

POMDP interpretation of Bayesian RL (Dearden et al., 1998; Duff and Barto, 2002;

Ross et al., 2007) provides new insights on inadequacies of current algorithms used

in practice, and explains why generalization in RL can be more challenging than in

supervised learning. Being Bayesian in the generalization setting also requires new

tools and algorithms beyond those classically studied in Bayesian RL, since test-time

generalization is measured using regret over a single evaluation episode, instead of

throughout an online training process. As a result, algorithms and policies that

minimize short-term regret (i.e., are more exploitative) are preferred over traditional
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algorithms like Thompson sampling that explore thoroughly to ensure asymptotic

optimality at the cost of short-term regret.

3.3 Problem Setup

We consider the problem of learning RL policies given a set of training contexts that

generalize well to new unseen contexts. This problem can be formalized in a Markov

decision process (MDP) where the agent does not have full access to the MDP at

training time, but only particular initial states or conditions. Before we describe what

this means, we must describe the MDP M, which is given by a tuple (S,A, 𝑟, 𝑇, 𝜌, 𝛾),

with state space S, action space A, Markovian transition function 𝑇 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡),

bounded reward function 𝑟 (𝑠𝑡 , 𝑎𝑡), and initial state distribution 𝜌(𝑠0). A policy

𝜋 induces a discounted state distribution 𝑑𝜋 (𝑠) = (1 − 𝛾)E𝜋 [
∑
𝑡⩾0 𝛾

𝑡1(𝑠𝑡 = 𝑠)], and

achieves return 𝐽M(𝜋) = E𝜋 [
∑
𝑡⩾0 𝛾

𝑡𝑟 (𝑠𝑡 , 𝑎𝑡)] in the MDP. Classical results establish

that a deterministic Markovian (memoryless) policy 𝜋∗ maximizes this objective

amongst all history-dependent policies.

We focus on generalization in contextual MDPs where the agent is only trained on

a training set of contexts, and seeks to generalize well to new contexts. A contextual

MDP is an MDP in which the state can be decomposed as 𝑠𝑡 = (𝑐, 𝑠′𝑡), a context

vector 𝑐 ∈ C that remains constant throughout an episode, and a sub-state 𝑠′ ∈ S′

that may vary: S B C × S′. Each context vector corresponds to a different situation

that the agent might be in, each with slightly different dynamics and rewards, but

some shared structure across which an agent can generalize. During training, the

agent is allowed to interact only within a sampled subset of contexts Ctrain ⊂ C. The

generalization performance of the agent is measured by the return of the agent’s policy

in the full contextual MDP 𝐽 (𝜋), corresponding to expected performance when placed

in potentially new contexts. While our examples and experiments will be in contextual
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Figure 3.4.1: Sequential Classification RL Problem. In this task, an agent must keep guessing
the label for an image until it gets it correct. To avoid low test return, policies should change actions
if the label guessed was incorrect, but standard RL methods fail to do so, instead guessing the same
incorrect label repeatedly.

MDPs, our theoretical results also apply to other RL generalization settings where the

full MDP cannot be inferred unambiguously from the data available during training,

for example in offline reinforcement learning (Levine et al., 2020).

3.4 Warmup: A Sequential Classification RL

Problem

We begin our study of generalization in RL with an example problem that is set

up to be close to a supervised learning task where generalization is relatively well

understood: image classification on the FashionMNIST dataset (Xiao et al., 2017). In

this environment (visualized in Figure 3.4.1), an image from the dataset is sampled

(the context) at the beginning of an episode and held fixed; the agent must identify

the label of the image to complete the episode. If the agent guesses correctly, it

receives a reward of 0 and the episode ends; if incorrect, it receives a reward of −1

and the episode continues, so it must attempt another guess for the same image at

the next time step. This RL problem is near identical to supervised classification, the

core distinction being that an agent may interact with the same image over several

timesteps in an episode instead of only one attempt as in supervised learning. Note
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Figure 3.4.2: DQN on RL FashionMNIST. DQN achieves lower test performance than simple
variants that leverage the structure of the RL problem.
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that since episodes may last longer than a single timestep, this problem is not a

contextual bandit.

The optimal policy in both the one-step and sequential RL version of the problem

deterministically outputs the correct label for the image, because the image fully

determines the label (in other words, it is a fully observed MDP). However, this optimal

strategy generally cannot be learned from a finite training set, since some generalization

error is unavoidable. With a fixed training set, the strategy for generalizing in

classification remains the same: deterministically choose the label the agent is most

confident about. However, the RL setting introduces two new factors: the agent gets

multiple tries at classifying the same image, and it knows if an attempted label is

incorrect. To generalize best to new test images, an RL policy must leverage this

additional structure, for example by trying many possible labels, or by changing

actions if the previous guess was incorrect.

A standard RL algorithm, which estimates the optimal policy on the empirical

MDP defined by the dataset of training images does not learn to leverage these factors,

and instead learns behavior highly sub-optimal for generalization. We obtained a

policy by running DQN (Mnih et al., 2015) (experimental details in Appendix 3.A.1),

whose policy deterministically chooses the same label for the image at every timestep.

Determinism is not specific to DQN, and is inevitable in any RL method that models the

problem as an MDP because the optimal policy in the MDP is always deterministic

and Markovian. The learned deterministic policy either guesses the correct label

immediately, or guesses incorrectly and proceeds to make the same incorrect guess

on every subsequent time-step. We compare performance in Figure 3.4.2 with a

version of the agent that starts to guess randomly if incorrect on the first timestep,

and a different agent that acts by process of elimination: first choosing the action

it is most confident about, if incorrect, then the second, and so forth. Although all

three versions have the same training performance, the learned RL policy generalizes
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more poorly than these alternative variants that exploit the sequential nature of the

problem. In Section 3.5.2, we will see that this process-of-elimination is, in some

sense, the optimal way to generalize for this task. This experiment reveals a tension:

learning policies for generalization that rely on an MDP model fail, even though the

underlying environment is an MDP. This failure holds in any MDP model with limited

data, whether the empirical MDP or more sophisticated MDPs that use uncertainty

estimates in their construction.

3.5 Modeling Generalization in RL as an Epistemic

POMDP

To better understand test-time generalization in RL, we study the problem under a

Bayesian perspective. We show that training on limited training contexts leads to an

implicit partial observability at test-time that we describe using a formalism called

the epistemic POMDP.

3.5.1 The Epistemic POMDP

In the Bayesian framework, when learning given a limited amount of evidenceD from an

MDP M, we can use a prior P(M) to construct a posterior belief distribution P(M|D)

over the identity of the MDP. For learning in a contextual MDP, D corresponds

to the environment dynamics and reward in training contexts Ctrain that the agent

can interact with, and the posterior belief distribution P(M|D) models the agent’s

uncertainty about the behavior of the environment in contexts that it has not seen

before (e.g. uncertainty about the label for a test-set image in the example from

Section 3.4).

Since the agent only has partial access to the MDP M during training, the agent

does not know which MDP from the posterior distribution is the true environment,
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and must act at test-time under this uncertainty. Following a reduction common

in Bayesian RL (Duff and Barto, 2002; Ghavamzadeh et al., 2015), we model this

test-time uncertainty using a partially observed MDP that we will call the epistemic

POMDP. The epistemic POMDP is structured as follows: each new episode in the

POMDP begins by sampling a single MDP M ∼ P(M|D) from the posterior, and then

the agent interacts with M until the episode ends in this MDP. The agent does not

observe which MDP was sampled, and since the MDP remains fixed for the duration

of the episode, this induces implicit partial observability.

Effectively, each episode in the epistemic POMDP corresponds to acting in one

of the possible environments that is consistent with the evidence that the agent is

allowed access to at training time.

The epistemic POMDP is formally defined as the tupleMpo = (Spo,Opo,A, 𝑇po, 𝑟po, 𝜌po, 𝛾).

A state in this POMDP 𝑠
po
𝑡 = (M, 𝑠𝑡) contains the identity of the current MDP

being acted in M, and the current state in this MDP 𝑠𝑡 ; we write the state space

as Spo = M × S, where M is the space of MDPs with support under the prior.

The agent only observes 𝑜po𝑡 = 𝑠𝑡 , the state in the MDP (Opo = S), but not the

identity of the MDP, M. The initial state distribution is defined by the posterior

distribution: 𝜌po((M, 𝑠0)) = P(M|D)𝜌M(𝑠0), and the transition and reward functions

in the POMDP reflect the dynamics in the current MDP:

𝑇po((M′, 𝑠′) | (M, 𝑠), 𝑎) = 𝛿(M′ = M)𝑇M(𝑠′|𝑠, 𝑎) 𝑟po((M, 𝑠), 𝑎) = 𝑟M(𝑠, 𝑎) . (3.1)

Example (Sequential Image Classification). We begin by explicitly describing the

induced epistemic POMDP for the task from Section 3.4. The agent’s uncertainty

concerns how images are mapped to labels, and each MDP M in the posterior

distribution corresponds to a different potential labelling function 𝑌M : 𝑥 ↦→ 𝑦 that is
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consistent with the training dataset. Each episode in the epistemic POMDP, a different

MDP M and corresponding labeller 𝑌M is sampled from the posterior distribution,

alongside an image 𝑥 ∼ 𝑝(𝑥). The agent must guess the label assigned by this labelling

function 𝑦 B 𝑌M(𝑥), but is only provided the image 𝑥 and not the identity of the

labeller 𝑌M. We emphasize that the context remains fully observed in the epistemic

POMDP (the image 𝑥 is provided to the agent); what is partially observed is how the

environment dynamics will behave for the context (what label the image corresponds

to).

What makes the epistemic POMDP a useful tool for understanding generalization

in RL is that performance in the epistemic POMDP Mpo corresponds exactly to the

expected return of the agent at test-time when the prior is well-specified.

Proposition 3.5.1. If the true MDP M is sampled from P(M), and evidence D from

M is provided to an algorithm during training, then the expected test-time return of 𝜋

is equal to its performance in the epistemic POMDP Mpo.

𝐽Mpo (𝜋) = EM∼P(M) [𝐽M(𝜋) | D] . (3.2)

In particular, the optimal policy in Mpo is Bayes-optimal for generalization to the

unknown MDP M: it receives the highest expected test-time return amongst all possible

policies.

The epistemic POMDP is based on well-understood concepts in Bayesian

reinforcement learning, and Bayesian modeling more generally. However, in contrast

to prior works on Bayesian RL, we are specifically concerned with settings where

there is a training-test split, and performance is measured by a single test episode.

While using Bayesian RL to accelerate exploration or minimize regret has been

well-explored (Ghavamzadeh et al., 2015), we rather use the Bayesian lens specifically

to understand generalization – a perspective that is distinct from prior work on
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Bayesian RL. Towards this goal, the equivalence between test-time return and

expected return in the epistemic POMDP allows us to use performance in the POMDP

as a proxy for understanding how well current RL methods can generalize.

3.5.2 Understanding Optimality in the Epistemic POMDP

We now study the structure of the epistemic POMDP, and use it to characterize

properties of Bayes-optimal test-time behavior and the sub-optimality of alternative

policy learning approaches. The majority of our results follow from well-known results

about POMDPs, so we present them here informally, with formal statements and

proofs in Appendix 3.B.

Example ctd. Acting optimally in the epistemic POMDP for the sequential

image classification task requires maximizing return over the distribution of labels

that is induced by the posterior distribution 𝑝(𝑦 |𝑥,D) = EM∼P(M|D) [1(𝑌M(𝑥) = 𝑦)]. A

deterministic policy (as is learned by standard RL algorithms) is a high-risk strategy

in the POMDP; it receives exceedingly low return if the labeller outputs a different

label than the one predicted. The Bayes-optimal generalization strategy corresponds

to a process of elimination: first choose the most likely label 𝑎 = argmax 𝑝(𝑦 |𝑥,D);

if this is incorrect, eliminate it and choose the next-most likely, repeating until the

correct label is finally chosen. Amongst memoryless policies, the optimal behavior

is stochastic, sampling actions according to the distribution 𝜋∗(𝑎 |𝑥) ∝
√︁
𝑝(𝑦 |𝑥,D)

(derivation in Appendix 3.A.2).

The characteristics of the optimal policy in the epistemic POMDP for the image

classification RL problem match well-established results that optimal POMDP policies

are generally memory-based (Monahan, 1982), and amongst memoryless policies, the

optimal policy may be stochastic (Singh et al., 1994; Montúfar et al., 2015). Because of

the equivalence between the epistemic POMDP and test-time behavior, these maxims

are also true for Bayes-optimal behavior when maximizing test-time performance.
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Remark 3.5.1. The Bayes-optimal policy for maximizing test-time performance is

in general non-Markovian. When restricted to Markovian policies, the Bayes-optimal

policy is in general stochastic.

The reason that Bayes-optimal generalization often requires memory is that the

experience collected thus far in the episode contains information about the identity of

the MDP being acted in (which is hidden from the agent observation), and to maximize

expected return, the agent must adapt its subsequent behavior to incorporate this new

information. The fact that acting optimally at test-time formally requires adaptivity

(or stochasticity for memoryless policies) highlights the difficulty of generalizing well

in RL, and provides a new perspective for understanding the success various empirical

studies have found in improving generalization performance using recurrent networks

(Akkaya et al., 2019; Peng et al., 2017) and stochastic regularization penalties (Stulp

et al., 2011; Cobbe et al., 2019; Igl et al., 2019; Lu et al., 2020).

It is useful to understand to what degree the partial observability plays a role in

determining Bayes-optimal behavior. When the partial observability is insignificant,

the epistemic POMDP objective can coincide with a surrogate MDP approximation,

and Bayes-optimal solutions can be attained with standard fully-observed RL

algorithms. For example, if there is a policy that is simultaneously optimal in every

MDP from the posterior, then an agent need not worry about the (hidden) identity

of the MDP, and just follow this policy. Perhaps surprisingly, this kind of condition

is difficult to relax: we show in Proposition 3.B.1 that even if a policy is optimal in

many (but not all) of the MDPs from the posterior, this seemingly “optimal” policy

can generalize poorly at test-time.

Moreover, under partial observability, optimal policies for the MDPs in the posterior

may differ substantially from Bayes-optimal behavior: in Proposition 3.B.2, we

show that the Bayes-optimal policy may take actions that are sub-optimal in every

environment in the posterior. These results indicate the brittleness of learning policies
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based on optimizing return in an MDP model when the agent has not yet fully resolved

the uncertainty about the true MDP parameters.

Remark 3.5.2 (Failure of MDP-Optimal Policies, Propositions 3.B.1, 3.B.2). The

expected test-time return of policies that are learned by maximizing reward in any

MDP from the posterior, as standard RL methods do, may be arbitrarily low compared

to that of Bayes-optimal behavior.

As Bayes-optimal memoryless policies are stochastic, one may wonder if simple

strategies for inducing stochasticity, such as adding 𝜀-greedy noise or entropy

regularization, can alleviate the sub-optimality that arose with deterministic policies

in the previous paragraph. In some cases, this may be true; one particularly

interesting result is that in certain goal-reaching problems, entropy-regularized RL

can be interpreted as optimizing an epistemic POMDP objective with a specific form

of posterior distribution over reward functions (Proposition 3.B.3) (Eysenbach and

Levine, 2019). For the more general setting, we show in Proposition 3.B.4 that entropy

regularization and other general-purpose techniques can similarly catastrophically fail

in epistemic POMDPs.

Remark 3.5.3 (Failure of Generic Stochasticity, Proposition 3.B.4). The expected

test-time return of policies learned with stochastic regularization techniques like

maximum-entropy RL that are agnostic of the posterior P(M|D) may be arbitrarily

low compared to that of Bayes-optimal behavior.

This failure happens because the degree of stochasticity used by the Bayes-optimal

policy reflects the agent’s epistemic uncertainty about the environment; since standard

regularizations are agnostic to this uncertainty, the learned behaviors often do not

reflect the appropriate level of stochasticity needed. A maze-solving agent acting

Bayes-optimally, for example, may choose to act deterministically in mazes like those

it has seen at training, and on others where it is less confident, rely on random
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exploration to exit the maze, inimitable behavior by regularization techniques agnostic

to this uncertainty.

Our analysis of the epistemic POMDP highlights the difficulty of generalizing well

in RL, in the complexity of Bayes-optimal policies (Remark 3.5.1) and the deficiencies

of our standard MDP-based RL algorithms (Remark 3.5.2 and Remark 3.5.3). While

MDP-based algorithms can serve as a useful starting point for acquiring generalizable

skills, learning policies that perform well in new test-time scenarios may require more

complex algorithms that attend to the epistemic POMDP structure that is implicitly

induced by the agent’s epistemic uncertainty.

3.6 Learning Policies that Generalize Well Using

the Epistemic POMDP

When the epistemic POMDP Mpo can be exactly obtained, we can learn RL policies

that generalize well to the true (unknown) MDP M by learning an optimal policy

in the POMDP. In this oracle setting, any POMDP-solving method will suffice, and

design choices like policy function classes (e.g. recurrent vs Markovian policies) or

agent representations (e.g. belief state vs PSRs) made based on the requirements of

the specific domain. However, in practice, the epistemic POMDP can be challenging to

approximate due to the difficulties of learning coherent MDP models and maintaining

a posterior over such MDP models in high-dimensional domains.

In light of these challenges, we now focus on practical methods for learning

generalizable policies when the exact posterior distribution (and therefore true

epistemic POMDP) cannot be recovered exactly. We derive an algorithm for learning

the optimal policy in the epistemic POMDP induced by an approximate posterior

distribution P̂(M|D) with finite support. We use this to motivate LEEP, a simple

ensemble-based algorithm for learning policies in the contextual MDP setting.
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3.6.1 Policy Optimization in an Empirical Epistemic POMDP

Towards a tractable algorithm, we assume that instead of the true posterior P(M|D),

we only have access to an empirical posterior distribution P̂(M|D) defined by 𝑛 MDP

samples from the posterior distribution {M𝑖}𝑖∈[𝑛] . This empirical posterior distribution

induces an empirical epistemic POMDP M̂po; our ambition is to learn the optimal

policy in this POMDP. Rather than directly learning this optimal policy as a generic

POMDP solver might, we recognize that M̂po corresponds to a collection of 𝑛 MDPs 1

and decompose the optimization problem to mimic this structure. We will learn 𝑛

policies 𝜋1, · · · , 𝜋𝑛, each policy 𝜋𝑖 in one of the MDPs M𝑖 from the empirical posterior,

and combine these policies together to recover a single policy 𝜋 for the POMDP.

Reducing the POMDP policy learning problem into a set of MDP policy learning

problems can allow us to leverage the many recent advances in deep RL for scalably

solving MDPs. The following theorem links the expected return of a policy 𝜋 in the

empirical epistemic POMDP M̂po, in terms of the performance of the policies 𝜋𝑖 on

their respective MDPs M𝑖.

Proposition 3.6.1. Let 𝜋, 𝜋1, · · · 𝜋𝑛 be memoryless , and define 𝑟max = max𝑖,𝑠,𝑎 |𝑟M𝑖
(𝑠, 𝑎) |.

The expected return of 𝜋 in M̂po is bounded below as:

𝐽
M̂po (𝜋) ⩾

1

𝑛

𝑛∑︁
𝑖=1

𝐽M𝑖
(𝜋𝑖) −

√
2𝑟max

(1 − 𝛾)2𝑛

𝑛∑︁
𝑖=1

E𝑠∼𝑑 𝜋𝑖
M𝑖

[√︁
𝐷𝐾𝐿 (𝜋𝑖 (·|𝑠) | | 𝜋(·|𝑠))

]
, (3.3)

This proposition indicates that if the policies in the collection {𝜋𝑖}𝑖∈[𝑛] all achieve

high return in their respective MDPs (first term) and are imitable by a single policy 𝜋

(second term), then 𝜋 is guaranteed to achieve high return in the epistemic POMDP.

In contrast, if the policies cannot be closely imitated by a single policy, this collection

1Note that when the true environment is a contextual MDP, the sampled MDP M𝑖 does not
correspond to a single context within a contextual MDP — each MDP M𝑖 is an entire contextual
MDP with many contexts.
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of policies may not be useful for learning in the epistemic POMDP using the lower

bound. This means that it may not sufficient to naively optimize each policy 𝜋𝑖 on its

MDP M𝑖 without any consideration to the other policies or MDPs, since the learned

policies are likely to be different and difficult to jointly imitate. To be useful for the

lower bound, each policy 𝜋𝑖 should balance between maximizing performance on its

MDP and minimizing its deviation from the other policies in the set. The following

proposition shows that if the policies are trained jointly to ensure this balance, it in

fact recovers the optimal policy in the empirical epistemic POMDP.

Proposition 3.6.2. Let 𝑓 : {𝜋𝑖}𝑖∈[𝑛] ↦→ 𝜋 be a function that maps 𝑛 policies to a single

policy satisfying 𝑓 (𝜋, · · · , 𝜋) = 𝜋 for every policy 𝜋, and let 𝛼 be a hyperparameter

satisfying 𝛼 ⩾
√
2𝑟max

(1−𝛾)2𝑛 . Then letting 𝜋∗1, . . . 𝜋
∗
𝑛 be the optimal solution to the following

optimization problem:

{𝜋∗𝑖 }𝑖∈[𝑛] = argmax
𝜋1,··· ,𝜋𝑛

1

𝑛

𝑛∑︁
𝑖=1

𝐽M𝑖
(𝜋𝑖) − 𝛼

𝑛∑︁
𝑖=1

E𝑠∼𝑑 𝜋𝑖
M𝑖

[√︁
𝐷𝐾𝐿 (𝜋𝑖 (·|𝑠) | | 𝑓 ({𝜋𝑖})(·|𝑠))

]
,

(3.4)

the policy 𝜋∗ B 𝑓 ({𝜋∗
𝑖
}𝑖∈[𝑛]) is optimal for the empirical epistemic POMDP M̂po.

3.6.2 A Practical Algorithm for Contextual MDPs: LEEP

Proposition 3.6.2 provides a foundation for a practical algorithm for learning policies

when provided training contexts Ctrain from an unknown contextual MDP. In order

to use the proposition in a practical algorithm, we must discuss two problems: how

posterior samples M𝑖 ∼ P(M|D) can be approximated, and how the function 𝑓 that

combines policies should be chosen.

Approximating the posterior distribution: Rather than directly maintaining

a posterior over transition dynamics and reward models, which is especially difficult

with image-based observations, we can approximate samples from the posterior via

a bootstrap sampling technique (Osband et al., 2016). To sample a candidate MDP
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M𝑖, we sample with replacement from the training contexts Ctrain to get a new set

of contexts C𝑖train, and define M𝑖 to be the empirical MDP on this subset of training

contexts. Rolling out trials from the posterior sample M𝑖 then corresponds to selecting

a context at random from C𝑖train, and then rolling out that context. Crucially, note

that M𝑖 still corresponds to a distribution over contexts, not a single context, since

our goal is to sample from the posterior entire contextual MDPs.

Choosing a link function: The link function 𝑓 in Proposition 3.6.2 that

combines the set of policies together effectively serves as an inductive bias: since

we are optimizing in an approximation to the true epistemic POMDP and policy

optimization is not exact in practice, different choices can yield combined policies

with different characteristics. Since optimal behavior in the epistemic POMDP must

consider all actions, even those that are potentially sub-optimal in all MDPs in the

posterior (as discussed in Section 3.5.2), we use an “optimistic” link function that does

not dismiss any action that is considered by at least one of the policies, specifically

𝑓 ({𝜋𝑖}𝑖∈[𝑛]) = (max𝑖 𝜋𝑖) (𝑎 |𝑠) B max 𝜋𝑖 (𝑎 |𝑠)∑
𝑎′max 𝜋𝑖 (𝑎′ |𝑠) .

Algorithm: We learn a set of 𝑛 policies {𝜋𝑖}𝑖∈[𝑛] , using a policy gradient algorithm

to implement the update step. To update the parameters for 𝜋𝑖, we take gradient

steps via the surrogate loss used for the policy gradient, augmented by a disagreement

Algorithm 3.1 Linked Ensembles for the Epistemic POMDP (LEEP)

1: Receive training contexts Ctrain, number of ensemble members 𝑛
2: Bootstrap sample training contexts to create C1

train, . . . C
𝑛
train, where C

𝑖
train ⊂ Ctrain.

3: Initialize 𝑛 policies: 𝜋1, . . . 𝜋𝑛
4: for iteration 𝑘 = 1, 2, 3, . . . do
5: for policy 𝑖 = 1, . . . , 𝑛 do
6: Collect environment samples in training contexts C𝑖train using policy 𝜋𝑖
7: Take gradient steps wrt 𝜋𝑖 on these samples with augmented RL loss:

𝜋𝑖 ← 𝜋𝑖 − 𝜂∇𝑖 (L𝑅𝐿 (𝜋𝑖) + 𝛼E𝑠∼𝜋𝑖 ,C𝑖train [𝐷𝐾𝐿 (𝜋𝑖 (𝑎 |𝑠)∥max
𝑗
𝜋 𝑗 (𝑎 |𝑠))])

8: Return 𝜋 = max𝑖 𝜋: 𝜋(𝑎 |𝑠) = max𝑖 𝜋𝑖 (𝑎 |𝑠)∑
𝑎′max𝑖 𝜋𝑖 (𝑎′ |𝑠) .
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penalty between the policy and the combined policy 𝑓 ({𝜋𝑖}𝑖∈[𝑛]) with a penalty

parameter 𝛼 > 0, as in Equation 3.5:

L(𝜋𝑖) = L𝑅𝐿 (𝜋𝑖) + 𝛼E𝑠∼𝜋𝑖 ,M𝑖
[𝐷𝐾𝐿 (𝜋𝑖 (𝑎 |𝑠)∥max

𝑗
𝜋 𝑗 (𝑎 |𝑠))] . (3.5)

Combining these elements together leads to our method, LEEP, which we summarize in

Algorithm 3.1. In our implementation, we use PPO for L𝑅𝐿 (𝜋𝑖) (Schulman et al., 2017).

In summary, LEEP bootstrap samples the training contexts to create overlapping

sets of training contexts C1
train, . . . C

𝑛
train. Every iteration, each policy 𝜋𝑖 generates

rollouts in training contexts chosen uniformly from its corresponding C𝑖train, and is

then updated according to Equation 3.5, which both maximizes the expected reward

and minimizes the disagreement penalty between each 𝜋𝑖 and the combined policy

𝜋 = max 𝑗 𝜋 𝑗 .

While this algorithm is structurally similar to algorithms for multi-task learning

that train a separate policy for each context or group of contexts with a disagreement

penalty (Teh et al., 2017; Ghosh et al., 2018), the motivation and the interpretation of

these approaches are completely distinct. In multi-task learning, the goal is to solve a

given set of tasks, and these methods promote transfer via a loss that encourages the

solutions to the tasks to be in agreement. In our setting, while we also receive a set of

tasks (contexts), the goal is not to maximize performance on the training tasks, but

rather to learn a policy that maximizes performance on unseen test tasks. The method

also has a subtle but important distinction: each of our policies 𝜋𝑖 acts on a sample

from the contextual MDP posterior (which captures epistemic uncertainty), not a

single training context (Teh et al., 2017) or element from a disjoint partitioning (Ghosh

et al., 2018) (which does not). This distinction is crucial, since our generalization

performance requires our aim is not to make it easier to solve the training contexts,

but the opposite: prevent the algorithm from overfitting to the individual training
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contexts. Correspondingly, our experiments confirm that such multi-task learning

approaches do not provide the same generalization benefits as our approach.

3.7 Experiments

The primary ambition of our empirical study is to test the hypothesis that policies

that are learned through (approximations of) the epistemic POMDP do in fact attain

better test-time performance than those learned by standard RL algorithms. We do

so on the Procgen benchmark (Cobbe et al., 2020), a challenging suite of diverse tasks

with image-based observations testing generalization to unseen contexts.

1. Does LEEP derived from the epistemic POMDP lead to improved test-time

performance over standard RL methods?

2. Can LEEP prevent overfitting when provided a limited number of training

contexts?

3. How do different algorithmic components of LEEP affect test-time performance?

The Procgen benchmark is a set of procedurally generated games, each with

different generalization challenges. In each game, during training, the algorithm can

interact with 200 training levels, before it is asked to generalize to the full distribution

of levels. The agent receives a 64 × 64 × 3 image observation, and must output one of

15 possible actions. We instantiate our method using an ensemble of 𝑛 = 4 policies, a

penalty parameter of 𝛼 = 1, and PPO (Schulman et al., 2017) to train the individual

policies (full implementation details in Appendix 3.C).

We evaluate our method on four games in which prior work has found a large

gap between training and test performance, and which we therefore conclude pose a

significant generalization challenge (Cobbe et al., 2020; Jiang et al., 2020; Raileanu

et al., 2020): Maze, Heist, BigFish, and Dodgeball. In Figure 3.7.1, we compare

the test-time performance of the policies learned using our method to those learned
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Figure 3.7.1: Test set return for LEEP and PPO throughout training in four Procgen environments
(averaged across 5 random seeds). LEEP achieves higher test returns than PPO on three tasks (Maze,
Heist and Dodgeball) and matches test return on Bigfish while having less variance across seeds.

by a PPO agent with entropy regularization. In three of these environments (Maze,

Heist, and Dodgeball), our method outperforms PPO by a significant margin, and in

all cases, we find that the generalization gap between training and test performance

is lower for our method than PPO (Appendix 3.D.1). To understand how LEEP

behaves with fewer training contexts, we ran on the Maze task with only 50 levels

(Figure 3.7.2 (top)); the test return of the PPO policy decreases through training,

leading to final performance worse than the starting random policy, but our method

avoids this degradation.

We perform an ablation study on the Maze and Heist environments (Maze in Figure

4, Heist in Appendix 3.D.1) to rule out potential confounding causes for the improved

generalization that our method displays on the Procgen benchmark tasks. First, to see

if the performance benefit derives solely from the use of ensembles, we compare LEEP

to a Bayesian model averaging strategy that trains an ensemble of policies without

regularization (“Ensemble (no reg)”), and uses a mixture of these policies. This
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Ablations of LEEP in Maze.
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strategy does improve performance over the PPO policy, but does not match LEEP,

indicating the usefulness of the regularization. Second, we compared to a version of

LEEP that combines the ensemble policies together using the average 1
𝑛

∑𝑛
𝑖=1 𝜋𝑖 (𝑎 |𝑠)

(“LEEP (avg)”). This link function achieves worse test-time performance than the

optimistic version, which indicates that the inductive bias conferred by the max𝑖 𝜋𝑖

link function is a useful component of the algorithm. We also compare to Distral, a

multi-task learning method with different motivations but similar structure to LEEP:

this method helps accelerate learning on the provided training contexts (figures in

Appendix 3.D.1), but does not improve generalization performance as LEEP does. We

additionally ablated the two key hyperparameters in LEEP, the number of ensemble

members 𝑛 and the penalty coefficient 𝛼 (Table in Appendix 3.D.2).

3.8 Discussion

It has often been observed experimentally that generalization in RL poses a significant

challenge, but it has so far remained an open question as to whether the RL setting

itself presents additional generalization challenges beyond those seen in supervised

learning. In this chapter, we answer this question in the affirmative, and show that,

in contrast to supervised learning, generalization in RL results in a new type of

problem that cannot be solved with standard MDP solution methods, due to partial

observability induced by epistemic uncertainty. We call the resulting partially observed

setting the epistemic POMDP, where uncertainty about the true underlying MDP

results in a challenging partially observed problem. We present a practical approximate

method that optimizes a bound for performance in an approximation of the epistemic

POMDP, and show empirically that this approach, which we call LEEP, attains

significant improvements in generalization over other RL methods that do not properly

incorporate the agent’s epistemic uncertainty into policy optimization. A limitation
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of this approach is that it optimizes a crude approximation to the epistemic POMDP

with a small number of posterior samples, and may be challenging to scale to better

approximations to the true objective. Developing algorithms that better model the

epistemic POMDP and optimize policies within is an exciting avenue for future work,

and we hope that this direction will lead to further improvements in generalization in

RL.
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Appendix

3.A FashionMNIST Classification

3.A.1 Implementation details

Environment: The RL image classification environment consists of a dataset of

labelled images. At the beginning of each episode, a new image and its corresponding

label are chosen from the dataset, and held fixed for the entire episode. Each time-step,

the agent must pick an action corresponding to one of the labels. If the picked label

is correct, the agent gets a reward of 𝑟 = 0, and the episode ends, and if the picked

label is incorrect, then the agent gets a reward of 𝑟 = −1, and the episode continues

to the next time-step (where it must guess another label for the same image). The

total return for a trajectory corresponds to the number of incorrect guesses the agent

makes for the image. We enforce a time-limit of 20 timesteps in the environment to

prevent infinite-length trajectories of incorrect guessing.

We train the agent on a dataset of 10000 FashionMNIST images subsampled from

the training set, and test on the FashionMNIST test dataset. Note that this task

is very similar, but not exactly equivalent to maximizing predictive accuracy for

supervised classification: if the episode ended regardless of whether or not the agent

was correct, then it would correspond exactly to classification.

Algorithm: We train a DQN agent on the training environment using the min-Q

update rule from TD3 (Fujimoto et al., 2018). The Q-function architecture is a
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convolutional neural network (CNN) with the architecture from Kostrikov et al

(Kostrikov, 2018). To ensure that the agent does not suffer from poor exploration

during training, the replay buffer is pre-populated with one copy of every possible

transition in the training environment (that is, where every action is taken for every

image in the training dataset). The variant labelled “Uniform after step 1” in Figure

3.4.2 follows the DQN policy for the first time-step, and if this was incorrect, then at

all subsequent time-steps, takes a random action uniformly amongst the 10 labels. For

the variant labelled “Adaptive”, we train a classifier 𝑝𝜃 (𝑦 |𝑥) on the training dataset

of images with the same architecture as the DQN agent. The adaptive agent follows a

process-of-elimination strategy; formally, the action taken by the adaptive agent at

time-step 𝑡 is given by argmax𝑎∉{𝑎1,...,𝑎𝑡−1} 𝑝𝜃 (𝑦 = 𝑎 |𝑥).

3.A.2 Derivation of Bayes-optimal policies

In the epistemic POMDP for the RL image classification problem, each episode,

an image 𝑥 ∈ X is sampled randomly from the dataset, and a label 𝑦 ∈ Y sampled

randomly for this image from the distribution 𝑝(𝑦 |𝑥,D). This label is held fixed for the

entire episode. For notation, let 𝑌 = {1, . . . , 𝑑}, so that a label distribution 𝑝(𝑦 |𝑥) can

be written as a vector in the probability simplex on R𝑑. We emphasize two settings:

𝛾 = 0 (the supervised learning setting), and 𝛾 = 1 (an RL setting), where the expected

return of an agent is the average number of incorrect guesses made.

Memory-based policy

Since the optimal memory-based policy in a POMDP is deterministic (Monahan, 1982),

we restrict ourselves to analyzing the performance of deterministic memory-based

policies. In the following we will narrow the search space even further.

Since the episode ends after the agent correctly classifies an image and the reward

structure incentives the agent to solve the task as quickly as possible, an agent acting
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optimally will never repeat the same action twice. Indeed, the agent will not have the

opportunity to repeat the right action twice because the episode would have ended

after the first time it tried it. Furthermore, trying a wrong action twice is also not

optimal as in incurs addition negative reward. Therefore, we can limit our search

space to policies that try each action once. These policies differ by the ordering in

which they try each one of these 𝑑 labels.

At the beginning of every episode, a image 𝑥 is sampled uniformly at random

among all training images and its true label 𝑦 (during that episode) is sampled from

𝑝(𝑦 |𝑥,D). Let 𝜋 be policy that tries each of the 𝑑 actions exactly once in its first 𝑑

trials. Let 𝑇𝜋𝑦 denotes the time when policy 𝜋 tries action 𝑦. Note that (𝑇𝜋𝑦 )𝑦∈Y is a

permutation. When the label chosen is 𝑦, the cumulative reward of 𝜋 for that episode

is given by 𝑟 = 𝛾
𝑇 𝜋𝑦 −1
1−𝛾 and the expected cumulative reward (across episodes) is given

by:

𝐽 (𝜋) :=
∑︁
𝑦∈Y

𝑝(𝑦 |𝑥,D) 𝛾
𝑇 𝜋𝑦 − 1
1 − 𝛾

=
1

1 − 𝛾
©­«
∑︁
𝑦∈Y

𝑝(𝑦 |𝑥,D)𝛾𝑇 𝜋𝑦 − 1ª®¬
(3.6)

From that expression, we see that in order to maximize its expected cumulative

reward, a policy 𝜋 has to maximize
∑
𝑦∈Y 𝑝(𝑦 |𝑥,D)𝛾𝑇

𝜋
𝑦 which can be interpreted as

the dot product of the vector [𝑝(𝑦 |𝑥,D)]𝑦∈Y and [𝛾𝑇 𝜋𝑦 ]𝑦∈Y. By the rearrangement

inequality, we know that this dot product is maximized when the components of the

vectors are arranged in the same ordering.

If we denote by 𝑦 (1) , . . . 𝑦 (𝑑) be the labels sorted in order of probability under the

belief distribution: 𝑝(𝑦 (1) |𝑥,D) ⩾ 𝑝(𝑦 (2) |𝑥,D) ⩾ . . . ⩾ 𝑝(𝑦 (𝑑) |𝑥,D). Since 0 < 𝛾 < 1

the rearrangement inequality implies that the expected return is maximized when

𝑇𝜋𝑦 (𝑡) = 𝑡. This corresponds to a policy that tries the labels sequentially from the most

likely to the least likely.
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Memoryless policy policy

Consider a memoryless policy that takes actions according to the distribution 𝜋(·|𝑥)

for the image 𝑥. When the true label is 𝑦 for the image 𝑥, the number of incorrect

guesses is distributed as Geom(𝑝 = 𝜋(𝑦 |𝑥)).

When the agent guesses correctly the label 𝑦 at the 𝑡−th guess then the cumulative

reward is given by 𝑟 = −1−𝛾𝑡
1−𝛾 . This happens with probability (1 − 𝜋(𝑦 | 𝑥))𝑡 × 𝜋(𝑦 | 𝑥).

The expected return for policy 𝜋 evaluated on image 𝑥 is then given by:

𝐽 (𝜋 |𝑥) = −
∑︁
𝑦∈Y

∞∑︁
𝑡=0

(1 − 𝜋(𝑦 |𝑥))𝑡𝜋(𝑦 |𝑥) 1 − 𝛾
𝑡

1 − 𝛾 𝑝(𝑦 |𝑥,D)

=
∑︁
𝑦∈Y

𝑝(𝑦 |𝑥,D) 𝜋(𝑦 | 𝑥) − 1
1 − 𝛾(1 − 𝜋(𝑦 |𝑥))

(3.7)

When 𝛾 = 0 (supervised learning problem), 𝐽 (𝜋) = ∑
𝑦∈Y 𝑝(𝑦 |𝑥,D) (𝜋(𝑦 | 𝑥) − 1) is

a linear function of 𝜋 and as expected, the optimal policy is to deterministically choose

the label with the highest probability: 𝜋∗(𝑦 | 𝑥) = 1
[
𝑦 = argmax𝑦∈Y 𝑝(𝑦 |𝑥,D)

]
.

When 𝛾 > 0, the optimal policy is the solution to a constrained optimization

problem that can be solved with Lagrange multipliers. When 𝛾 = 1, the optimal policy

can be written explicitly as:

𝜋∗(𝑦 | 𝑥) = 1

𝜆

√︁
𝑝(𝑦 |𝑥,D) (3.8)

where 𝜆 is a normalization constant.
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3.B Theoretical Results

Proposition 3.5.1. If the true MDP M is sampled from P(M), and evidence D from

M is provided to an algorithm during training, then the expected test-time return of 𝜋

is equal to its performance in the epistemic POMDP Mpo.

𝐽Mpo (𝜋) = EM∼P(M) [𝐽M(𝜋) | D] . (3.2)

In particular, the optimal policy in Mpo is Bayes-optimal for generalization to the

unknown MDP M: it receives the highest expected test-time return amongst all possible

policies.

Proof. This proposition follows directly from the definition of the epistemic POMDP. If

the MDP M is sampled from P(M) and D is witnessed, then the posterior distribution

over MDPs is given by P(M|D), and the expected test-time return of 𝜋 given the

evidence is

EM∼P(M) [𝐽M(𝜋) |D] B EM∼P(M|D) [𝐽M(𝜋)] .

In the epistemic POMDP, where an episode corresponds to randomly sampling an

MDP from P(M|D), and a single episode being evaluated in this MDP, the expected

return can be expressed identically:

𝐽Mpo (𝜋) B EM∼P(M|D) [E𝜋,M [
∞∑︁
𝑖=0

𝛾𝑡𝑟 (𝑠𝑡 , 𝑎𝑡)]] (3.9)

= EM∼P(M|D) [𝐽M(𝜋)] . (3.10)

□
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3.B.1 Optimal MDP Policies can be Arbitrarily Suboptimal

Proposition 3.B.1. Let 𝜀 > 0. There exists posterior distributions P(M|D) where a

deterministic Markov policy 𝜋 is optimal with probability at least 1 − 𝜀,

𝑃M∼P(M|D)

(
𝜋 ∈ argmax

𝜋′
𝐽M(𝜋′)

)
⩾ 1 − 𝜀, (3.11)

but is outperformed by a uniformly random policy in the epistemic POMDP: 𝐽Mpo (𝜋) <
𝐽Mpo (𝜋unif).

Proof. Consider two deterministic MDPs, M𝐴, and M𝐵 that both have two states and

two actions: “stay” and ”switch”. In both MDPs, the reward for the “stay” action

is always zero. In M𝐴 the reward for “switch” is always 1, while in M𝐵 the reward

for “switch” is −𝑐 for 𝑐 > 0. The probability of being in M𝐵 is 𝜀 while the probability

of being in M𝐴 is 1 − 𝜀. Clearly, the policy “always switch” is optimal in M𝐴 and so

is 𝜀-optimal under the distribution on MDPs. The expected discounted reward of the

“always switch” policy is:

𝐽 (𝜋always switch) = (1 − 𝜀)
1

1 − 𝛾 − 𝜀
𝑐

1 − 𝛾 (3.12)

=
1

1 − 𝛾 (1 − 𝜀 − 𝑐𝜀) (3.13)

=
1

1 − 𝛾 (1 − (𝑐 + 1)𝜀) . (3.14)
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On the other hand, we can consider a policy which selects actions uniformly at random.

In this case, the expected cumulative reward is

𝐽 (𝜋random) = (1 − 𝜀)
1

2

1

1 − 𝛾 − 𝜀
𝑐

2

1

1 − 𝛾 (3.15)

=
1

2

1

1 − 𝛾 (1 − 𝜀 − 𝑐𝜀) (3.16)

=
1

2

1

1 − 𝛾 (1 − (𝑐 + 1)𝜀) (3.17)

=
1

2
𝐽 (𝜋always switch) . (3.18)

Thus for any 𝜀 we can find a 𝑐 > 1
𝜀
− 1 such that both policies have negative expected

rewards and we prefer the random policy for being half as negative. □

3.B.2 Bayes-optimal Policies May Take Suboptimal Actions

Everywhere

We formalize the remark that optimal policies for the MDPs in the posterior distribution

may be poor guides for determining what the Bayes-optimal behavior is in the epistemic

POMDP. The following proposition shows that there are epistemic POMDPs where

the support of actions taken by the MDP-optimal policies is disjoint from the actions

taken by the Bayes-optimal policy, so no method can “combine” the optimal policies

from each MDP in the posterior to create Bayes-optimal behavior.

Proposition 3.B.2. There exist posterior distributions P(M|D) where the support

of the Bayes-optimal memoryless policy 𝜋∗po(𝑎 |𝑠) is disjoint with that of the optimal

policies in each MDP in the posterior. Formally, writing supp(𝜋(𝑎 |𝑠)) = {𝑎 ∈ A :

𝜋(𝑎 |𝑠) > 0}, then ∀M with P(M|D) > 0 and ∀𝑠:

supp(𝜋∗po(𝑎 |𝑠)) ∩ supp(𝜋∗M(𝑎 |𝑠)) = ∅
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Proof. The proof is a simple modification of the construction in Proposition 3.B.1.

Consider two deterministic MDPs, M𝐴, andM𝐵 with equal support under the posterior,

where both have two states and three actions: “stay”, ”switch 1”, and “switch 2”.

In both MDPs, the reward for the “stay” action is always zero. In M𝐴 the reward

for “switch” is always 1, while in M𝐵 the reward for “switch” is −2. The reward

structure for “switch 2” is flipped: in M𝐴, the reward for “switch 2” is −2, and in M𝐵,

the reward is 1. Then, the policy “always switch” is optimal in M𝐴, and the policy

“always switch 2” is optimal in M𝐵. However, any memoryless policy that takes either

of these actions receives negative reward in the epistemic POMDP, and is dominated

by the Bayes-optimal memoryless policy “always stay”, which achieves 0 reward. □

3.B.3 MaxEnt RL is Optimal for a Choice of Prior

We describe a special case of the construction of Eysenbach and Levine (Eysenbach and

Levine, 2019), which shows that maximum-entropy RL in a bandit problem recovers

the Bayes-optimal POMDP policy in an epistemic POMDP similar to that described

in the RL image classification task.

Consider the family of MDPs {M𝑘 }𝑘∈[𝑛] each with one state and 𝑛 actions, where

taking action 𝑘 in MDP M𝑘 yields zero reward and the episode ends, and taking any

other action yields reward −1 and the episode continues. Effectively, M𝑘 corresponds

to a first-exit problem with “goal action” 𝑘. Note that this MDP structure is exactly

what we have for the RL image classification task for a single image. Also consider the

surrogate bandit MDP M̂, also with one state and 𝑛 actions, but in which taking action

𝑘 yields reward 𝑟𝑘 with immediate episode termination. The following proposition

shows that running max-ent RL in M̂ recovers the optimal memoryless policy in a

particular epistemic POMDP supported on {M𝑘 }𝑘∈[𝑛] .
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Proposition 3.B.3. Let 𝜋∗ = argmax𝜋∈Π 𝐽M̂(𝜋) + H(𝜋) be the max-ent solution

in the surrogate bandit MDP M̂. Define the distribution P(M|D) on {M𝑘 }𝑘∈[𝑛] as

P(M𝑘 |D) = exp(2𝑟𝑘)∑
𝑗 exp(2𝑟 𝑗 ) . Then, 𝜋 is the optimal memoryless policy in the epistemic

POMDP Mpo defined by P(M|D).

Proof. See Eysenbach and Levine (Eysenbach and Levine, 2019, Lemma 4.1). The

optimal policy 𝜋∗ is given by 𝜋∗(𝑎 = 𝑘) = exp(𝑟𝑘)∑
𝑗 exp(𝑟 𝑗 ) . We know from Appendix 3.A.2

that this policy is optimal for epistemic POMDP Mpo when 𝛾 = 1. □

If allowing time-varying reward functions, this construction can be extended

beyond “goal-action taking” epistemic POMDPs to the more general “goal-state

reaching” setting in an MDP, where the agent seeks to reach a specific goal state, but

the identity of the goal state hidden from the agent (Eysenbach and Levine, 2019,

Lemma 4.2).

3.B.4 Failure of MaxEnt RL and Uncertainty-Agnostic

Regularizations

We formalize the remark made in the main text that while the Bayes-optimal

memoryless policy is stochastic, methods that promote stochasticity in an

uncertainty-agnostic manner can fail catastrophically. We begin by explaining

the significance of this result: it is well-known that stochastic policies can be

arbitrarily sub-optimal in a single MDP, and can be outperformed by deterministic

policies. The result we describe is more subtle than this: there are epistemic

POMDPs where any attempt at being stochastic in an uncertainty-agnostic manner

is sub-optimal, and also any attempt at acting completely deterministically is also

sub-optimal. Rather, the characteristic of Bayes-optimal behavior is to be stochastic

in some states (where it has high uncertainty), and not stochastic in others, and a
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Figure 3.B.1: Visual description of Binary Tree MDPs described in proof of Proposition
3.B.4 with depth 𝑛 = 3.

useful stochastic regularization method must modulate the level of stochasticity to

calibrate with regions where it has high epistemic uncertainty.

Proposition 3.B.4. Let 𝛼 > 0, 𝑐 > 0. There exist posterior distributions P(M|D),

where the Bayes-optimal memoryless policy 𝜋∗po is stochastic. However, every

memoryless policy 𝜋𝑠 that is “everywhere-stochastic”, in that ∀𝑠 ∈ S : H(𝜋𝑠 (𝑎 |𝑠)) > 𝛼,

can have performance arbitrarily close to the uniformly random policy:

𝐽 (𝜋𝑠) − 𝐽 (𝜋unif)
𝐽 (𝜋∗po) − 𝐽 (𝜋unif)

< 𝑐

Proof. Consider two binary tree MDP with 𝑛 levels, M1 and M2. A binary tree MDP,

visualized in Figure 3.B.1, has 𝑛 levels, where level 𝑘 has 2𝑘 states. On any level

𝑘 < 𝑛, the agent can take a “left” action or a “right” action, which transitions to the

corresponding state in the next level. On the final level, if the state corresponds to

the terminal state (in green), then the agent receives a reward of 1, and the episode

exits, and otherwise a reward of 0, and the agent returns to the top of the binary tree.

The two binary tree MDPs M1 and M2 are identical except for the final terminal

state: in M1, the terminal state is the left-most state in the final level, and in M2, the

terminal state is the right-most state. Reaching the goal in M1 corresponds to taking
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the “left” action repeatedly, and reaching the goal in M2 corresponds to taking the

“right” action repeatedly. We consider the posterior distribution that places equal mass

on M1 and M2, P(M1 |D) = P(M2 |D) = 1
2 . A policy that reaches the correct terminal

state with probability 𝑝 (otherwise reset) will visit the initial state a Geom(𝑝) number

of times, and writing 𝛾 B 𝛾𝑛, will achieve return 𝛾𝑝

1−𝛾+𝑝𝛾 = 1

1+ 1
𝑝

1−𝛾
𝛾

.

Uniform policy: A uniform policy randomly chooses between “left” and “right” at

all states, and will reach all states in the final level equally often, so the probability it

reaches the correct goal state is 1
2𝑛 . Therefore, the expected return is 𝐽 (𝜋unif) = 1

1+2𝑛 1−𝛾
𝛾

.

Bayes-optimal memoryless policy: The Bayes-optimal memoryless policy 𝜋∗po

chooses randomly between “left” and “right” at the top level; on every subsequent

level, if the agent is in the left half of the tree, the agent deterministically picks “left”

and on the right half of the tree, the agent deterministically picks “right”. Effectively,

this policy either visits the left-most state or the right-most state in the final level.

The Bayes-optimal memoryless policy returns to the top of the tree a Geom(𝑝 = 1
2 )

number of times, and the expected return is given by 𝐽 (𝜋∗po) = 1

1+2 1−𝛾
𝛾

.

Everywhere-stochastic policy: Unlike the Bayes-optimal policy, which is

deterministic in all levels underneath the first, an everywhere-stochastic policy

will sometimes take random actions at these lower levels, and therefore can reach

states at the final level that are neither the left-most or right-most states (and

therefore always bad). We note that if H(𝜋(𝑎 |𝑠)) > 𝛼, then there is some 𝛽 > 0 such

that max𝑎 𝜋(𝑎 |𝑠) < 1 − 𝛽. For an 𝛼-everywhere stochastic policy, the probability of

taking at least one incorrect action increases as the depth of the binary tree grows,

getting to the correct goal at most probability 1
2 (1 − 𝛽)

𝑛−1. The maximal expected

return is therefore 𝐽 (𝜋𝑠) ⩽ 1

1+2( 1
1−𝛽 )𝑛−1

1−𝛾
𝛾

𝐽 (𝜋∗po) = 1

1 + 21−𝛾
𝛾

𝐽 (𝜋𝑠) =
1

1 + 2( 1
1−𝛽 )𝑛−1

1−𝛾
𝛾

𝐽 (𝜋unif) =
1

1 + 2𝑛 1−𝛾
𝛾
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As 𝑛 → ∞, 𝐽 (𝜋∗po), 𝐽 (𝜋𝑠) and 𝐽 (𝜋unif) will converge to zero. Using asymptotic

analysis we can determine their speed of convergence and find that:

𝐽 (𝜋∗po) ∼ 𝛾
2

𝐽 (𝜋𝑠) ∼
𝛾

2( 1
1−𝛽 )𝑛−1

𝐽 (𝜋unif) ∼
𝛾

2𝑛

Using these asymptotics, we find that

𝐽 (𝜋𝑠) − 𝐽 (𝜋unif)
𝐽 (𝜋∗po) − 𝐽 (𝜋unif)

∼ 1

( 1
1−𝛽 )𝑛−1

= (1 − 𝛽)𝑛−1,

which shows that this ratio can be made arbitrarily small as we increase 𝑛. □

An aside: deterministic policies While this proposition only discusses the failure

mode of stochastic policies, all deterministic memoryless policies in this environment

also fail. A deterministic policy 𝜋𝑑 in this environment continually loops through

one path in the binary tree repeatedly, and therefore will only ever reach one goal

state, unlike the Bayes-optimal policy which visits both possible goal states. The best

deterministic policy then either constantly takes the “left” action (which is optimal

for M1), or constantly takes the “right” action (which is optimal for M2). Any other

deterministic policy reaches a final state that is neither the left-most nor the right-most

state, and will always get 0 reward. The expected return of the optimal deterministic

policy is 𝐽 (𝜋𝑑) = 𝛾

2 , receiving 𝛾 reward in one of the MDPs, and 0 reward in the

other. When the discount factor 𝛾 is close to 1, the maximal expected return of a

deterministic policy is approximately 1
2 , while the expected return of the Bayes-optimal

policy is approximately 1, indicating a sub-optimality gap.

□

3.B.5 Proof of Proposition 3.6.1

Proposition 3.6.1. Let 𝜋, 𝜋1, · · · 𝜋𝑛 be memoryless , and define 𝑟max = max𝑖,𝑠,𝑎 |𝑟M𝑖
(𝑠, 𝑎) |.

The expected return of 𝜋 in M̂po is bounded below as:

105



𝐽
M̂po (𝜋) ⩾

1

𝑛

𝑛∑︁
𝑖=1

𝐽M𝑖
(𝜋𝑖) −

√
2𝑟max

(1 − 𝛾)2𝑛

𝑛∑︁
𝑖=1

E𝑠∼𝑑 𝜋𝑖
M𝑖

[√︁
𝐷𝐾𝐿 (𝜋𝑖 (·|𝑠) | | 𝜋(·|𝑠))

]
, (3.3)

Proof. Before we begin, we recall some basic tools from analysis of MDPs. For a

memoryless policy 𝜋, the state-action value function 𝑄𝜋 (𝑠, 𝑎) is given by:

𝑄𝜋 (𝑠, 𝑎) = E𝜋 [
∑︁
𝑡⩾0

𝛾𝑡𝑟 (𝑠𝑡 , 𝑎𝑡) |𝑠0 = 𝑠, 𝑎0 = 𝑎] . (3.19)

The advantage function 𝐴𝜋 (𝑠, 𝑎) is defined as:

𝐴𝜋 (𝑠, 𝑎) = 𝑄𝜋 (𝑠, 𝑎) − E𝑎∼𝜋(·|𝑠) [𝑄𝜋 (𝑠, 𝑎)] . (3.20)

The performance difference lemma (Kakade and Langford, 2002) relates the expected

return of two policies 𝜋 and 𝜋′ in an MDP M via their advantage functions as

𝐽M(𝜋′) = 𝐽M(𝜋) +
1

1 − 𝛾E𝑠∼𝑑 𝜋
′

M
[E𝑎∼𝜋′ [𝐴𝜋M(𝑠, 𝑎)]] . (3.21)

We now begin the derivation of our lower bound:

𝐽
M̂po (𝜋) =

1

𝑛

𝑛∑︁
𝑖=1

𝐽M𝑖
(𝜋)

=
1

𝑛

𝑛∑︁
𝑖=1

𝐽M𝑖
(𝜋𝑖) +

1

𝑛

𝑛∑︁
𝑖=1

[
𝐽M𝑖
(𝜋) − 𝐽M𝑖

(𝜋𝑖)
]

=
1

𝑛

𝑛∑︁
𝑖=1

𝐽M𝑖
(𝜋𝑖) −

1

𝑛(1 − 𝛾)

𝑛∑︁
𝑖=1

E𝑠∼𝑑 𝜋𝑖
M𝑖

[
E𝑎∼𝜋𝑖

[
𝐴𝜋M𝑖
(𝑠, 𝑎)

] ]
=
1

𝑛

𝑛∑︁
𝑖=1

𝐽M𝑖
(𝜋𝑖) −

1

𝑛(1 − 𝛾)

𝑛∑︁
𝑖=1

E𝑠∼𝑑 𝜋𝑖
M𝑖

[
E𝑎∼𝜋𝑖

[
𝐴𝜋M𝑖
(𝑠, 𝑎)

]
− E𝑎∼𝜋

[
𝐴𝜋M𝑖
(𝑠, 𝑎)

] ]
(3.22)
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In the last equality we used the fact that E𝑎∼𝜋 [𝐴𝜋 (𝑠, 𝑎)] = 0. From there we proceed

to derive a lower bound:

𝐽
M̂po (𝜋) =

1

𝑛

𝑛∑︁
𝑖=1

𝐽M𝑖
(𝜋𝑖) −

1

𝑛(1 − 𝛾)

𝑛∑︁
𝑖=1

E𝑠∼𝑑 𝜋𝑖
M𝑖

[
E𝑎∼𝜋𝑖

[
𝐴𝜋M𝑖
(𝑠, 𝑎)

]
− E𝑎∼𝜋

[
𝐴𝜋M𝑖
(𝑠, 𝑎)

] ]
⩾

1

𝑛

𝑛∑︁
𝑖=1

𝐽M𝑖
(𝜋𝑖) −

2𝑟𝑚𝑎𝑥
𝑛(1 − 𝛾)2

𝑛∑︁
𝑖=1

E𝑠∼𝑑 𝜋𝑖
M𝑖

[𝐷𝑇𝑉 (𝜋𝑖 (· | 𝑠); 𝜋(· | 𝑠))]

⩾
1

𝑛

𝑛∑︁
𝑖=1

𝐽M𝑖
(𝜋𝑖) −

√
2𝑟𝑚𝑎𝑥

(1 − 𝛾)2𝑛

𝑛∑︁
𝑖=1

E𝑠∼𝑑 𝜋𝑖
M𝑖

[√︁
𝐷𝐾𝐿 (𝜋𝑖 (· | 𝑠) | | 𝜋(· | 𝑠))

]
(3.23)

where the first inequality is since |𝐴𝜋
M𝑖
(𝑠, 𝑎) | ⩽ 𝑟max

1−𝛾 and the second from Pinsker’s

inequality. Our intention in this derivation is not to obtain the tighest lower bound

possible, but rather to illustrate how bounding the advantage can lead to a simple lower

bound on the expected return in the POMDP. The inequality can be made tighter

using other bounds on |𝐴𝜋
M𝑖
(𝑠, 𝑎) |, for example using 𝐴max = max𝑖,𝑠,𝑎 |𝐴𝜋M𝑖

(𝑠, 𝑎) |, or

potentially a bound on the advantage that varies across state. □

3.B.6 Proof of Proposition 3.6.2

Proposition 3.6.2. Let 𝑓 : {𝜋𝑖}𝑖∈[𝑛] ↦→ 𝜋 be a function that maps 𝑛 policies to a single

policy satisfying 𝑓 (𝜋, · · · , 𝜋) = 𝜋 for every policy 𝜋, and let 𝛼 be a hyperparameter

satisfying 𝛼 ⩾
√
2𝑟max

(1−𝛾)2𝑛 . Then letting 𝜋∗1, . . . 𝜋
∗
𝑛 be the optimal solution to the following

optimization problem:

{𝜋∗𝑖 }𝑖∈[𝑛] = argmax
𝜋1,··· ,𝜋𝑛

1

𝑛

𝑛∑︁
𝑖=1

𝐽M𝑖
(𝜋𝑖) − 𝛼

𝑛∑︁
𝑖=1

E𝑠∼𝑑 𝜋𝑖
M𝑖

[√︁
𝐷𝐾𝐿 (𝜋𝑖 (·|𝑠) | | 𝑓 ({𝜋𝑖})(·|𝑠))

]
,

(3.4)

the policy 𝜋∗ B 𝑓 ({𝜋∗
𝑖
}𝑖∈[𝑛]) is optimal for the empirical epistemic POMDP M̂po.
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Proof. By Proposition 3.6.1 we have that ∀𝛼 ⩾
√
2𝑟max

(1−𝛾)2𝑛 :

𝐽
M̂po ( 𝑓 ({𝜋∗𝑖 })) ⩾

1

𝑛

𝑛∑︁
𝑖=1

𝐽M𝑖
(𝜋∗𝑖 ) − 𝛼

𝑛∑︁
𝑖=1

E
𝑠∼𝑑

𝜋∗
𝑖

M𝑖

[√︃
𝐷𝐾𝐿

(
𝜋∗
𝑖
(·|𝑠) | | 𝑓 ({𝜋∗

𝑖
})(·|𝑠)

) ]
.

(3.24)

Now, write 𝜋′∗ ∈ argmax𝜋 𝐽M̂po (𝜋) to be an optimal policy in the empirical epistemic

POMDP, and consider the collection of policies {𝜋′∗, 𝜋′∗, . . . , 𝜋′∗}. Since {𝜋∗
𝑖
} is the

optimal solution to Equation 3.4, we have

𝐽
M̂po ( 𝑓 ({𝜋∗𝑖 })) ⩾

1

𝑛

𝑛∑︁
𝑖=1

𝐽M𝑖
(𝜋′∗) − 𝛼

𝑛∑︁
𝑖=1

E𝑠∼𝑑 𝜋′∗
M𝑖

[√︁
𝐷𝐾𝐿 (𝜋′∗(·|𝑠) | | 𝑓 ({𝜋′∗})(·|𝑠))

]
=
1

𝑛

𝑛∑︁
𝑖=1

𝐽M𝑖
(𝜋′∗)

= 𝐽
M̂po (𝜋′∗),

(3.25)

where the second line here uses the fact that 𝑓 (𝜋′∗, . . . , 𝜋′∗) = 𝜋′∗. Therefore 𝜋∗ B

𝑓 ({𝜋∗
𝑖
}) is optimal for the empirical epistemic POMDP. □
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3.C Procgen Implementation and Experimental

Setup

We follow the training and testing scheme defined by Cobbe et al. (Cobbe et al., 2020)

for the Procgen benchmarks: the agent trains on a fixed set of levels, and is tested

on the full distribution of levels. Due to our limited computational budget, we train

on the so-called “easy” difficulty mode using the recommended 200 training levels.

Nonetheless, many prior work has found a significant generalization gap between test

and train performance even in this easy setting, indicating it a useful benchmark

for generalization (Cobbe et al., 2020; Raileanu et al., 2020; Jiang et al., 2020). We

implemented LEEP on top of an existing open-source codebase released by Jiang et

al. (Jiang et al., 2020). Full code is provided in the supplementary for reference.

LEEP maintains 𝑛 = 4 policies {𝜋𝑖}𝑖∈[𝑛] , each parameterized by the ResNet

architecture prescribed by Cobbe et al. (2020). In LEEP, each policy is optimized

to maximize the entropy-regularized PPO surrogate objective alongside a one-step

KL divergence penalty between itself and the linked policy max𝑖 𝜋𝑖; gradients are not

taken through the linked policy.

E𝜋𝑖 [min(𝑟𝑡 (𝜋)𝐴𝜋 (𝑠, 𝑎), clip(𝑟𝑡 (𝜋), 1 − 𝜀, 1 + 𝜀) 𝐴𝜋 (𝑠, 𝑎) + 𝛽H(𝜋𝑖 (𝑎 |𝑠))

− 𝛼𝐷𝐾𝐿 (𝜋𝑖 (𝑎 |𝑠)∥max
𝑗
𝜋 𝑗 (𝑎 |𝑠))]

Note that this update in Equation 6 is not exactly solving the optimization problem

dictated by Equation 5, since it leverages a one-step estimator for the gradient of the

KL penalty in the PG objective, a heuristic known to lead to better optimization in

PPO and other deep policy gradient methods. If the proper estimator for the KL

penalty is substituted in, then the Bayes-optimal policy in the empirical epistemic

POMDP is an optimal solution for Equation 6.
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The penalty hyperparameter 𝛼 was obtained by performing a hyperparameter

search on the Maze task for all the comparison methods (including LEEP) amongst

𝛼 ∈ [0.01, 0.1, 1.0, 10.0]. Since LEEP trains 4 policies using the same environment

budget as a single PPO policy, we change the number of environment steps per PPO

iteration from 16384 to 4096, so that the PPO baseline and each policy in our method

takes the same number of PPO updates. All other PPO hyperparameters are taken

directly from Jiang et al. (2020).

In our implementation, we parallelize training of the policies across GPUs, using

one GPU for each policy. We found it infeasible to run more ensemble members due

to GPU memory constraints without significant slowdown in wall-clock time. Running

LEEP on one Procgen environment for 50 million steps requires approximately 5 hrs

in our setup on a machine with four Tesla T4 GPUs.
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3.D Procgen Results

3.D.1 Main Experimental Results

Figure 3.D.1: Training (top) and test (bottom) returns for LEEP and PPO on four
Procgen environments. Results averaged across 5 random seeds. LEEP achieves equal
or higher training return compared to PPO, while having a lower generalization gap
between test and training returns.
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Figure 3.D.2: Training and test returns for various ablations and comparisons of
LEEP.
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Figure 3.D.3: Performance of LEEP and PPO as the number of training levels provided
varies. While the learned performance of the PPO policy is worse than a random policy
with less training levels, LEEP avoids this overfitting and in general, demonstrates a
smaller train-test performance gap than PPO.

3.D.2 Ablations of LEEP Hyperparameters

Number of ensemble members (n): We ran an ablation study on the Procgen

Maze task to understand how the number of ensemble members affects the performance

of LEEP. We found that for an equal number of gradient steps per ensemble member,

LEEP does equally well with 𝑛 = 4 and 8 ensemble members, but poorly with only

1 or 2 ensemble members (see Figure attached). These results indicate that at least

on the Maze task, using n=4 ensemble members is an appropriate balance between

approximating the true epistemic POMDP with higher fidelity and minimizing the

sample complexity incurred by needing to train more ensemble members with on-policy

RL methods.

# Ensemble members (n) 1 2 4 8

Maze 5.11 ± 0.24 5.85 ± 0.4 6.53 ± 0.12 6.91 ± 0.1
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Penalty coefficient (𝛼): We performed a coarse hyperparameter sweem on the

four Procgen domains, testing values 𝛼 ∈ 10{−2,−1,0,1,2}. The results in the table

below indicated that performance is roughly coniststent for 𝛼 = {0.1, 1, 10}, so while

performance does depend on this hyperparameter, it is not overly sensitive, and values

around 1 are likely to be a good default initialization.

Penalty parameter(𝛼) 0 0.01 0.1 1 10 100

Maze 5.78 5.725 5.94 ± 0.22 6.53 ± 0.12 6.54 ± 0.15 5.7

Heist 3.3 3.4 3.2 ± 0.6 3.73 ± 0.45 3.65 ± 0.5 3.15

Bigfish 1.57 2.35 2.85 ± 0.64 4.16 ± 0.42 3.30 ± 0.38 1.21

Dodgeball 0.65 0.94 0.78 ± 0.2 1.69 ± 0.18 1.42 ± 0.4 1.64

3.D.3 LEEP and implicit partial observability

One common confusion that may arise is that LEEP seeks to overcome partial

observability of the contexts, as is done for dynamics generalization in POMDPs

(e.g. (Lee et al., 2020b)). This is not the case. Works on dynamics generalization

in POMDPs assume that contexts in the true underlying environment are partially

observable (e.g. friction coefficients unobserved by a robot without the proper sensors),

and the aim to infer this context using memory. In the epistemic POMDP, the

context is not partially observable; rather, what is partially observable is how the

system dynamics will behave for any provided context, capturing the agent’s epistemic

uncertainty that stems from the limited training contexts.

We conducted a didactic experiment on Procgen to empirically support the claim

that the partial observability modelled by dynamics generalization methods Lee et al.

(2020b) does not replace explicit handling of epistemic uncertainty provided by our

method (since this is a different problem). We train a recurrent context encoder that

takes in the trajectory seen so far and predicts the identity of the training level. The
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last hidden layer of this encoder is taken as a “context vector” and fed in as input

into a policy alongside the original state, creating an adaptive recurrent policy since

this context vector can change through a trajectory. We tested this model on our

four Procgen tasks, and made two observations. First, the learned policy, despite

being recurrent, does not achieve higher test-time performance than PPO. This is not

surprising, because the task is fully observed at training-time. Second, the learned

context encoder is able to predict the identity of the training level with > 99% accuracy;

that is, the contexts are fully observed and so mechanisms that try to predict the

context are unlikely to provide benefit.

The issue is that recurrency and adaptation by themselves are not sufficient

to ensure high generalization performance; rather they must be combined with

the appropriate model of partial observability that captures the agent’s epistemic

uncertainty (for LEEP, by statistical bootstrapping on the set of training contexts) to

achieve good generalization.

Test Return after 25M steps Maze Heist Bigfish Dodgeball

PPO 5.11 ± 0.24 2.84 ± 0.46 3.89 ± 1.64 1.68 ± 0.33

PPO + Recurrent Context Encoder 5.25 ± 0.5 2.83 ± 1.04 2.74 ± 1.1 1.57 ± 0.3

LEEP 6.53 ± 0.12 3.73 ± 0.45 4.16 ± 0.42 1.69 ± 0.18
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Part II

Auction Design
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Chapter 4

A Permutation-Equivariant Neural

Network Architecture For Auction

Design

Designing an incentive compatible auction that maximizes expected revenue is a

central problem in Auction Design. Theoretical approaches to the problem have hit

some limits in the past decades and analytical solutions are known for only a few

simple settings. Computational approaches to the problem through the use of LPs

have their own set of limitations. Building on the success of deep learning, a new

approach was recently proposed by Duetting et al. (2019) in which the auction is

modeled by a feed-forward neural network and the design problem is framed as a

learning problem. The neural architectures used in that work are general purpose

and do not take advantage of any of the symmetries the problem could present, such

as permutation equivariance. In this chapter, we consider auction design problems

that have permutation-equivariant symmetry and construct a neural architecture that

is capable of perfectly recovering the permutation-equivariant optimal mechanism,

which we show is not possible with the previous architecture. We demonstrate that
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permutation-equivariant architectures are not only capable of recovering previous

results, they also have better generalization properties.

4.1 Introduction

Designing truthful auctions is one of the core problems that arise in economics.

Concrete examples of auctions include sales of treasury bills, art sales by Christie’s or

Google Ads. Following seminal work of Vickrey (Vickrey, 1961) and Myerson (Myerson,

1981), auctions are typically studied in the independent private valuations model:

each bidder has a valuation function over items, and their payoff depends only on

the items they receive. Moreover, the auctioneer knows aggregate information about

the population that each bidder comes from, modeled as a distribution over valuation

functions, but does not know precisely each bidder’s valuation. Auction design is

challenging since the valuations are private and bidders need to be encouraged to

report their valuations truthfully. The auctioneer aims at designing an incentive

compatible auction that maximizes revenue.

While auction design has existed as a subfield of economic theory for several

decades, complete characterizations of the optimal auction only exist for a few settings.

Myerson resolved the optimal auction design problem when there is a single item for

sale (Myerson, 1981). However, the problem is not completely understood even in

the extremely simple setting with just a single bidder and two items. While there

have been some partial characterizations (Manelli and Vincent, 2006, 2010; Pavlov,

2011; Wang and Tang, 2014; Daskalakis et al., 2017), and algorithmic solutions with

provable guarantees (Alaei, 2011; Alaei et al., 2012, 2013; Cai et al., 2012a,b), neither

the analytic nor algorithmic approach currently appears tractable for seemingly small

instances.
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Another line of work to confront this theoretical hurdle consists in building

automated methods to find the optimal auction. Early works (Conitzer and Sandholm,

2002, 2004) framed the problem as a linear program. However, this approach suffers

from severe scalablility issues as the number of constraints and variables is exponential

in the number of bidders and items (Guo and Conitzer, 2010). Later, Sandholm

and Likhodedov (2015) designed algorithms to find the optimal auction. While

scalable, they are however limited to specific classes of auctions known to be incentive

compatible.

A more recent research direction consists in building deep learning architectures

that design auctions from samples of bidder valuations. Duetting et al. (2019) proposed

RegretNet, a feed-forward architecture to find near-optimal results in several known

multi-item settings and obtain new mechanisms in unknown cases. This architecture

however is not data efficient and can require a large number of valuation samples to

learn an optimal auction in some cases. This inefficiency is not specific to RegretNet

but is characteristic of neural network architectures that do not incorporate any

inductive bias.

In this chapter, we build a deep learning architecture for multi-bidder symmetric

auctions. These are auctions which are invariant to relabeling the items or bidders.

More specifically, such auctions are anonymous (in that they can be executed without

any information about the bidders, or labeling them) and item-symmetric (in that it

only matters what bids are made for an item, and not its a priori label).

It is now well-known that when bidders come from the same population that the

optimal auction itself is anonymous. Similarly, if items are a priori indistinguishable

(e.g. different colors of the same car — individuals certainly value a red vs. blue car

differently, but there is nothing objectively more/less valuable about a red vs. blue

car), the optimal auction is itself item-symmetric. In such settings, our approach will

approach the true optimum in a way which retains this structure (see Contributions
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below). Even without these conditions, the optimal auction is often symmetric anyway:

for example, “bundling together” (the auction which allows bidders to pay a fixed

price for all items, or receive nothing) is item-symmetric, and is often optimal even

when the items are a priori distinguishable.

Beyond their frequent optimality, such auctions are desirable objects of study even

when they are suboptimal. For example, seminal work of Hartline and Roughgarden

which pioneered the study of “simple vs. optimal auctions” analyzes the approximation

guarantees achievable by anonymous auctions Hartline and Roughgarden (2009),

and exciting recent work continues to improve these guarantees Alaei et al.

(2015); Jin et al. (2019b,a). Similarly, Daskalakis and Weinberg (2012) develop

algorithms for item-symmetric instances, and exciting recent work show how to

leverage item-symmetric to achieve near-optimal auctions in completely general

settings (Kothari et al., 2019). To summarize: symmetric auctions are known to be

optimal in many settings of interest (even those which are not themselves symmetric).

Even in settings where they are not optimal, they are known to yield near-optimal

auctions. And even when they are only approximately optimal, seminal work has

identified them as important objects of study owing to their simplicity. In modern

discussion of auctions, they are also desirable due to fairness considerations.

While applying existing feed-forward architectures as RegretNet to symmetric

auctions is possible, we show in Section 4.3 that RegretNet struggles to find symmetric

auctions, even when the optimum is symmetric. To be clear, the architecture’s

performance is indeed quite close to optimal, but the resulting auction is not “close to

symmetric”. This chapter proposes an architecture that outputs a symmetric auction

symmetry by design.
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Contributions

This chapter identifies three drawbacks from using the RegretNet architecture when

learning with symmetric auctions. First, RegretNet is incapable of finding symmetric

auctions when the optimal mechanism is known to be symmetric. Second, RegretNet

is sample inefficient, which is not surprising since the architecture does not incorporate

any inductive bias. Third, RegretNet is incapable of generalizing to settings with a

different number of bidders of objects. In fact, by construction, the solution found by

RegretNet can only be evaluated on settings with exactly the same number of bidders

and objects of the setting it was trained on.

We address these limitations by proposing a new architecture EquivariantNet,

that outputs symmetric auctions. EquivariantNet is an adaption of the deep sets

architecture (Hartford et al., 2018) to symmetric auctions. This architecture is

parameter-efficient and is able to recover some of the optimal results in the symmetric

auctions literature. Our approach outlines three important benefits:

– Symmetry : our architecture outputs a symmetric auction by design. It is immune

to permutation-sensitivity as defined in Section 4.3.1 which is related to fairness.

– Sample generalization: Because we use domain knowledge, our architecture

converges to the optimum with fewer valuation samples.

– Out-of-setting generalization: Our architecture does not require hard-coding

the number of bidders or items during training — training our architecture

on instances with 𝑛 bidders and 𝑚 items produces a well-defined auction even

for instances with 𝑛′ bidders and 𝑚′ items. Somewhat surprisingly, we show

in 4.4 some examples where our architecture trained on 1 bidder with 5 items

generalizes well even to 1 bidder and 𝑚 items, for any 𝑚 ∈ {2, 10}.

We highlight that the novelty of this work is not to show that a new architecture is a

viable alternative to RegretNet. Instead we are solving three fundamental limitations
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we identified for the RegretNet architecture. These three problems are not easy to

solve in principle, it is surprising that a change of architecture solves all of them

in the context of symmetric auctions. We would also like to emphasize that both

RegretNet and EquivariantNet are capable of learning auction with near optimal

revenue and negligible regret. It is not possible to significantly outperform RegretNet

on these aspects. The way we improve over RegretNet is by having better sample

efficiency, out-of-setting generalization and by ensuring that our solutions are exactly

equivariant.

The chapter decomposes as follows. Section 4.2 introduces the standard notions

of auction design. Section 4.3 presents our permutation-equivariant architecture to

encode symmetric auctions. Finally, Section 4.4 presents numerical evidence for the

effectiveness of our approach.

Related work

Auction design and machine learning. Machine learning and computational

learning theory have been used in several ways to design auctions from samples of

bidder valuations. Some works have focused sample complexity results for designing

optimal revenue-maximizing auctions. This has been established in single-parameter

settings (Dhangwatnotai et al., 2015; Cole and Roughgarden, 2014; Morgenstern and

Roughgarden, 2015; Medina and Mohri, 2014; Huang et al., 2018; Devanur et al., 2016;

Hartline and Taggart, 2019; Roughgarden and Schrijvers, 2016; Gonczarowski and

Nisan, 2017; Guo et al., 2019), multi-item auctions (Dughmi et al., 2014; Gonczarowski

and Weinberg, 2018), combinatorial auctions (Balcan et al., 2016; Morgenstern and

Roughgarden, 2016; Syrgkanis, 2017) and allocation mechanisms (Narasimhan and

Parkes, 2016). Machine learning has also been used to optimize different aspects of

mechanisms (Lahaie, 2011; Dütting et al., 2015). All these aforementioned differ from

ours as we resort to deep learning for finding optimal auctions.
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Auction design and deep learning. While Duetting et al. (2019) is the first

paper to design auctions through deep learning, several other paper followed-up this

work. Feng et al. (2018) extended it to budget constrained bidders, Golowich et al.

(2018) to the facility location problem. Tacchetti et al. (2019) built architectures based

on the Vickrey-Clarke-Groves auctions. Recently, Shen et al. (2019) and Duetting

et al. (2019) proposed architectures that exactly satisfy incentive compatibility but

are specific to single-bidder settings. In this work, we aim at multi-bidder settings

and build permutation-equivariant networks that return nearly incentive compatibility

symmetric auctions.

4.2 Symmetries and learning problem in auction

design

We review the framework of auction design and the problem of finding truthful

mechanisms. We then present symmetric auctions and similarly to Duetting et al.

(2019), frame auction design as a learning problem.

4.2.1 Auction design and symmetries

Auction design. We consider the setting of additive auctions with 𝑛 bidders with

𝑁 = {1, . . . , 𝑛} and 𝑚 items with 𝑀 = {1, . . . , 𝑚}. Each bidder 𝑖 is has value 𝑣𝑖 𝑗 for

item 𝑗 , and values the set 𝑆 of items at
∑
𝑗∈𝑆 𝑣𝑖 𝑗 . Such valuations are called additive,

and are perhaps the most well-studied valuations in multi-item auction design (Hart

and Nisan, 2012, 2013; Li and Yao, 2013; Babaioff et al., 2014; Daskalakis et al., 2014a;

Hart and Reny, 2015; Cai et al., 2016; Daskalakis et al., 2017; Beyhaghi and Weinberg,

2019).

The designer does not know the full valuation profile 𝑉 = (𝑣𝑖 𝑗 )𝑖∈𝑁, 𝑗∈𝑀 , but just a

distribution from which they are drawn. Specifically, the valuation vector of bidder
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𝑖 for each of the 𝑚 items ®𝑣𝑖 = (𝑣𝑖1, . . . , 𝑣𝑖𝑚) is drawn from a distribution 𝐷𝑖 over R
𝑚

(and then, 𝑉 is drawn from 𝐷 := ×𝑖𝐷𝑖). The designer asks the bidders to report their

valuations (potentially untruthfully), then decides on an allocation of items to the

bidders and charges a payment to them.

Definition 3. An auction is a pair (𝑔, 𝑝) consisting of a randomized allocation rule

𝑔 = (𝑔1, . . . , 𝑔𝑛) where 𝑔𝑖 : R𝑛×𝑚 → [0, 1]𝑚 such that for all 𝑉 , and all 𝑗 ,
∑
𝑖 (𝑔𝑖 (𝑉)) 𝑗 ⩽ 1

and payment rules 𝑝 = (𝑝1, . . . , 𝑝𝑛) where 𝑝𝑖 : R𝑛×𝑚 → R⩾0 .

Given reported bids 𝐵 = (𝑏𝑖 𝑗 )𝑖∈𝑁, 𝑗∈𝑀 , the auction computes an allocation

probability 𝑔(𝐵) and payments 𝑝(𝐵). [𝑔𝑖 (𝐵)] 𝑗 is the probability that bidder 𝑖 received

object 𝑗 and 𝑝𝑖 (𝐵) is the price bidder 𝑖 has to pay to the mechanism. In what follows,

M denotes the class of all possible auctions.

Definition 4. The utility of bidder 𝑖 is defined by 𝑢𝑖 (®𝑣𝑖, 𝐵) =
∑𝑚
𝑗=1 [𝑔𝑖 (𝐵)] 𝑗𝑣𝑖 𝑗 − 𝑝𝑖 (𝐵).

Bidders seek to maximize their utility and may report bids that are different from

their valuations. Let 𝑉−𝑖 be the valuation profile without element ®𝑣𝑖, similarly for 𝐵−𝑖

and 𝐷−𝑖 = × 𝑗≠𝑖𝐷 𝑗 . We aim at auctions that invite bidders to bid their true valuations

through the notion of incentive compatibility.

Definition 5. An auction (𝑔, 𝑝) is dominant strategy incentive compatible (DSIC)

if each bidder’s utility is maximized by reporting truthfully no matter what the other

bidders report. For every bidder 𝑖, valuation ®𝑣𝑖 ∈ 𝐷𝑖, bid ®𝑏𝑖 ′ ∈ 𝐷𝑖 and bids 𝐵−𝑖 ∈ 𝐷−𝑖,

𝑢𝑖 (®𝑣𝑖, (®𝑣𝑖, 𝐵−𝑖)) ⩾ 𝑢𝑖 (®𝑣𝑖, (®𝑏𝑖 ′, 𝐵−𝑖)).

Additionally, we aim at auctions where each bidder receives a non-negative utility.

Definition 6. An auction is individually rational (IR) if for all 𝑖 ∈ 𝑁, ®𝑣𝑖 ∈ 𝐷𝑖 and

𝐵−𝑖 ∈ 𝐷−𝑖,

𝑢𝑖 (®𝑣𝑖, (®𝑣𝑖, 𝐵−𝑖)) ⩾ 0. (IR)
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In a DSIC auction, the bidders have the incentive to truthfully report their

valuations and therefore, the revenue on valuation profile 𝑉 is defined as
∑𝑛
𝑖=1 𝑝𝑖 (𝑉).

Optimal auction design aims at finding a DSIC auction that maximizes the expected

revenue 𝑟𝑒𝑣 := E𝑉∼𝐷 [
∑𝑛
𝑖=1 𝑝𝑖 (𝑉)].

Linear program. We frame the problem of optimal auction design as an optimization

problem where we seek an auction that minimizes the negated expected revenue

among all IR and DSIC auctions. Since there is no known characterization of DSIC

mechanisms in the multi-bidder setting, we resort to the relaxed notion of ex-post

regret. It measures the extent to which an auction violates DSIC, for each bidder.

Definition 7. The ex-post regret for a bidder 𝑖 is the maximum increase in his utility

when considering all his possible bids and fixing the bids of others. For a valuation

profile 𝑉 , the ex-post regret for a bidder 𝑖 is 𝑟𝑔𝑡𝑖 (𝑉) = max®𝑣𝑖 ′∈R𝑚 𝑢𝑖 (®𝑣𝑖; (®𝑣𝑖 ′, 𝑉−𝑖)) −

𝑢𝑖 (®𝑣𝑖; (®𝑣𝑖, 𝑉−𝑖)). In particular, DSIC is equivalent to

𝑟𝑔𝑡𝑖 (𝑉) = 0, ∀𝑖 ∈ 𝑁. (IC)

Therefore, by setting equation IC and equation IR as constraints, finding an

optimal auction is equivalent to the following linear program

min
(𝑔,𝑝)∈M

− E𝑉∼𝐷

[
𝑛∑︁
𝑖=1

𝑝𝑖 (𝑉)
]

s.t. 𝑟𝑔𝑡𝑖 (𝑉) = 0, ∀𝑖 ∈ 𝑁, ∀𝑉 ∈ 𝐷,

𝑢𝑖 (®𝑣𝑖, (®𝑣𝑖, 𝐵−𝑖)) ⩾ 0, ∀𝑖 ∈ 𝑁, ®𝑣𝑖 ∈ 𝐷𝑖, 𝐵−𝑖 ∈ 𝐷−𝑖 .
(LP)

Symmetric auctions. Equation LP is intractable due to the exponential number

of constraints. However, in the setting of symmetric auctions, it is possible to reduce

the search space of the problem as shown in Theorem 1. We first define the notions of

bidder- and item-symmetries.
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Definition 8. The valuation distribution 𝐷 is bidder-symmetric if for any permutation

of the bidders 𝜑𝑏 : 𝑁 → 𝑁, the permuted distribution 𝐷𝜑𝑏 := 𝐷𝜑𝑏 (1) × · · · × 𝐷𝜑𝑏 (𝑛)

satisfies: 𝐷𝜑𝑏 = 𝐷.

Bidder-symmetry intuitively means that the bidders are a priori indistinguishable

(although individual bidders will be different). This holds for instance in auctions

where the identity of the bidders is anonymous, or if 𝐷𝑖 = 𝐷 𝑗 for all 𝑖, 𝑗 (bidders are

i.i.d.).

Definition 9. Bidder 𝑖’s valuation distribution 𝐷𝑖 is item-symmetric if for any items

𝑥1, . . . , 𝑥𝑚 and any permutation 𝜑𝑜 : 𝑀 → 𝑀, 𝐷𝑖 (𝑥𝜑𝑜 (1) , . . . , 𝑥𝜑𝑜 (𝑚)) = 𝐷𝑖 (𝑥1, . . . , 𝑥𝑚).

Intuitively, item-symmetry means that the items are also indistinguishable but not

identical. It holds when the distributions over the items are i.i.d. but this is not a

necessary condition. Indeed, the distribution {(𝑎, 𝑏, 𝑐) ∈ U(0, 1)⊗3 : 𝑎 + 𝑏 + 𝑐 = 1} is

not i.i.d. but is item-symmetric.

Definition 10. An auction is symmetric if its valuation distributions are bidder- and

item-symmetric.

We now define the notion of permutation-equivariance that is important in

symmetric auctions.

Definition 11. The functions 𝑔 and 𝑝 are permutation-equivariant if for any two

permutation matrices Π𝑛 ∈ {0, 1}𝑛×𝑛 and Π𝑚 ∈ {0, 1}𝑚×𝑚, and any valuation matrix 𝑉 ,

we have 𝑔(Π𝑛𝑉 Π𝑚) = Π𝑛 𝑔(𝑉) Π𝑚 and 𝑝(Π𝑛𝑉 Π𝑚) = Π𝑛 𝑝(𝑉).

Theorem 1. When the auction is symmetric, there exists an optimal solution to

equation LP that is permutation-equivariant.

Theorem 1 is originally proved in Daskalakis and Weinberg (2012) and its proof

is reminded in section 4.B for completeness. It encourages to reduce the search
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space in equation LP by only optimizing over permutation-equivariant allocations and

payments. We implement this idea in Section 4.3 where we build equivariant neural

network architectures. Before, we frame auction design as a learning problem.

4.2.2 Auction design as a learning problem

Similarly to Duetting et al. (2019), we formulate auction design as a learning problem.

We learn a parametric set of auctions (𝑔𝑤, 𝑝𝑤) where 𝑤 ∈ R𝑑 parameters and 𝑑 ∈ N.

Directly solving equation LP is challenging in practice. Indeed, the auctioneer must

have access to the bidder valuations which are unavailable to her. Since she has access

to the valuation distribution, we relax equation LP and replace the IC constraint for

all 𝑉 ∈ 𝐷 by the expected constraint E𝑉∼𝐷 [𝑟𝑔𝑡𝑖 (𝑉)] = 0 for all 𝑖 ∈ 𝑁.. In practice, the

expectation terms are computed by sampling 𝐿 bidder valuation profiles drawn i.i.d.

from 𝐷. The empirical ex-post regret for bidder 𝑖 is

𝑟𝑔𝑡𝑖 (𝑤) =
1

𝐿

𝐿∑︁
ℓ=1

max
®𝑣𝑖 ′∈R𝑚

𝑢𝑤𝑖 (®𝑣
(ℓ)
𝑖
; (®𝑣𝑖 ′, 𝑉 (ℓ)−𝑖 )) − 𝑢𝑖 (®𝑣

(ℓ)
𝑖
; (®𝑣 (ℓ)

𝑖
, 𝑉
(ℓ)
−𝑖 )), (𝑅)

where 𝑢𝑤
𝑖
(®𝑣𝑖, 𝐵) :=

∑𝑚
𝑗=1 [𝑔𝑤𝑖 (𝐵)] 𝑗𝑣𝑖 𝑗 − 𝑝𝑤𝑖 (𝐵) is the utility of bidder 𝑖 under the

parametric set of auctions (𝑔𝑤, 𝑝𝑤). Therefore, the learning formulation of equation LP

is

min
𝑤∈R𝑑

− 1

𝐿

𝐿∑︁
ℓ=1

𝑛∑︁
𝑖=1

𝑝𝑤𝑖 (𝑉 (ℓ)) s.t. 𝑟𝑔𝑡𝑖 (𝑤) = 0, ∀𝑖 ∈ 𝑁. (L̂P)

Duetting et al. (2019) justify the validity of this reduction from equation LP to

equation L̂P by showing that the gap between the expected regret and the empirical

regret is small as the number of samples increases. Additionally to being DSIC, the

auction must satisfy IR. The learning problem equation L̂P does not ensure this but

we will show how to include this requirement in the architecture in section 4.3.
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4.3 A Permutation-equivariant neural network

architecture

We first show that feed-forward architectures as RegretNet (Duetting et al., 2019) may

struggle to find a symmetric solution in auctions where the optimal solution is known

to be symmetric. We then describe our neural network architecture, EquivariantNet

that learns symmetric auctions. EquivariantNet is build using exchangeable matrix

layers (Hartford et al., 2018).

4.3.1 Feed-forward nets and permutation-equivariance

In the following experiments we use the RegretNet architecture with the exact same

training procedure and parameters as found in Duetting et al. (2019) .

Permutation-sensitivity. Given 𝐿 bidders valuation samples {𝐵(1) , . . . , 𝐵(𝐿)} ∈ R𝑛×𝑚,

we generate for each bid matrix 𝐵(ℓ) all its possible permutations 𝐵(ℓ)
Π𝑛,Π𝑚

:= Π𝑛𝐵
(ℓ)Π𝑚,

where Π𝑛 ∈ {0, 1}𝑛×𝑛 and Π𝑚 ∈ {0, 1}𝑚×𝑚 are permutation matrices. We then compute

the revenue for each one of these bid matrices and obtain a revenue matrix 𝑅 ∈ R𝑛!𝑚!×𝐿.

Finally, we compute ℎ𝑅 ∈ R𝐿 where [ℎ𝑅] 𝑗 = max𝑖∈[𝑛!𝑚!] 𝑅𝑖 𝑗 − min𝑖∈[𝑛!𝑚!] 𝑅𝑖 𝑗 . The

distribution given by the entries of ℎ𝑅 is a measure of how close the auction is to

permutation-equivariance. A symmetric mechanism satisfies ℎ𝑅 = (0, . . . , 0)⊤. Our

numerical investigation considers the following auction settings:

– (I) One bidder and two items, the item values are drawn from U[0, 1] . Optimal

revenue: 0.55 Manelli and Vincent (2006).

– (II) Four bidders and five items, the item values are drawn from U[0, 1] .

Figure 4.3.1 (a)-(b) presents the distribution of ℎ𝑅 of the optimal auction learned

for setting (I) when varying the number of samples 𝐿.When 𝐿 is large, the distribution
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(a) (b)

(c) (d)

Figure 4.3.1: (a)-(b): Distribution ℎ𝑅 when varying the number of training samples
(a) 500 000 (b) 5000 samples. (c): Histogram of the distribution ℎ𝑅 for setting (II).
(d): Maximum revenue loss when varying the number of bidders for setting (III𝑛)
.

is almost concentrated at zero and therefore the network is almost able to recover the

permutation-equivariant solution. When 𝐿 is small, ℎ𝑅 is less concentrated around

zero and therefore, the solution obtained is non permutation-equivariant.

As the problem’s dimensions increase, this lack of permutation-invariance becomes

more dramatic. Figure 4.3.1 (c) shows ℎ𝑅 for the optimal auction mechanism learned

for setting (II) when trained with 5 · 105 samples. Contrary to (I), almost no entry

of ℎ𝑅 is located around zero, they are concentrated around between 0.1 and 0.4 i.e.

between 3.8% and 15% of the estimated optimal revenue.
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Exploitability. Finally, to highlight how important equivariant solutions are, we

analyze the worst-revenue loss that the auctioneer can incur when the bidders act

adversarially. Indeed, since different permutations can result in different revenues

for the auction, cooperative bidders could pick among the 𝑛! possible permutations

of their labels the one that minimized the revenue of the mechanism and present

themselves in that order. Instead of getting a revenue of 𝑅𝑜𝑝𝑡 = E𝑉∼𝐷
[∑𝑛

𝑖=1 𝑝𝑖 (𝑉)
]
,

the auctioneer would get a revenue of 𝑅𝑎𝑑𝑣 = E𝑉∼𝐷
[
minΠ𝑛{

∑𝑛
𝑖=1 𝑝𝑖 (Π𝑛𝑉)}

]
. The

percentage of revenue loss is given by 𝑙 = 100 × 𝑅𝑜𝑝𝑡−𝑅𝑎𝑑𝑣
𝑅𝑜𝑝𝑡

. We compute 𝑙 in in the

following family of settings:

– (III𝑛) 𝑛 additive bidders and ten item where the item values are drawn from

U[0, 1] .

In Figure 4.3.1 (d) we plot 𝑙 (𝑛) the loss in revenue as a function of 𝑛. As the number

of bidders increases, the loss becomes more substantial getting over the 8% with only

6 bidders.

While it is unlikely that all the bidders will collide and exploit the bidding

mechanism in real life, these investigations of permutation sensitivity and exploitability

give us a sense of how far the solutions found by RegretNet are from being

bidder-symmetric. The underlying real problem with non bidder-symmetric solution

has to do with fairness. RegretNet finds mechanisms that do not treat all bidders

equally. Their row number in the bid matrix matters, two bidders with the same bids

will not get the same treatment. If the mechanism is equivariant however, all bidders

will be treated equally by design, there are no biases or special treatments. Aiming for

symmetric auctions is important and to this end, we design a permutation-equivariant

architecture.
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Figure 4.3.2: Left: Auction design setting. Right: EquivariantNet: Deep
permutation-equivariant architecture for auction design. Deep PE denotes the deep
permutation-equivariant architecture described in subsection 4.3.2,

∑
the sum over

rows/columns operations, × the multiplication operations, soft stands for soft-max
and the curve for sigmoid. The network outputs an allocation 𝑔 and a payment 𝑝.

4.3.2 Architecture for symmetric auctions (EquivariantNet)

Our input is a bid matrix 𝐵 = (𝑏𝑖, 𝑗 ) ∈ R𝑛×𝑚 drawn from a bidder-symmetric and

item-symmetric distribution. We aim at learning a randomized allocation neural

network 𝑔𝑤 : R𝑛×𝑚 → [0, 1]𝑛×𝑚 and a payment network 𝑝𝑤 : R𝑛×𝑚 → R𝑛⩾0. The

symmetries of the distribution from which 𝐵 is drawn and Theorem 1 motivates

us to model 𝑔𝑤 and 𝑝𝑤 as permutation-equivariant functions. To this end, we use

exchangeable matrix layers (Hartford et al., 2018) and their definition is reminded

in Section 4.A. We now describe the three modules of the allocation and payment

networks Figure 4.3.2.

The first network outputs a vector 𝑞𝑤 (𝐵) ∈ [0, 1]𝑚 such that entry 𝑞𝑤
𝑗
(𝐵) is the

probability that item 𝑗 is allocated to any of the 𝑛 bidders. The architecture consists

of three modules. The first one is a deep permutation-equivariant network with tanh

activation functions. The output of that module is a matrix 𝑄 ∈ R𝑛×𝑚. The second

module transforms 𝑄 into a vector R𝑚 by taking the average over the rows of 𝑄. We

finally apply the sigmoid function to the result to ensure that 𝑞𝑤 (𝐵) ∈ [0, 1]𝑚. This
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architecture ensures that 𝑞𝑤 (𝐵) is invariant with respect to bidder permutations and

equivariant with respect to items permutations.

The second network outputs a matrix ℎ(𝐵) ∈ [0, 1]𝑛×𝑚 where ℎ𝑤
𝑖 𝑗

is the

probability that item 𝑗 is allocated to bidder 𝑖 conditioned on item 𝑗 being allocated.

The architecture consists of a deep permutation-equivariant network with tanh

activation functions followed by softmax activation function so that
∑𝑛
𝑖=1 ℎ

𝑤
𝑖 𝑗
(𝐵) = 1.

This architecture ensures that 𝑞𝑤 equivariant with respect to object and bidder

permutations.

By combining the outputs of 𝑞𝑤 and ℎ𝑤, we compute the allocation function

𝑔𝑤 : R𝑛×𝑚 → [0, 1]𝑛×𝑚 where 𝑔𝑖 𝑗 (𝐵) is the probability that the allocated item 𝑗 is given

to bidder 𝑖. Indeed, using conditional probabilities, we have 𝑔𝑤
𝑖 𝑗
(𝐵) = 𝑞𝑤

𝑗
(𝐵)ℎ𝑤

𝑖 𝑗
(𝐵).

Note that 𝑔𝑤 is a permutation-equivariant function.

The third network outputs a vector 𝑝(𝐵) ∈ R𝑛⩾0 where 𝑝
𝑤
𝑖
is the fraction of bidder’s

𝑖 utility that she has to pay to the mechanism. Given the allocation function 𝑔𝑤,

bidder 𝑖 has to pay an amount 𝑝𝑖 = 𝑝𝑖 (𝐵)
∑𝑚
𝑗=1 𝑔

𝑤
𝑖 𝑗
(𝐵)𝐵𝑖 𝑗 . Individual rationality is

ensured by having 𝑝𝑖 ∈ [0, 1]. The architecture of 𝑝𝑤 is almost similar to the one of 𝑞𝑤.

Instead of averaging over the rows of the matrix output by the permutation-equivariant

architecture, we average over the columns.

4.3.3 Optimization and training

The optimization and training procedure of EquivariantNet is similar to Duetting

et al. (2019). For this reason, we briefly mention the outline of this procedure and

remind the details in Section 4.C. We apply the augmented Lagrangian method to

equation 𝑅. The Lagrangian with a quadratic penalty is:
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L𝜌 (𝑤;𝜆) = −
1

𝐿

𝐿∑︁
ℓ=1

∑︁
𝑖∈𝑁

𝑝𝑤𝑖 (𝑉 (ℓ)) +
∑︁
𝑖∈𝑁

𝜆𝑖𝑟𝑔𝑡𝑖 (𝑤) +
𝜌

2

∑︁
𝑖∈𝑁

(
𝑟𝑔𝑡𝑖 (𝑤)

)2
,

where 𝜆 ∈ R𝑛 is a vector of Lagrange multipliers and 𝜌 > 0 is a fixed parameter

controlling the weight of the quadratic penalty. The solver alternates between the

updates on model parameters and Lagrange multipliers: 𝑤𝑛𝑒𝑤 ∈ argmax𝑤L𝜌 (𝑤𝑜𝑙𝑑 , 𝜆𝑜𝑙𝑑)

and 𝜆𝑛𝑒𝑤
𝑖

= 𝜆𝑜𝑙𝑑
𝑖
+ 𝜌 · 𝑟𝑔𝑡𝑖 (𝑤𝑛𝑒𝑤), ∀𝑖 ∈ 𝑁.

4.4 Experimental Results

We start by showing the effectiveness of our architecture in symmetric and asymmetric

auctions. We then highlight its sample-efficiency for training and its ability to

extrapolate to other settings. More details about the setup and training can be found

in Section 4.C and Section 4.D.

Evaluation. In addition to the revenue of the learned auction on a test set, we also

evaluate the corresponding empirical average regret over bidders 𝑟𝑔𝑡 = 1
𝑛

∑𝑛
𝑖=1 𝑟𝑔𝑡𝑖. We

evaluate these terms by running gradient ascent on 𝑣′
𝑖
with a step-size of 0.001 for

{300, 500} iterations (we test {100, 300} different random initial 𝑣′
𝑖
and report the one

achieves the largest regret).

Known optimal solution. We first consider instances of single bidder multi-item

auctions where the optimal mechanism is known to be symmetric. While independent

private value auction as (I) fall in this category, the following item-asymmetric auction

has surprisingly an optimal symmetric solution.
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• (IV) One bidder and two items where the item values are independently drawn

according to the probability densities 𝑓1(𝑥) = 5/(1 + 𝑥)6 and 𝑓2(𝑦) = 6/(1 + 𝑦)7.

Optimal solution in Daskalakis et al. (2017).

Dist. 𝑟𝑒𝑣 𝑟𝑔𝑡 OPT

(I) 0.551 0.00013 0.550
(IV) 0.173 0.00003 0.1706
(V) 0.873 0.001 0.860

(a)

EquivariantNet RegretNet

𝜆2 𝑟𝑒𝑣 𝑟𝑔𝑡 𝑟𝑒𝑣𝐹 𝑟𝑔𝑡𝐹

0.01 0.37 0.0006 0.39 0.0003
0.1 0.41 0.0004 0.41 0.0007
1 0.86 0.0005 0.84 0.0012
10 3.98 0.0081 3.96 0.0056

(b)

Figure 4.4.1: (a): Test revenue and regret found by EquivariantNet for settings (I),
(IV) and (V). For seeting (V) OPT is the optimal revenue from VVCA and AMAbsym

families of auctions (Sandholm and Likhodedov, 2015). For settings (I) and (IV), OPT
is the theoretical optimal revenue. (b): Test revenue/regret for setting (VI) when
varying 𝜆2 (𝜆1 = 1). 𝑟𝑒𝑣𝐹 and 𝑟𝑔𝑡𝐹 are computed with RegretNet.

The two first lines in Figure 4.4.1(a) report the revenue and regret of the mechanism

learned by our model. The revenue is very close to the optimal one, and the regret

is negligible. Remark that the learned auction may achieve a revenue slightly above

the optimal incentive compatible auction. This is possible because although small,

the regret is non-zero. Figure 4.4.2(a)-(b) presents a plot of revenue and regret as a

function of training epochs for the setting (I).

Unknown optimal solution. Our architecture is also able to recover a

permutation-equivariant solution in settings for which the optimum is not known

analytically such as:

– (V) Two additive bidders and two items where bidders draw their value for each

item from U[0, 1] .
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(a) Train/test revenue as a function of epochs for setting (I) for EquivariantNet. The
revenue converges to the theoretical optimum (0.55).

(b) Train/test regret as a function of epochs for setting (I) for EquivariantNet. The
regret converges to 0.

Figure 4.4.2: EquivariantNet learn the optimal auction for the setting (I).

We compare our solution to the optimal auctions from the VVCA and AMAbsym

families of incentive compatible auctions from (Sandholm and Likhodedov, 2015). The

last line of Figure 4.4.1(a) summarizes our results.

Non-symmetric optimal solution. Our architecture returns satisfactory results in

asymmetric auctions. (VI) is a setting where there may not be permutation-equivariant

solutions.
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– (VI) Two bidders and two items where the item values are independently drawn

according to the probability densities 𝑓1(𝑥) = 𝜆−11 𝑒
−𝜆1𝑥 and 𝑓2(𝑦) = 𝜆−12 𝑒

−𝜆2𝑦,

where 𝜆1, 𝜆2 > 0.

Figure 4.4.1(b) shows the revenue and regret of the final auctions learned for

setting (VI). When 𝜆1 = 𝜆2, the auction is symmetric and so, the revenue of the

learned auction is very close to the optimal revenue, with negligibly small regret.

However, as we increase the gap between 𝜆1 and 𝜆2, the asymmetry becomes dominant

and the optimal auction does not satisfy permutation-equivariance. We remark that

our architecture does output a solution with near-optimal revenue and small regret.

Sample-efficiency. Our permutation-equivariant architecture exhibits solid

generalization properties when compared to the feed-forward architecture RegretNet.

When enough data is available at training, both architectures generalize well to unseen

data and the gap between the training and test losses goes to zero. However, when

fewer training samples are available, our equivariant architecture generalizes while

RegretNet struggles to. This may be explained by the inductive bias in our architecture.

We demonstrate this for auction (V) with a training set of 20 samples and plot

the training and test losses as a function of time (measures in epochs) for both

architectures in Figure 4.4.3(a).
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Figure 4.4.3: Train and test losses (the Lagrangian) for setting (V) with 20 training
samples. RegretNet and EquivariantNet both achieve small losses on the training set,
only EquivariantNet is generalizes to the testing set.

Out-of-setting generalization. The number of parameters in our permutation

equivariant architecture does not depend on the size of the input. Given an architecture

that was trained on samples of size (𝑛, 𝑚), it is possible to evaluate it on samples of

any size (𝑛′, 𝑚′) (More details in Section 4.A). This evaluation is not well defined for

feed-forward architectures where the dimension of the weights depends on the input

size. We use this advantage to check whether models trained in a fixed setting perform

well in totally different ones.

– (𝛼) Train an equivariant architecture on 1 bidder, 5 items and test it on 1 bidder,

𝑛 items for 𝑛 = 2 · · · 10. All the items values are sampled independently from

U[0, 1] .

– (𝛽) Train an equivariant architecture on 2 bidders, 3 objects and test it on 2

bidders, 𝑛 objects for 𝑛 = 2 · · · 6. All the items values are sampled independently

from U[0, 1] .

137



Figure 4.4.4(a)-(b) reports the test revenue that we get for different values of 𝑛 in (𝛼)

and (𝛽) and compares it to the empirical optimal revenue. Our baseline for that is

RegretNet. Surprisingly, our model does generalize well. It is worth mentioning that

knowing how to solve a larger problem such as 1 × 5 does not automatically result

in a capacity to solve a smaller one such as 1 × 2; the generalization does happen on

both ends. Our approach looks promising regarding out of setting generalization. It

generalizes well when the number of objects varies and the number of bidders remain

constants. However, generalization to settings where the number of bidders varies is

more difficult due to the complex interactions between bidders. We do not observe

good generalization with our current method.

(a) (b)

Figure 4.4.4: Generalization revenue of EquivariantNet in experiment (𝛼) and (𝛽).
Each baseline point is computed using a RegretNet architecture trained from scratch.

Conclusion

We have explored the effect of adding domain knowledge in neural network

architectures for auction design. We built a permutation-equivariant architecture

to design symmetric auctions and highlighted its multiple advantages. It recovers

several known optimal results and provides competitive results in asymmetric auctions.

Compared to fully connected architectures, it is more sample efficient and is able to
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generalize to settings it was not trained on. In a nutshell, this chapter insists on the

importance of bringing domain-knowledge to the deep learning approaches for auctions.

Our architecture presents some limitations. It assumes that all the bidders

and items are permutation-equivariant. However, in some real-world auctions, the

item/bidder-symmetry only holds for a group of bidders/items. More advanced

architectures such as Equivariant Graph Networks (Maron et al., 2018) may solve

this issue. Another limitation is that we only consider additive valuations. An

interesting direction would be to extend our approach to other settings as unit-demand

or combinatorial auctions.
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Appendix

4.A Permutation-equivariant network

In this section, we remind the exchangeable matrix layers introduced by Hartford

et al. (2018). These layers are are a generalization of the deep sets architecture by

Zaheer et al. (2017). We briefly describe this architecture here and invite the reader

to look at the original paper for details.

The architecture consists in several layers and each of them is constituted of

multiple channels. Each layer is specified by the number of input channels 𝐾 channels

and the number of outputs channels 𝑂. The input of such a layer is a tensor 𝐵 of

size (𝐾, 𝑛, 𝑚) and the output is another tensor 𝑌 of size (𝑂, 𝑛, 𝑚). The first element

of these tensor is the channel number. In the following we will denote by 𝐵(𝑘)
𝑖, 𝑗

the

element of 𝐵 of index (𝑘, 𝑖, 𝑗) and similarly for 𝑌 (𝑜)
𝑖, 𝑗

.

In addition to the 𝐾 and 𝑂, an exchangeable layer is defined by a set of five weights

𝑤1, 𝑤2, 𝑤3, 𝑤4 ∈ R𝐾×𝑂 and 𝑤5 ∈ R. Given these weights, the element (𝑖, 𝑗) of the 𝑜-th

output channel 𝑌 (𝑜)
𝑖, 𝑗

is given by:

𝑌
(𝑜)
𝑖, 𝑗

= 𝜎

(
𝐾∑︁
𝑘=1

𝑤
(𝑘,𝑜)
1 𝐵

(𝑘)
𝑖, 𝑗
+
𝑤
(𝑘,𝑜)
2

𝑛

∑︁
𝑖′
𝐵
(𝑘)
𝑖′, 𝑗

+
𝑤
(𝑘,𝑜)
3

𝑚

∑︁
𝑗′
𝐵
(𝑘)
𝑖, 𝑗′ +

𝑤
(𝑘,𝑜)
4

𝑛𝑚

∑︁
𝑖′, 𝑗′

𝐵
(𝑘)
𝑖′, 𝑗′ + 𝑤

(𝑜)
5

) (4.1)
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This layer preserved permutation-equivariance. This was first proven in Hartford et al.

(2018). Additionally, the number of parameters of each layer only depends on 𝐾 and

𝑂 is does not depend on the dimension of the input (i.e. 𝑚 and 𝑛). In particular, we

can apply this exchangeable layer to any tensor of size (𝐾, 𝑛′, 𝑚′) for any value of 𝑛′

and 𝑚′ and the resulting output will be a tensor of size (𝑂, 𝑛′, 𝑚′).

We can compose these exchangeable layers as long as the number of channels of the

output of one layer is equal to the number of input channels required by the following

layer. By composing many such layer of this form we get a deep exchangeable neural

network. This deep network preserved permutation-equivariance since this property is

preserved by every layer. In addition, this network can be evaluated on an input of

any dimension 𝑛 and 𝑚. We use this property of the network to test our mechanisms

on settings with different number of bidders and objects. Without this property out

of setting generalization not possible.
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4.B Proof of Theorem 1

Notation: For a matrix 𝐵 ∈ R𝑛𝑚 we will denote the 𝑖th line by 𝐵𝑖 ∈ R𝑚 or [𝐵]𝑖 ∈ R𝑚.Let

𝐷 denote an equivariant distribution on R𝑛𝑚 . Let 𝑔 : R𝑛𝑚 → R𝑛𝑚 and 𝑝 : R𝑛𝑚 → R𝑛

be solutions to the following problem:

𝑝 = argmax E𝐵∼𝐷

[
𝑛∑︁
𝑖=1

𝑝𝑖 (𝐵)
]

subject to:

⟨ [𝑔(𝐵)]𝑖 , 𝐵𝑖 ⟩ ⩾ 𝑝𝑖 (𝐵),

and

⟨ [𝑔(𝐵𝑖, 𝐵−𝑖)]𝑖 , 𝐵𝑖 ⟩ − 𝑝𝑖 (𝐵𝑖, 𝐵−𝑖) ⩾ ⟨ [𝑔(𝐵′𝑖 , 𝐵−𝑖)]𝑖 , 𝐵𝑖 ⟩ − 𝑝𝑖 (𝐵′𝑖 , 𝐵−𝑖), ∀𝐵′𝑖 ∈ R𝑚 .

Let Π𝑛 and Π𝑚 be two permutation matrices of sizes 𝑛 and 𝑚. In particular Π𝑛 and

Π𝑚 are orthogonal matrices and in the following we use that Π−1𝑛 = Π𝑇𝑛 and Π−1𝑚 = Π𝑇𝑚.

Let’s define:

𝑔Π𝑛,Π𝑚 (𝐵) = Π−1𝑛 𝑔(Π𝑛 𝐵Π𝑚) Π−1𝑚

𝑝Π𝑛,Π𝑚 (𝐵) = Π−1𝑛 𝑝(Π𝑛 𝐵Π𝑚).

Let’s prove that if (𝑔, 𝑝) is a solution to the problem then so is (𝑔Π𝑛,Π𝑚 , 𝑝Π𝑛,Π𝑚).

First we show that (𝑔Π𝑛,Π𝑚 , 𝑝Π𝑛,Π𝑚) still satisfy the previous constraints.

⟨[𝑔Π𝑛,Π𝑚 (𝐵)]𝑖 , 𝐵𝑖 ⟩ = ⟨[Π−1𝑛 𝑔(Π𝑛 𝐵Π𝑚)Π−1𝑚 ]𝑖 , 𝐵𝑖 ⟩

= ⟨[Π−1𝑛 𝑔(Π𝑛 𝐵Π𝑚)]𝑖Π−1𝑚 , 𝐵𝑖 ⟩

= ⟨[Π−1𝑛 𝑔(Π𝑛 𝐵Π𝑚)]𝑖 , 𝐵𝑖Π𝑚 ⟩

= ⟨[Π−1𝑛 𝑔(Π𝑛 𝐵Π𝑚)]𝑖 , [𝐵Π𝑚]𝑖 ⟩

= ⟨[Π−1𝑛 𝑔(Π𝑛 𝐵Π𝑚)]𝑖 , [𝐵Π𝑚]𝑖 ⟩.
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Let’s denote by 𝜑 the permutation on the indices corresponding to the Π𝑛 permutation.

then we have:

[Π−1𝑛 𝑔(Π𝑛 𝐵Π𝑚)]𝑖 = [𝑔(Π𝑛 𝐵Π𝑚)]𝜑−1 (𝑖)

[𝐵Π𝑚]𝑖 = [Π𝑛𝐵Π𝑚]𝜑−1 (𝑖) .

This gives us that:

⟨[𝑔Π𝑛,Π𝑚 (𝐵)]𝑖 , 𝐵𝑖 ⟩ = ⟨[Π−1𝑛 𝑔(Π𝑛 𝐵Π𝑚)]𝑖 , [𝐵Π𝑚]𝑖 ⟩

= ⟨[𝑔(Π𝑛 𝐵Π𝑚)]𝜑−1 (𝑖) , [Π𝑛𝐵Π𝑚]𝜑−1 (𝑖) ⟩

⩾ [𝑝(Π𝑛𝐵Π𝑚)]𝜑−1 (𝑖)

= [Π−1𝑛 𝑝(Π𝑛𝐵Π𝑚)]𝑖

= [𝑝Π𝑛,Π𝑚 (𝐵)]𝑖 .

This shows that (𝑔Π𝑛,Π𝑚 , 𝑝Π𝑛,Π𝑚) satisfies the first constraint. We now move to the

second constraint.

Let’s write 𝐵 = (𝐵′
𝑖
, 𝐵−𝑖). As a reminder, this is the matrix 𝐵 where the 𝑖th line

has been replaced with 𝐵′
𝑖
. We need to show that:

⟨ [𝑔Π𝑛,Π𝑚 (𝐵)]𝑖 , 𝐵𝑖 ⟩ − 𝑝Π𝑛,Π𝑚𝑖
(𝐵) ⩾ ⟨ [𝑔Π𝑛,Π𝑚 (𝐵)]𝑖 , 𝐵𝑖 ⟩ − 𝑝Π𝑛,Π𝑚𝑖

(𝐵).

Using the previous computations we find that:

⟨ [𝑔Π𝑛,Π𝑚 (𝐵)]𝑖 , 𝐵𝑖 ⟩−𝑝Π𝑛,Π𝑚𝑖
(𝐵) = ⟨[𝑔(Π𝑛 𝐵Π𝑚)]𝜑−1 (𝑖) , [Π𝑛𝐵Π𝑚]𝜑−1 (𝑖) ⟩−[𝑝(Π𝑛𝐵Π𝑚)]𝜑−1 (𝑖) ,
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where 𝜑 is the permutation associated with Π𝑛. Since 𝑔 and 𝑝 satisfy the second

constraint we have:

⟨ [𝑔Π𝑛,Π𝑚 (𝐵)]𝑖 , 𝐵𝑖 ⟩ − 𝑝Π𝑛,Π𝑚𝑖
(𝐵) = ⟨[𝑔(Π𝑛 𝐵Π𝑚)]𝜑−1 (𝑖) , [Π𝑛𝐵Π𝑚]𝜑−1 (𝑖) ⟩ − [𝑝(Π𝑛𝐵Π𝑚)]𝜑−1 (𝑖)

⩾ ⟨[𝑔(Π𝑛 𝐵Π𝑚)]𝜑−1 (𝑖) , [Π𝑛𝐵Π𝑚]𝜑−1 (𝑖) ⟩ − [𝑝(Π𝑛𝐵Π𝑚)]𝜑−1 (𝑖)

= ⟨ [𝑔Π𝑛,Π𝑚 (𝐵)]𝑖 , 𝐵𝑖 ⟩ − 𝑝Π𝑛,Π𝑚𝑖
(𝐵).

This concludes the proof that (𝑔Π𝑛,Π𝑚 , 𝑝Π𝑛,Π𝑚) satisfy the constraints. Now we

have to show that 𝑝Π𝑛,Π𝑚 is optimal.

E𝐵∼𝐷

[
𝑛∑︁
𝑖=1

𝑝Π𝑛,Π𝑚 (𝐵)
]
= E𝐵∼𝐷

[
⟨ 𝑝Π𝑛,Π𝑚 (𝐵) , 1 ⟩

]
= E𝐵∼𝐷

[
⟨Π−1𝑛 𝑝(Π𝑛 𝐵Π𝑚) , 1 ⟩

]
= E𝐵∼𝐷 [⟨ 𝑝(Π𝑛 𝐵Π𝑚) , 1 ⟩]

= E𝐵∼𝐷 [⟨ 𝑝(𝐵) , 1 ⟩]

= E𝐵∼𝐷

[
𝑛∑︁
𝑖=1

𝑝𝑖 (𝐵)
]
,

where we used that Π−1𝑛 = Π𝑇𝑛 , Π𝑛1 = 1 and that Π𝑛 𝐵Π𝑚 ∼ 𝐷 since 𝐷 is an equivariant

distribution. This shows that if 𝑝 is optimal then 𝑝Π𝑛,Π𝑚 is also optimal since they

have the same expectation. We conclude that (𝑔Π𝑛,Π𝑚 , 𝑝Π𝑛,Π𝑚) is an optimal solution.

Let’s define

𝑔(𝐵) = EΠ𝑛,Π𝑚
[
𝑔Π𝑛,Π𝑚 (𝐵)

]
𝑝(𝐵) = EΠ𝑛,Π𝑚

[
𝑝Π𝑛,Π𝑚 (𝐵)

]
.

Here, in the expectation, Π𝑛 and Π𝑚 are drawn uniformly at random. Since the

problem and constraints are convex, (𝑔, 𝑝) is also an optimal solution to the problem

as a convex combination of optimal solutions. Let’s prove that 𝑔 and 𝑝 are equivariant

functions.
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𝑔(Π𝑛 𝐵Π𝑚) = EΠ′𝑛,Π′𝑚
[
𝑔Π
′
𝑛,Π

′
𝑚 (Π𝑛 𝐵Π𝑚)

]
= EΠ′𝑛,Π′𝑚

[
Π′𝑛
−1
𝑔(Π′𝑚 Π𝑛 𝐵Π𝑚 Π′𝑚)Π′𝑚

−1
]

= Π𝑛
−1 EΠ′𝑛,Π′𝑚

[
(Π′𝑛Π𝑛)

−1
𝑔(Π′𝑛 Π𝑛 𝐵Π𝑚 Π′𝑚) (Π𝑚Π′𝑚)

−1
]
Π𝑚
−1.

If Π′𝑛 and Π′𝑚 are uniform among permutation then so is Π′𝑛Π𝑛 and Π′𝑚Π𝑚. So through

a change of variable we find that:

𝑔(Π𝑛 𝐵Π𝑚) = Π𝑛
−1 EΠ′𝑛,Π′𝑚

[
Π′𝑛
−1
𝑔(Π′𝑛 𝐵Π′𝑚)Π′𝑚

−1
]
Π𝑚
−1

= Π𝑛
−1 𝑔(𝐵) Π𝑚−1.

This shows that 𝑔 is equivariant. The proof that 𝑝 is equivariant is similar.

𝑝(Π𝑛 𝐵Π𝑚) = EΠ′𝑛,Π′𝑚
[
𝑝Π

′
𝑛,Π

′
𝑚 (Π𝑛 𝐵Π𝑚)

]
= EΠ′𝑛,Π′𝑚

[
Π′𝑛
−1
𝑝(Π′𝑚 Π𝑛 𝐵Π𝑚 Π′𝑚)

]
= Π𝑛

−1 EΠ′𝑛,Π′𝑚

[
(Π′𝑛Π𝑛)

−1
𝑝(Π′𝑛 Π𝑛 𝐵Π𝑚 Π′𝑚)

]
.

By doing a change of variable as before we find:

𝑝(Π𝑛 𝐵Π𝑚) = Π𝑛
−1 EΠ′𝑛,Π′𝑚

[
Π′𝑛
−1
𝑝(Π′𝑛 𝐵Π′𝑚)

]
= Π𝑛

−1 𝑝(𝐵),

(𝑔, 𝑝) is an equivariant optimal solution, this concludes the proof.
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4.C Optimization and training procedures

Our training algorithm is the same as the one found in Duetting et al. (2019). We

made that choice to better illustrate the intrinsic advantages of our permutation

equivariant architecture. We include implementation details here for completeness

and additional details can be found in the original paper.

Algorithm 4.1 Training Algorithm

1: Input: Minibatches S1, . . . , S𝑇 of size 𝐵
2: Parameters: 𝛾 > 0, 𝜂 > 0, 𝑐 > 0, 𝑅 ∈ N, 𝑇 ∈ N, 𝑇𝜌 ∈ N, 𝑇𝜆 ∈ N.
3: Initialize Parameters: 𝜌0 ∈ R, 𝑤0 ∈ R𝑑 , 𝜆0 ∈ R𝑛,
4: Initialize Misreports: 𝑣′

𝑖
(ℓ) ∈ 𝑉𝑖, ∀ℓ ∈ [𝐵], 𝑖 ∈ 𝑁.

5: for 𝑡 = 0, . . . , 𝑇 do
6: Receive minibatch S𝑡 = {𝑉 (1) , . . . , 𝑉 (𝐵)}.
7: for 𝑟 = 0, . . . , 𝑅 do
8:

∀ℓ ∈ [𝐵], 𝑖 ∈ 𝑛 :
𝑣′𝑖
(ℓ) ← 𝑣′𝑖

(ℓ) + 𝛾∇𝑣′
𝑖
𝑢
𝑤𝑡
𝑖
(𝑣𝑖 (ℓ); (𝑣′𝑖

(ℓ)
, 𝑉
(ℓ)
−𝑖 ))

9: Get Lagrangian gradient using equation 4.2 and update 𝑤𝑡 :
10: 𝑤𝑡+1 ← 𝑤𝑡 − 𝜂∇𝑤L𝜌𝑡 (𝑤𝑡).
11: Update 𝜌 once in 𝑇𝜌 iterations:
12: if 𝑡 is a multiple of 𝑇𝜌 then
13: 𝜌𝑡+1 ← 𝜌𝑡 + 𝑐
14: else
15: 𝜌𝑡+1 ← 𝜌𝑡

16: Update Lagrange multipliers once in 𝑇𝜆 iterations:
17: if 𝑡 is a multiple of 𝑇𝜆 then
18: 𝜆𝑡+1

𝑖
← 𝜆𝑡

𝑖
+ 𝜌𝑡 𝑟𝑔𝑡𝑖 (𝑤𝑡),∀𝑖 ∈ 𝑁

19: else
20: 𝜆𝑡+1 ← 𝜆𝑡

We generate a training dataset of valuation profiles S that we then divide into

mini-batches of size 𝐵. Typical sizes for S are {5000, 50000, 500000} and typical batch

sizes are {50, 500, 50000}. We train our networks over for several epochs (typically

{50, 80}) and we apply a random shuffling of the training data for each new epoch.

We denote the minibatch received at iteration 𝑡 by S𝑡 = {𝑉 (1) , . . . , 𝑉 (𝐵)}. The update
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on model parameters involves an unconstrained optimization of L𝜌 over 𝑤 and is

performed using a gradient-based optimizer. Let 𝑟𝑔𝑡𝑖 (𝑤) be the empirical regret in

equation 𝑅 computed on mini-batch S𝑡 . The gradient of L𝜌 with respect to 𝑤 is given

by:

∇𝑤L𝜌 (𝑤) = −
1

𝐵

𝐵∑︁
ℓ=1

∑︁
𝑖∈𝑁
∇𝑤𝑝𝑤𝑖 (𝑉 (ℓ))

+
∑︁
𝑖∈𝑁

𝐵∑︁
ℓ=1

𝜆𝑡𝑖𝑔ℓ,𝑖 + 𝜌𝑡
∑︁
𝑖∈𝑁

𝐵∑︁
ℓ=1

𝑟𝑔𝑡𝑖 (𝑤)𝑔ℓ,𝑖,
(4.2)

where

𝑔ℓ,𝑖 = ∇𝑤
[
max
𝑣′
𝑖
∈𝑉𝑖
𝑢𝑤𝑖 (𝑣

(ℓ)
𝑖
; (𝑣′𝑖, 𝑉

(ℓ)
−𝑖 )) − 𝑢

𝑤
𝑖 (𝑣

(ℓ)
𝑖
; (𝑣 (ℓ)

𝑖
, 𝑉
(ℓ)
−𝑖 ))

]
.

The terms 𝑟𝑔𝑡𝑖 and 𝑔ℓ,𝑖 requires us to compute the maximum over misreports for each

bidder 𝑖 and valuation profile ℓ. To compute this maximum we optimize the function

𝑣′
𝑖
→ 𝑢𝑤

𝑖
(𝑣 (ℓ)
𝑖
; (𝑣′

𝑖
, 𝑉
(ℓ)
−𝑖 )) using another gradient based optimizer.

For each 𝑖 and valuation profile ℓ, we maintain a misreports valuation 𝑣′
𝑖
(ℓ). For

every update on the model parameters 𝑤𝑡 , we perform 𝑅 gradient updates to compute

the optimal misreports: 𝑣′
𝑖
(ℓ) = 𝑣′

𝑖
(ℓ) + 𝛾∇

𝑣′
𝑖
(ℓ)𝑢𝑤𝑖 (𝑣

(ℓ)
𝑖
; (𝑣′

𝑖
(ℓ) , 𝑉 (ℓ)−𝑖 )), for some 𝛾 > 0. In

our experiments, we use the Adam optimizer (Kingma and Ba, 2014) for updates

on model 𝑤 and 𝑣′
𝑖
(ℓ) . Typical values are 𝑅 = 25 and 𝛾 = 0.001 for the training

phase. During testing, we use a larger number of step sizes 𝑅𝑡𝑒𝑠𝑡 to compute these

optimal misreports and we try bigger number initialization, 𝑁𝑖𝑛𝑖𝑡 , that are drawn from

the same distribution of the valuations. Typical values are 𝑅𝑡𝑒𝑠𝑡 = {200, 300} and

𝑁𝑖𝑛𝑖𝑡 = {100, 300}. When the valuations are constrained to an interval (for instance

[0, 1]), this optimization inner loop becomes constrained and we make sure that

the values we get for 𝑣′
𝑖
are realistic by projecting them to their domain after each
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gradient step.

The parameters 𝜆𝑡 and 𝜌𝑡 in the Lagrangian are not constant but they are updated

over time. 𝜌𝑡 is initialized at a value 𝜌0 is incremented every 𝑇𝜌 iterations, 𝜌𝑡+1 ← 𝜌𝑡+𝑐.

Typical values are 𝜌0 = {0.25, 1}, 𝑐 = {0.25, 1, 5} and 𝑇𝜌 = {2, 5} epochs. 𝜆𝑡 is initialized

at a value 𝜆0 is updates every 𝑇𝜆 iterations according to 𝜆𝑡+1
𝑖
← 𝜆𝑡

𝑖
+ 𝜌𝑡 𝑟𝑔𝑡𝑖 (𝑤𝑡),∀𝑖 ∈ 𝑁 .

Typical values are 𝜆0
𝑖
= {0.25, 1, 5} and 𝑇𝜆 = {2} iterations.

4.D Setup

We implemented our experiments using PyTorch. A typical deep exchangeable network

consists of 3 hidden layers of 25 channels each. Depending on the experiment, we

generated a dataset of {5000, 50000, 500000} valuation profiles and chose mini batches

of sizes {50, 500, 5000} for training. The optimization of the augmented Lagrangian

was typically run for {50, 80} epochs. The value of 𝜌 in the augmented Lagrangian

was set to 1.0 and incremented every 2 epochs. An update on 𝑤𝑡 was performed for

every mini-batch using the Adam optimizer with a learning rate of 0.001. For each

update 𝑤𝑡 , we ran 𝑅 = 25 misreport update steps with a learning rate of 0.001. An

update on 𝜆𝑡 was performed once every 100 minibatches.
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Chapter 5

Auction Learning as a Two Player

Game

Designing an incentive compatible auction that maximizes expected revenue is a

central problem in Auction Design. While theoretical approaches to the problem have

hit some limits, a recent research direction initiated by Duetting et al. (2019) consists

in building neural network architectures to find optimal auctions. We propose two

conceptual deviations from their approach which result in enhanced performance. First,

we use recent results in theoretical auction design to introduce a time-independent

Lagrangian. This not only circumvents the need for an expensive hyper-parameter

search (as in prior work), but also provides a single metric to compare the performance

of two auctions (absent from prior work). Second,the optimization procedure in

previous work uses an inner maximization loop to compute optimal misreports. We

amortize this process through the introduction of an additional neural network. We

demonstrate the effectiveness of our approach by learning competitive or strictly

improved auctions compared to prior work. Both results together further imply a

novel formulation of Auction Design as a two-player game with stationary utility

functions.
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5.1 Introduction

Efficiently designing truthful auctions is a core problem in Mathematical Economics.

Concrete examples include the sponsored search auctions conducted by companies

as Google or auctions run on platforms as eBay. Following seminal work of

Vickrey (Vickrey, 1961) and Myerson (Myerson, 1981), auctions are typically studied

in the independent private valuations model: each bidder has a valuation function

over items, and their payoff depends only on the items they receive. Moreover, the

auctioneer knows aggregate information about the population that each bidder comes

from, modeled as a distribution over valuation functions, but does not know precisely

each bidder’s valuation (outside of any information in this Bayesian prior). A major

difficulty in designing auctions is that valuations are private and bidders need to be

incentivized to report their valuations truthfully. The goal of the auctioneer is to

design an incentive compatible auction which maximizes expected revenue.

Auction Design has existed as a rigorous mathematical field for several decades

and yet, complete characterizations of the optimal auction only exist for a few settings.

While Myerson’s Nobel prize-winning work provides a clean characterization of the

single-item optimum (Myerson, 1981), optimal multi-item auctions provably suffer from

numerous formal measures of intractability (including computational intractability,

high description complexity, non-monotonicity, and others) (Daskalakis et al., 2014b;

Chen et al., 2014, 2015, 2018; Hart and Reny, 2015; Thanassoulis, 2004).

An orthogonal line of work instead develops deep learning architectures to find

the optimal auction. Duetting et al. (2019) initiated this direction by proposing

RegretNet, a feed-forward architecture. They frame the auction design problem

as a constrained learning problem and lift the constraints into the objective via

the augmented Lagrangian method. Training RegretNet involves optimizing this

Lagrangian-penalized objective, while simultaneously updating network parameters

and the Lagrangian multipliers themselves. This architecture produces impressive
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results: recovering near-optimal auctions in several known multi-item settings, and

discovering new mechanisms when a theoretical optimum is unknown.

Yet, this approach presents several limitations. On the conceptual front, our

main insight is a connection to an exciting line of recent works (Hartline and

Lucier, 2010; Hartline et al., 2011; Bei and Huang, 2011; Daskalakis and Weinberg,

2012; Rubinstein and Weinberg, 2018; Dughmi et al., 2017; Cai et al., 2019) on

𝜀-truthful-to-truthful reductions.1 On the technical front, we identify three areas for

improvement. First, their architecture is difficult to train in practice as the objective

is non-stationary. Specifically, the Lagrangian multipliers are time-dependent and they

increase following a pre-defined schedule, which requires careful hyperparameter tuning

(see subsection 5.3.1 for experiments illustrating this). Leveraging the aforementioned

works in Auction Theory, we propose a stationary Lagrangian objective. Second,

all prior work inevitably finds auctions which are not precisely incentive compatible,

and does not provide a metric to compare, say, an auction with revenue 1.01 which

is 0.002-truthful, or one with revenue 1 which is 0.001-truthful. We argue that our

stationary Lagrangian objective serves as a good metric (and that the second auction

of our short example is “better” for our metric). Finally, their training procedure

requires an inner-loop optimization (essentially, this inner loop is the bidders trying

to maximize utility in the current auction), which is itself computationally expensive.

We use amortized optimization to make this process more efficient.

Contributions

This chapter leverages recent work in Auction Theory to formulate the learning of

revenue-optimal auctions as a two-player game. We develop a new algorithm ALGnet

(Auction Learning Game network) that produces competitive or better results compared

1By 𝜀-truthful, we mean the expected total regret 𝑅 is bounded by 𝜀. See Proposition 5.3.1 for a
definition of 𝑅.
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to Duetting et al. (2019)’s RegretNet. In addition to the conceptual contributions,

our approach yields the following improvements (as RegretNet is already learning

near-optimal auctions, our improvement over RegretNet is not due to significantly

higher optimal revenues).

– Easier hyper-parameter tuning : By constructing a time-independent loss function,

we circumvent the need to search for an adequate parameter scheduling. Our

formulation also involves less hyperparameters, which makes it more robust.

– A metric to compare auctions : We propose a metric to compare the quality of

two auctions which are not incentive compatible.

– More efficient training : We replace the inner-loop optimization of prior work

with a neural network, which makes training more efficient.

– Online auctions: Since the learning formulation is time-invariant, ALGnet is

able to quickly adapt in auctions where the bidders’ valuation distributions

varies over time. Such setting appears for instance in the online posted pricing

problem studied in Bubeck et al. (2017).

Furthermore, these technical contributions together now imply a novel formulation

of auction learning as a two-player game (not zero-sum) between an auctioneer and

a misreporter. The auctioneer is trying to design an incentive compatible auction

that maximizes revenue while the misreporter is trying to identify breaches in the

truthfulness of these auctions.

The chapter decomposes as follows. Section 5.2 introduces the standard notions

of auction design. Section 5.3 presents our game formulation for auction learning.

Section 5.4 provides a description of ALGnet and its training procedure. Finally,

Section 5.5 presents numerical evidence for the effectiveness of our approach.
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Related work

Auction design and machine learning. Machine learning and computational

learning theory have been used in several ways to design auctions from samples of

bidder valuations. Machine learning has been used to analyze the sample complexity

of designing optimal revenue-maximizing auctions. This includes the framework of

single-parameter settings(Morgenstern and Roughgarden, 2015; Huang et al., 2018;

Hartline and Taggart, 2019; Roughgarden and Schrijvers, 2016; Gonczarowski and

Nisan, 2017; Guo et al., 2019), multi-item auctions (Dughmi et al., 2014; Gonczarowski

and Weinberg, 2018), combinatorial auctions (Balcan et al., 2016; Morgenstern and

Roughgarden, 2016; Syrgkanis, 2017) and allocation mechanisms (Narasimhan and

Parkes, 2016). Other works have leveraged machine learning to optimize different

aspects of mechanisms (Lahaie, 2011; Dütting et al., 2015). Our approach is different

as we build a deep learning architecture for auction design.

Auction design and deep learning. While Duetting et al. (2019) is the first

paper to design auctions through deep learning, several other paper followed-up this

work. Feng et al. (2018) extended it to budget constrained bidders, Golowich et al.

(2018) to the facility location problem. Tacchetti et al. (2019) built architectures

based on the Vickrey- Clarke-Groves mechanism. Rahme et al. (2021b) used

permutation-equivariant networks to design symmetric auctions. Shen et al. (2019)

and Duetting et al. (2019) proposed architectures that exactly satisfy incentive

compatibility but are specific to single-bidder settings. While all the previously

mentioned papers consider a non-stationary objective function, we formulate a

time-invariant objective that is easier to train and that makes comparisons between

mechanisms possible.
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5.2 Auction design as a time-varying learning

problem

We first review the framework of auction design and the problem of finding truthful

mechanisms. We then recall the learning problem proposed by Duetting et al. (2019)

to find optimal auctions.

5.2.1 Auction design and linear program

Auction design. We consider an auction with 𝑛 bidders and 𝑚 items. We will

denote by 𝑁 = {1, . . . , 𝑛} and 𝑀 = {1, . . . , 𝑚} the set of bidders and items. Each

bidder 𝑖 values item 𝑗 at a valuation denoted 𝑣𝑖 𝑗 . We will focus on additive auctions.

These are auctions where the value of a set 𝑆 of items is equal to the sum of the

values of the elements in that set at
∑
𝑗∈𝑆 𝑣𝑖 𝑗 . Additive auctions are perhaps the most

well-studied setting in multi-item auction design (Hart and Nisan, 2012; Li and Yao,

2013; Daskalakis et al., 2014b; Cai et al., 2016; Daskalakis et al., 2017).

The auctioneer does not know the exact valuation profile 𝑉 = (𝑣𝑖 𝑗 )𝑖∈𝑁, 𝑗∈𝑀 of the

bidders in advance but he does know the distribution from which they are drawn: the

valuation vector of bidder 𝑖, ®𝑣𝑖 = (𝑣𝑖1, . . . , 𝑣𝑖𝑚) is drawn from a distribution 𝐷𝑖 over

R𝑚. We will further assume that all bidders are independent and that 𝐷1 = · · · = 𝐷𝑛.

As a result V is drawn from 𝐷 := ⊗𝑛
𝑖=1𝐷𝑖 = 𝐷

⊗𝑛
1 .

Definition 12. An auction is defined by a randomized allocation rule 𝑔 = (𝑔1, . . . , 𝑔𝑛)

and a payment rule 𝑝 = (𝑝1, . . . , 𝑝𝑛) where 𝑔𝑖 : R𝑛×𝑚 → [0, 1]𝑚 and 𝑝𝑖 : R
𝑛×𝑚 → R⩾0.

Additionally for all items 𝑗 and valuation profiles 𝑉 , the 𝑔𝑖 must satisfy
∑
𝑖 [𝑔𝑖 (𝑉)] 𝑗 ⩽ 1.

Given a bid matrix 𝐵 = (𝑏𝑖 𝑗 )𝑖∈𝑁, 𝑗∈𝑀 , [𝑔𝑖 (𝐵)] 𝑗 is the probability that bidder 𝑖

receives object 𝑗 and 𝑝𝑖 (𝐵) is the price bidder 𝑖 has to pay to the auction. The

condition
∑
𝑖 [𝑔𝑖 (𝑉)] 𝑗 ⩽ 1 allows the possibility for an item to be not allocated.
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Definition 13. The utility of bidder 𝑖 is defined by 𝑢𝑖 (®𝑣𝑖, 𝐵) =
∑𝑚
𝑗=1 [𝑔𝑖 (𝐵)] 𝑗𝑣𝑖 𝑗 − 𝑝𝑖 (𝐵).

Bidders seek to maximize their utility and may report bids that are different from

their true valuations. In the following, we will denote by 𝐵−𝑖 the (𝑛−1) ×𝑚 bid matrix

without bidder 𝑖, and by (®𝑏′
𝑖
, 𝐵−𝑖) the 𝑛 × 𝑚 bid matrix that inserts ®𝑏′

𝑖
into row 𝑖 of

𝐵−𝑖 (for example: 𝐵 := (®𝑏𝑖, 𝐵−𝑖). We aim at auctions that incentivize bidders to bid

their true valuations.

Definition 14. An auction (𝑔, 𝑝) is dominant strategy incentive compatible (DSIC)

if each bidder’s utility is maximized by reporting truthfully no matter what the other

bidders report. For every bidder 𝑖, valuation ®𝑣𝑖 ∈ 𝐷𝑖, bid ®𝑏𝑖 ′ ∈ 𝐷𝑖 and bids 𝐵−𝑖 ∈ 𝐷−𝑖,

𝑢𝑖 (®𝑣𝑖, (®𝑣𝑖, 𝐵−𝑖)) ⩾ 𝑢𝑖 (®𝑣𝑖, (®𝑏𝑖 ′, 𝐵−𝑖)).

Definition 15. An auction is individually rational (IR) if for all 𝑖 ∈ 𝑁, ®𝑣𝑖 ∈ 𝐷𝑖 and

𝐵−𝑖 ∈ 𝐷−𝑖,

𝑢𝑖 (®𝑣𝑖, (®𝑣𝑖, 𝐵−𝑖)) ⩾ 0. (IR)

In a DSIC auction, the bidders have the incentive to truthfully report their

valuations and therefore, the revenue on valuation profile 𝑉 is
∑𝑛
𝑖=1 𝑝𝑖 (𝑉). Optimal

auction design aims at finding a DSIC and IR auction that maximizes the expected

revenue 𝑟𝑒𝑣 := E𝑉∼𝐷 [
∑𝑛
𝑖=1 𝑝𝑖 (𝑉)]. Since there is no known characterization of DSIC

mechanisms in the multi-item setting, we resort to the relaxed notion of ex-post regret.

It measures the extent to which an auction violates DSIC.

Definition 16. The ex-post regret for a bidder 𝑖 is the maximum increase in his

utility when considering all his possible bids and fixing the bids of others. For a

valuation profile 𝑉 , it is given by 𝑟𝑖 (𝑉) = max®𝑏𝑖 ′∈R𝑚 𝑢𝑖 (®𝑣𝑖, (
®𝑏𝑖 ′, 𝑉−𝑖)) − 𝑢𝑖 (®𝑣𝑖, (®𝑣𝑖, 𝑉−𝑖)).

In particular, DSIC is equivalent to

𝑟𝑖 (𝑉) = 0, ∀𝑖 ∈ 𝑁,∀𝑉 ∈ 𝐷. (IC)
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The bid ®𝑏′
𝑖
that achieves 𝑟𝑖 (𝑉) is called the optimal misreport of bidder 𝑖 for

valuation profile 𝑉 .

Therefore, finding an optimal auction is equivalent to the following linear program:

min
(𝑔,𝑝)∈M

− E𝑉∼𝐷

[
𝑛∑︁
𝑖=1

𝑝𝑖 (𝑉)
]

s.t. 𝑟𝑖 (𝑉) = 0, ∀ 𝑖 ∈ 𝑁, ∀ 𝑉 ∈ 𝐷,

𝑢𝑖 (®𝑣𝑖, (®𝑣𝑖, 𝐵−𝑖)) ⩾ 0, ∀𝑖 ∈ 𝑁, ®𝑣𝑖 ∈ 𝐷𝑖, 𝐵−𝑖 ∈ 𝐷−𝑖 .
(LP)

5.2.2 Auction design as a learning problem

As the space of auctions M may be large, we will set a parametric model. In what

follows, we consider the class of auctions (𝑔𝑤, 𝑝𝑤) encoded by a neural network of

parameter 𝑤 ∈ R𝑑. The corresponding utility and regret function will be denoted by

𝑢𝑤
𝑖
and 𝑟𝑤

𝑖
.

Following Duetting et al. (2019), the formulation equation LP is relaxed: the IC

constraint for all 𝑉 ∈ 𝐷 is replaced by the expected constraint E𝑉∼𝐷 [𝑟𝑤𝑖 (𝑉)] = 0 for

all 𝑖 ∈ 𝑁. The justification for this relaxation can be found in Duetting et al. (2019).

By replacing expectations with empirical averages, the learning problem becomes:

min
𝑤∈R𝑑

− 1

𝐿

𝐿∑︁
ℓ=1

𝑛∑︁
𝑖=1

𝑝𝑤𝑖 (𝑉 (ℓ)) s.t. 𝑟̂𝑤𝑖 :=
1

𝐿

𝐿∑︁
ℓ=1

𝑟𝑤𝑖 (𝑉 (ℓ)) = 0, ∀𝑖 ∈ 𝑁. (L̂P)

The learning problem equation L̂P does not ensure equation IR. However, this

constraint is usually built into the parametrization (architecture) of the model: by

design, the only auction mechanism considered satisfy equation IR.

Implementation details can be found in Duetting et al. (2019); Rahme et al. (2021b)

or in Sec 5.4.
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5.3 Auction learning as a two-player game

We first present the optimization and the training procedures for equation L̂P

proposed by Duetting et al. (2019). We then demonstrate with numerical evidence

that this approach presents two limitations: hyperparameter sensitivity and lack of

interpretability. Using the concept of 𝜀-truthful to truthful reductions, we construct a

new loss function that circumvents these two aspects. Lastly, we resort to amortized

optimization and reframe the auction learning problem as a two-player game.

5.3.1 The augmented Lagrangian method and its shortcomings

Optimization and training. We briefly review the training procedure proposed by

Duetting et al. (2019) to learn optimal auctions. The authors apply the augmented

Lagrangian method to solve the constrained problem equation L̂P and consider the

loss:

L(𝑤;𝜆; 𝜌) = − 1
𝐿

𝐿∑︁
ℓ=1

∑︁
𝑖∈𝑁

𝑝𝑤𝑖 (𝑉 (ℓ)) +
∑︁
𝑖∈𝑁

𝜆𝑖𝑟
𝑤
𝑖 (𝑉 (ℓ)) +

𝜌

2

∑︁
𝑖∈𝑁

(
𝑟𝑤𝑖 (𝑉 (ℓ))

)2
,

where 𝜆 ∈ R𝑛 is a vector of Lagrange multipliers and 𝜌 > 0 is a parameter controlling

the weight of the quadratic penalty. More details about the training procedure can be

found in Appendix A.

Scheduling consistency problem. The parameters 𝜆 and 𝜌 are time-varying.

Indeed, their value changes according to a pre-defined scheduling of the following form:

1) Initialize 𝜆 and 𝜌 with respectively 𝜆0 and 𝜌0, 2) Update 𝜌 every 𝑇𝜌 iterations

: 𝜌𝑡+1 ← 𝜌𝑡 + 𝑐, where 𝑐 is a pre-defined constant, 3) Update 𝜆 every 𝑇𝜆 iterations

according to 𝜆𝑡
𝑖
← 𝜆𝑡

𝑖
+ 𝜌𝑡 𝑟̂𝑤𝑡

𝑖
.

Therefore, this scheduling requires to set up five hyper parameters (𝜆0, 𝜌0, 𝑐, 𝑇𝜆, 𝑇𝜌).

Some of the experiments found Duetting et al. (2019) were about learning an optimal
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mechanism for an 𝑛-bidder 𝑚-item auction (𝑛×𝑚) where the valuations are iid U[0, 1].

Different scheduling parameters were used for different values of 𝑛 and 𝑚. We report

the values of the hyper parameters used for the 1 × 2, 3 × 10 and 5 × 10 settings in

Table 5.3.1(a). A natural question is whether the choice of parameters heavily affects

the performance. We proceed to a numerical investigation of this questions by trying

different schedulings (columns) for different settings (rows) and report our the results

in Table 5.3.1(b).

Table 5.3.1: (a): Scheduling parameters values set in Duetting et al. (2019) to reach
optimal auctions in 𝑛 × 𝑚 settings with 𝑛 bidders, 𝑚 objects and i.i.d. valuations
sampled from U[0, 1] . (b): Revenue rev := E𝑉∼𝐷 [

∑𝑛
𝑖=1 𝑝𝑖 (𝑉)] and average regret

per bidder reg := 1/𝑛E𝑉∈𝐷
[∑𝑛

𝑖=1 𝑟𝑖 (𝑉)
]
for 𝑛 × 𝑚 settings when using the different

parameters values set reported in (a).

1 × 2 3 × 10 5 × 10

𝜆0 5 5 1

𝜌0 1 1 0.25

c 50 1 0.25

𝑇𝜆 102 102 102

𝑇𝜌 104 104 105

(a)

Scheduling

1 × 2 3 × 10 5 × 10

Setting rev rgt rev rgt rev rgt

1 × 2 0.552 0.0001 0.573 0.0012 0.332 0.0179

3 × 10 4.825 0.0007 5.527 0.0017 5.880 0.0047

5 × 10 4.768 0.0006 5.424 0.0033 6.749 0.0047

(b)

The auction returned by the network dramatically varies with the choice of

scheduling parameters. When applying the parameters of 1 × 2 to 5 × 10, we obtain a

revenue that is lower by 30%! The performance of the learning algorithm strongly

depends on the specific values of the hyperparameters. Finding an adequate scheduling

requires an extensive and time consuming hyperparameter search.

Lack of interpretability. How should one compare two mechanisms with different

expected revenue and regret? Is a mechanism 𝑀1 with revenue 𝑃1 = 1.01 and an
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average total regret 𝑅1 = 0.02 better than a mechanism 𝑀2 with 𝑃2 = 1.0 and 𝑅2 = 0.01

? The approach in Duetting et al. (2019) cannot answer this question. To see that,

notice that when 𝜆1 = · · · = 𝜆𝑛 = 𝜆 we can rewrite L(𝑤;𝜆; 𝜌) = −𝑃 + 𝜆𝑅 + 𝜌

2𝑅
2. Which

mechanism is better depends on the values of 𝜆 and 𝜌. For example if 𝜌 = 1 and

𝜆 = 0.1 we find that 𝑀1 is better, but if 𝜌 = 1 and 𝜆 = 10 then 𝑀2 is better. Since

the values of 𝜆 and 𝜌 change with time, the Lagrangian approach in Duetting et al.

(2019) cannot provide metric to compare two mechanisms.

5.3.2 A time-independent and interpretable loss function for

auction learning

Our first contribution consists in introducing a new loss function for auction learning

that addresses the two first limitations of Duetting et al. (2019) mentioned in

Section 5.3.1. We first motivate this loss in the one bidder case and then extend it to

auctions with many bidders.

Mechanisms with one bidder

Proposition 5.3.1. [Balcan et al. (2005), attributed to Nisan] Let M be an additive

auction with 1 bidder and 𝑚 items. Let 𝑃 and 𝑅 denote the expected revenue and

regret, 𝑃 = E𝑉∈𝐷 [𝑝(𝑉)] and 𝑅 = E𝑉∈𝐷 [𝑟 (𝑉)]. There exists a mechanism M∗ with

expected revenue 𝑃∗ = (
√
𝑃 −
√
𝑅)2 and zero regret 𝑅∗ = 0.

A proof of this proposition can be found in Appendix C. Comparing two mechanisms

is straightforward when both of them have zero-regret: the best one achieves the

highest revenue. Proposition 5.3.1 allows a natural and simple extension of this criteria

for non zero-regret mechanism with one bidder: we will say that 𝑀1 is better than

𝑀2 if and only if 𝑀∗1 is better than 𝑀∗2 :
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𝑀1 ⩾ 𝑀2 ⇐⇒ 𝑃∗(𝑀1) ⩾ 𝑃∗(𝑀2) ⇐⇒
√︁
𝑃1 −

√︁
𝑅1 ⩾

√︁
𝑃2 −

√︁
𝑅2 (5.1)

Using our metric, we find that a one bidder mechanism with revenue of 1.00 and

regret of 0.01 is ”better” than one with revenue 1.01 and regret 0.02.

Mechanisms with multiple bidders

Let 𝑀1 and 𝑀2 be two mechanisms with 𝑛 bidders and 𝑚 objects. Let 𝑃𝑖 and 𝑅𝑖

denote their total expected revenue and regret, 𝑃𝑖 = E𝑉∈𝐷
[∑𝑛

𝑗=1 𝑝 𝑗 (𝑉)
]
and 𝑅𝑖 =

E𝑉∈𝐷
[∑𝑛

𝑗=1 𝑟 𝑗 (𝑉)
]
. We can extend our metric derived in Section 5.3.2 to the multiple

bidder by the following:

𝑀1 is ”better” than 𝑀2 ⇐⇒ 𝑀1 ⩾ 𝑀2 ⇐⇒
√︁
𝑃1 −

√︁
𝑅1 ⩾

√︁
𝑃2 −

√︁
𝑅2 (5.2)

When 𝑛 = 1 we recover the criteria from Section 5.3.2 that is backed by

Proposition 5.3.1. When 𝑛 > 1, it is considered a major open problem whether

the extension of Proposition 5.3.1 still holds. Note that a multi-bidder variant of

Proposition 5.3.1 does hold under a different solution concept termed “Bayesian

Incentive Compatible” (Rubinstein and Weinberg, 2018; Cai et al., 2019), supporting

the conjecture that Proposition 5.3.1 indeed extends.2 Independently of whether or

not Proposition 5.3.1 holds, this reasoning implies a candidate loss function for the

multi-bidder setting which we can evaluate empirically.

This way of comparing mechanisms motivates the use of loss function: L(𝑃, 𝑅) =

−(
√
𝑃 −
√
𝑅) instead of the Lagrangian from Section 5.3, and indeed this loss function

2An auction is Bayesian Incentive Compatible if every bidder maximizes their expected utility by
truthful reporting in expectation over the other bidders’ truthful bids. Compare this to Dominant
Strategy Incentive Compatible (our work), where every bidder maximizes their expected utility by
truthful reporting for all realizations of the other bidders’ bids.
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works well in practice. We empirically find the loss function L𝑚 (𝑃, 𝑅) = −(
√
𝑃−
√
𝑅)+𝑅

further accelerates training, as it further (slightly) biases towards mechanisms with

low regret. Both of these loss function are time-independent and hyperparameter-free.

5.3.3 Amortized misreport optimization

To compute the regret 𝑟𝑤
𝑖
(𝑉) one has to solve the optimization problem:

max
®𝑣𝑖 ′∈R𝑚

𝑢𝑤𝑖 (®𝑣𝑖, (®𝑣𝑖 ′, 𝑉−𝑖)) − 𝑢𝑤𝑖 (®𝑣𝑖, (®𝑣𝑖, 𝑉−𝑖))

. In Duetting et al. (2019), this optimization problem is solved with an inner

optimization loop for each valuation profile. In other words, computing the regret of

each valuation profile is solved separately and independently, from scratch.

If two valuation profiles are very close to each other, one should expect that the

resulting optimization problems to have close results. We leverage this to improve

training efficiency.

We propose to amortize this inner loop optimization. Instead of solving all these

optimization problems independently, we will instead learn one neural network 𝑀𝜑

that tries to predict the solution of all of them. 𝑀𝜑 takes as entry a valuation profile

and maps it to the optimal misreport:

𝑀𝜑 :


R𝑛×𝑚 → R𝑛×𝑚

𝑉 = [ ®𝑣𝑖]𝑖∈𝑁 → [argmax®𝑣′∈𝐷𝑢𝑖 ( ®𝑣𝑖, (®𝑣′, 𝑉−𝑖))]𝑖∈𝑁
(5.3)

The loss L𝑟 that 𝑀
𝜑 is trying to minimize follows naturally from that definition and

is then given by: L𝑟 (𝜑, 𝑤) = −E𝑉∈𝐷
[∑𝑛

𝑖=1 𝑢
𝑤
𝑖
( ®𝑣𝑖, ( [𝑀𝜑 (𝑉)]𝑖, 𝑉−𝑖))

]
.
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5.3.4 Auction learning as a two-player game

In this section, we combine the ideas from Sections 5.3.2 and 5.3.3 to obtain a

new formulation for the auction learning problem as a two-player game between an

Auctioneer with parameter 𝑤 and a Misreporter with parameter 𝜑. The optimal

parameters for the auction learning problem (𝑤∗, 𝜑∗) are a Nash Equilibrium for this

game.

The Auctioneer is trying to design a truthful equation IC and rational equation IR

auction that maximizes revenue. The Misreporter is trying to maximize the bidders’

utility, for the current auction selected by Auctioneer, 𝑤. This is achieved by

minimizing the loss function L𝑟 (𝜑, 𝑤) wrt to 𝜑 (as discussed in Sec 5.3.3). The

Auctioneer in turn maximizes expected revenue, for the current misreports as chosen

by Misreporter. This is achieved by minimizing L𝑚 (𝑤, 𝜑) = −(
√
𝑃𝑤 +

√
𝑅𝑤,𝜑) +

𝑅𝑤,𝜑 with respect to 𝑤 (as discussed in Sec 5.3.2). Here, 𝑅𝑤,𝜑 is an estimate of

the total regret that auctioneer computes for the current Misreporter 𝜑, 𝑅𝑤,𝜑 =

1
𝐿

∑𝐿
ℓ=1

∑
𝑖∈𝑁

(
𝑢𝑤
𝑖
(®𝑣𝑖, ( [𝑀𝜑 (𝑉)]𝑖, 𝑉−𝑖)) − 𝑢𝑤𝑖 (®𝑣𝑖, (®𝑣𝑖, 𝑉−𝑖))

)
. This game formulation can

be summarized in Figure 5.3.1.

Remark 5.3.1. The game formulation equation G reminds us of Generative

Adversarial Networks (Goodfellow et al., 2014). Contrary to GANs, it is not a

zero-sum game.

5.4 Architecture and training procedure

We describe ALGnet, a feed-forward architecture solving for the game formulation

equation G and then provide a training procedure. ALGnet consists in two modules

that are the auctioneer’s module and the misreporter’s module. These components

take as input a bid matrix 𝐵 = (𝑏𝑖, 𝑗 ) ∈ R𝑛×𝑚 and are trained jointly. Their outputs

are used to compute the regret and revenue of the auction.
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Misreporter:

{
loss: L𝑟 (𝜑, 𝑤)
parameter: 𝜑

Auctioneer:

{
loss: L𝑚 (𝑤, 𝜑)
parameter: 𝑤

(G)

Figure 5.3.1: Diagrammatic representation of the two-play auction learning game.

Notation. We use MLP(𝑑in, 𝑛𝑙 , ℎ, 𝑑out) to refer to a fully-connected neural network

with input dimension 𝑑in, output dimension 𝑑out and 𝑛𝑙 hidden layers of width ℎ

and tanh activation function. sig denotes the sigmoid activation function. Given

a matrix 𝐵 = [®𝑏1, . . . , ®𝑏𝑛]⊤ ∈ R𝑛×𝑚, we define for a fixed 𝑖 ∈ 𝑁, the matrix 𝐵(𝑖) :=

[®𝑏𝑖, ®𝑏1, . . . , ®𝑏𝑖−1, ®𝑏𝑖+1, . . . , ®𝑏𝑛] .

5.4.1 The Auctioneer’s module

It is composed of an allocation network that encodes a randomized allocation

𝑔𝑤 : R𝑛𝑚 → [0, 1]𝑛𝑚 and a payment network that encodes a payment rule

𝑝𝑤 : R𝑛𝑚 → R𝑛.

Allocation network. It computes the allocation probabily of item 𝑗 to bidder

𝑖 [𝑔𝑤 (𝐵)]𝑖 𝑗 as [𝑔𝑤 (𝐵)]𝑖 𝑗 = [ 𝑓1(𝐵)] 𝑗 · [ 𝑓2(𝐵)]𝑖 𝑗 where 𝑓1 : R
𝑛×𝑚 → [0, 1]𝑚 and

𝑓2 : R
𝑛×𝑚 → [0, 1]𝑚×𝑛 are functions computed by two feed-forward neural networks.

– [ 𝑓1(𝐵)] 𝑗 is the probability that object 𝑗 ∈ 𝑀 is allocated and is given by
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[ 𝑓1(𝐵)] 𝑗 = sig (MLP(𝑛𝑚, 𝑛𝑎, ℎ𝑎, 𝑛)).

– [ 𝑓2(𝐵)]𝑖 𝑗 is the probability that item 𝑗 ∈ 𝑀 is allocated to bidder 𝑖 ∈ 𝑁 conditioned

on object 𝑗 being allocated. A first MLP computes 𝑙 𝑗 := MLP(𝑛𝑚, 𝑛𝑎, ℎ𝑎, 𝑚) (𝐵( 𝑗)) for

all 𝑗 ∈ 𝑀. The network then concatenates all these vectors 𝑙 𝑗 into a matrix 𝐿 ∈ R𝑛×𝑚.

A softmax activation function is finally applied to 𝐿 to ensure feasibility i.e. for all

𝑗 ∈ 𝑀,∑𝑖∈𝑁 𝐿𝑖 𝑗 = 1.

Payment network. It computes the payment [𝑝𝑤 (𝐵)]𝑖 for bidder 𝑖 as [𝑝𝑤 (𝐵)]𝑖 =

𝑝𝑖
∑𝑚
𝑗=1 𝐵𝑖 𝑗 [𝑔𝑤 (𝐵)]𝑖 𝑗 , where 𝑝 : R𝑛×𝑚 → [0, 1]𝑛. 𝑝𝑖 is the fraction of bidder’s 𝑖 utility

that she has to pay to the mechanism. We compute 𝑝𝑖 = sig
(
MLP(𝑛𝑚, 𝑛𝑝, ℎ𝑝, 1)

)
(𝐵(𝑖)).

Finally, notice that by construction [𝑝𝑤 (𝐵)]𝑖 ⩽
∑𝑚
𝑗=1 𝐵𝑖 𝑗𝑔

𝑤 (𝐵)𝑖 𝑗 which ensures that

equation IR is respected.

5.4.2 The Misreporter’s module

The module consists in an MLP(𝑛𝑚, 𝑛𝑀 , ℎ𝑀 , 𝑚) followed by a projection layer Proj

that ensure that the output of the network is in the domain 𝐷 of the valuation. For

example when the valuations are restricted to [0, 1], we can take Proj = sig, if they are

non negative number,we can take Proj = SoftPlus. The optimal misreport for bidder 𝑖

is then given by Proj ◦MLP(𝑛𝑚, 𝑛𝑀 , ℎ𝑀 , 𝑚) (𝐵(𝑖)) ∈ R𝑚. Stacking these vectors gives

us the misreport matrix 𝑀𝜑 (𝐵).

5.4.3 Training procedure and optimization

We optimize the game equation G over the space of neural networks parameters (𝑤, 𝜑).

The algorithm is easy to implement (Algorithm 5.1). At each time 𝑡, we sample a batch

of valuation profiles of size 𝐵. The algorithm performs 𝜏 updates for the Misreporter’s

network (line 9) and one update on the Auctioneer’s network (line 10). Moreover, we

often reinitialize the Misreporter’s network every 𝑇𝑖𝑛𝑖𝑡 steps in the early phases of the
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training (𝑡 ⩽ 𝑇𝑙𝑖𝑚𝑖𝑡). This step is not necessary but we found empirically that it speeds

up training.

Algorithm 5.1 ALGnet training

1: Input: number of agents, number of objects.

2: Parameter: 𝛾 > 0; 𝐵,𝑇, 𝑇𝑖𝑛𝑖𝑡 , 𝑇𝑙𝑖𝑚𝑖𝑡 , 𝜏 ∈ N.

3: Initialize misreport’s and auctioneer’s nets.

4: for 𝑡 = 1, . . . , 𝑇 do

5: if 𝑡 ≡ 0 mod 𝑇𝑖𝑛𝑖𝑡 and 𝑡 < 𝑇𝐿𝑖𝑚𝑖𝑡 then:

6: Reinitialize Misreport Network

7: Sample valuation batch 𝑆 of size 𝐵.

8: for 𝑠 = 1, . . . , 𝜏 do

9: 𝜑𝑠+1 ← 𝜑𝑠 − 𝛾∇𝜑L𝑟 (𝜑𝑠, 𝑤𝑡) (𝑆).

10: 𝑤𝑡+1 ← 𝑤𝑡 − 𝛾∇𝑤L𝑚 (𝑤𝑡 , 𝜑) (𝑆).

5.5 Experimental Results

We show that ALGnet can recover near-optimal auctions for settings where the optimal

solution is known and that it can find new auctions for settings where analytical

solution are not known. Since RegretNet is already capable of discovering near optimal

auctions, one cannot expect ALGnet to achieve significantly higher optimal revenue

than RegretNet. The results obtained are competitive or better than the ones obtained

in Duetting et al. (2019) while requiring much less hyperparameters (Section 5.3).

We also evaluate ALGnet in online auctions and compare it to RegretNet.

For each experiment, we compute the total revenue rev := E𝑉∼𝐷 [
∑
𝑖∈𝑁 𝑝

𝑤
𝑖
(𝑉)] and

average regret rgt := 1/𝑛E𝑉∼𝐷 [
∑
𝑖∈𝑁 𝑟

𝑤
𝑖
(𝑉)] on a test set of 10, 000 valuation profiles.

We run each experiment 5 times with different random seeds and report the average
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and standard deviation of these runs. In our comparisons we make sure that ALGnet

and RegretNet have similar sizes for fairness (Appendix D).

5.5.1 Auctions with known and unknown optima

Known settings. We show that ALGnet is capable of recovering near optimal

auction in different well-studied auctions that have an analytical solution. These are

one bidder and two items auctions where the valuations of the two items 𝑣1 and 𝑣2

are independent. We consider the following settings:

• (A): 𝑣1 and 𝑣2 are i.i.d. from U[0, 1]

• (B): 𝑣1 ∼ U[4, 16] and 𝑣2 ∼ U[4, 7]

• (C): 𝑣1 has density 𝑓1(𝑥) = 5/(1 + 𝑥)6 and 𝑣2 has density 𝑓2(𝑦) = 6/(1 + 𝑦)7.

(A) is the celebrated Manelli-Vincent auction (Manelli and Vincent, 2006); (B)

is a non-i.i.d. auction and (C) is a non-i.i.d. heavy-tail auction and both of them

are studied in Daskalakis et al. (2017). We compare our results to the theoretical

optimal auction (Table 5.5.1). (Duetting et al. (2019) does not evaluate RegretNet on

settings (B) & (C)). During the training process, reg decreases to 0 while rev and 𝑃∗

converge to the optimal revenue. For (A), we also plot rev , rgt and 𝑃∗ as function of

the number of epochs and we compare it to RegretNet (Figure 5.5.1).

Contrary to ALGnet, we observe that RegretNet overestimates the revenue in

the early stages of training at the expense of a higher regret. As a consequence,

ALGnet learns the optimal auction faster than RegretNet while being schedule-free

and requiring less hyperparameters.
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Table 5.5.1: Revenue & regret of ALGnet for settings (A)-(C).

Optimal ALGnet (Ours)

rev rgt rev rgt (×10−3 )

(A) 0.550 0 0.555 (±0.0019) 0.55 (±0.14)

(B) 9.781 0 9.737 (±0.0443) 0.75 (±0.17)

(C) 0.1706 0 0.1712 (±0.0012) 0.14 (±0.07)

Unknown and large-scale auctions. We now consider settings where the optimal

auction is unknown. We look at 𝑛-bidder 𝑚-item additive settings where the valuations

are sampled i.i.d from U[0, 1] which we will denote by 𝑛 × 𝑚. In addition to

”reasonable”-scale auctions (1 × 10 and 2 × 2), we investigate large-scale auctions

(3× 10 and 5× 10) that are much more complex. Only deep learning methods are able

to solve them efficiently. Table 5.5.2 shows that ALGnet is able to discover auctions

that yield comparable or better results than RegretNet.

Table 5.5.2: Comparison of RegretNet and ALGnet. The values reported for RegretNet
are found in Duetting et al. (2019), the numerical values for rgt and standard deviations
are not available.

Setting
RegretNet ALGnet (Ours)

rev rgt rev rgt

1 × 2 0.554 < 1.0 · 10−3 0.555 (±0.0019) 0.55 · 10−3(±0.14 · 10−3)
1 × 10 3.461 < 3.0 · 10−3 3.487 (±0.0135) 1.65 · 10−3(±0.57 · 10−3)
2 × 2 0.878 < 1.0 · 10−3 0.879 (±0.0024) 0.58 · 10−3(±0.23 · 10−3)
3 × 10 5.541 < 2.0 · 10−3 5.562 (±0.0308) 1.93 · 10−3(±0.33 · 10−3)
5 × 10 6.778 < 5.0 · 10−3 6.781 (±0.0504) 3.85 · 10−3(±0.43 · 10−3)
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5.5.2 Online auctions

ALGnet is an online algorithm with a time-independent loss function. We would

expect it to perform well in settings where the underlying distribution of the valuations

changes over time. We consider a one bidder and two items additive auction with

valuations 𝑣1 and 𝑣2 sampled i.i.d from U[0, 1 + 𝑡] where 𝑡 in increased from 0 to 1 at

a steady rate. The optimal auction at time 𝑡 has revenue 0.55 × (1 + 𝑡).

We use ALGnet and two versions of RegretNet, the original offline version

(Appendix A) and our own online version (Appendix B) and plot rev (𝑡), rgt (𝑡)

and 𝑃∗(𝑡) (Figure 5.5.1). The offline version learns from a fixed dataset of valuations

sampled at 𝑡 = 0 (i.e. with 𝑉 ∼ U[0, 1]𝑛𝑚) while the online versions (as ALGnet) learns

from a stream of data at each time 𝑡.

Overall, ALGnet performs better than the other methods. It learns an optimal

auction faster at the initial (especially compared to RegretNet Online) and keep

adapting to the distributional shift (contrary to vanilla RegretNet).

5.6 Conclusion

We identified two inefficiencies in previous approaches to deep auction design and

propose solutions, building upon recent trends and results from machine learning

(amortization) and theoretical auction design (stationary Lagrangian). This resulted

in a novel formulation of auction learning as a two-player game between an Auctioneer

and a Misreporter and a new architecture ALGnet. ALGnet requires significantly

fewer hyperparameters than previous Lagrangian approaches. We demonstrated the

effectiveness of ALGnet on a variety of examples by comparing it to the theoretical

optimal auction when it is known, and to RegretNet when the optimal solution is not

known.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.5.1: (a-b-c) compares the evolution of the revenue, regret and 𝑃∗ as a function
of the number of epoch for RegretNet and ALGnet for setting (A). (d-e-f) plots the
the revenue, regret and 𝑃∗ as a function of time for ALGnet and (offline & online)
RegretNet for an online auction (Section 5.5.2).
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Appendix

5.A Proof of Proposition 5.3.1

Lemma 5.A.1. Let 𝑀 be a one bidder 𝑚 item mechanism with expected revenue 𝑃

and expected regret 𝑅, then ∀𝜀 > 0, there exists a mechanism 𝑀′ with expected revenue

𝑃′ = (1 − 𝜀)𝑃 − 1−𝜀
𝜀
𝑅 and zero expected regret, 𝑅′ = 0.

Proof. For every valuation vector 𝑣 ∈ 𝐷, let 𝑔(𝑣) and 𝑝(𝑣) denote the allocation vector

and price that 𝑀 assigns to 𝑣.

We now consider the mechanism 𝑀′ that does the following:

• 𝑔′(𝑣) = 𝑔(𝑣′)

• 𝑝′(𝑣) = (1 − 𝜀) 𝑝(𝑣′)

Where 𝑣′ is given by : 𝑣′ = argmax𝑣̃∈𝐷 ⟨𝑣 , 𝑔(𝑣)⟩ − (1 − 𝜀) 𝑝(𝑣). By construction, the

mechanism 𝑀′ has zero regret, all we have to do now is bound its revenue. If we denote

by 𝑅(𝑣) the regret of the profile 𝑣 in the mechanism 𝑀, 𝑅(𝑣) = max𝑣̃∈𝐷 ⟨𝑣 , 𝑔(𝑣) −

𝑔(𝑣)⟩ − (𝑝(𝑣) − 𝑝(𝑣)) we have.

⟨𝑣 , 𝑔(𝑣′)⟩ − 𝑝(𝑣′) = ⟨𝑣 , 𝑔(𝑣)⟩ − 𝑝(𝑣) + ⟨𝑣 , 𝑔(𝑣′) − 𝑔(𝑣)⟩ − (𝑝(𝑣′) − 𝑝(𝑣)) (5.4)

⩽ ⟨𝑣 , 𝑔(𝑣)⟩ − 𝑝(𝑣) + 𝑅(𝑣) (5.5)
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Which we will write as:

⟨𝑣 , 𝑔(𝑣)⟩ − 𝑝(𝑣) ⩾ ⟨𝑣 , 𝑔(𝑣′)⟩ − 𝑝(𝑣′) − 𝑅(𝑣) (5.6)

Second, we have by construction:

⟨𝑣 , 𝑔(𝑣′)⟩ − (1 − 𝜀)𝑝(𝑣′) ⩾ ⟨𝑣 , 𝑔(𝑣)⟩ − (1 − 𝜀)𝑝(𝑣) (5.7)

By summing these two relations we find :

𝑝(𝑣′) ⩾ 𝑝(𝑣) − 𝑅(𝑣)
𝜀

(5.8)

Finally we get that:

𝑝′(𝑣) ⩾ (1 − 𝜀) 𝑝(𝑣) − 1 − 𝜀
𝜀

𝑅(𝑣) (5.9)

Taking the expectation we get:

𝑃′ ⩾ (1 − 𝜀) 𝑃 − 1 − 𝜀
𝜀

𝑅 (5.10)

□

Proposition 1. Let M be an additive auction with 1 bidders and 𝑚 items. Let 𝑃 and

𝑅 denote the total expected revenue and regret, 𝑃 = E𝑉∈𝐷 [𝑝(𝑉)] and 𝑅 = E𝑉∈𝐷 [𝑟 (𝑉)].

There exists a mechanism M∗ with expected revenue 𝑃∗ =
(√
𝑃 −
√
𝑅

)2
and zero regret

𝑅∗ = 0.

Proof. From Lemma 5.A.1 we know that ∀𝜀 > 0, we can find a zero regret mechanism

with revenue 𝑃′ = (1 − 𝜀) 𝑃 − 1−𝜀
𝜀
𝑅. By optimizing over 𝜀 we find that the best

mechanism is the one correspond to 𝜀 =

√︃
𝑅
𝑃
. The resulting optimal revenue is given
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by:

𝑃∗ = (1 −
√︂
𝑅

𝑃
)𝑃 −

√︃
𝑅
𝑃√︃
𝑅
𝑃

𝑅 = 𝑃 − 2
√
𝑃𝑅 + 𝑅 =

(√
𝑃 −
√
𝑅

)2
(5.11)

□

5.B Training Algorithm for Regret Net

We present the training algorithm for RegretNet, more details can be found in Duetting

et al. (2019).

Algorithm 5.2 Training Algorithm.

1: Input: Minibatches S1, . . . , S𝑇 of size 𝐵
2: Parameters: 𝛾 > 0, 𝜂 > 0, 𝑐 > 0, 𝑅 ∈ N, 𝑇 ∈ N, 𝑇𝜌 ∈ N, 𝑇𝜆 ∈ N.
3: Initialize Parameters: 𝜌0 ∈ R, 𝑤0 ∈ R𝑑 , 𝜆0 ∈ R𝑛,
4: Initialize Misreports: 𝑣′

𝑖
(ℓ) ∈ D𝑖, ∀ℓ ∈ [𝐵], 𝑖 ∈ 𝑁.

5:

6: for 𝑡 = 0, . . . , 𝑇 do
7: Receive minibatch S𝑡 = {𝑉 (1) , . . . , 𝑉 (𝐵)}.
8: for 𝑟 = 0, . . . , 𝑅 do
9:

∀ℓ ∈ [𝐵], 𝑖 ∈ 𝑛 :
𝑣′𝑖
(ℓ) ← 𝑣′𝑖

(ℓ) + 𝛾∇𝑣′
𝑖
𝑢𝑤

𝑡

𝑖 (𝑣𝑖 (ℓ); (𝑣′𝑖
(ℓ)
, 𝑉
(ℓ)
−𝑖 ))

10:

11: Get Lagrangian gradient and update 𝑤𝑡 :
12: 𝑤𝑡+1 ← 𝑤𝑡 − 𝜂∇𝑤L(𝑤𝑡 ;𝜆𝑡 ; 𝜌𝑡).
13:

14: Update 𝜌 once in 𝑇𝜌 iterations:
15: if 𝑡 is a multiple of 𝑇𝜌 then
16: 𝜌𝑡+1 ← 𝜌𝑡 + 𝑐
17: else
18: 𝜌𝑡+1 ← 𝜌𝑡

19:

20: Update Lagrange multipliers once in 𝑇𝜆 iterations:
21: if 𝑡 is a multiple of 𝑇𝜆 then
22: 𝜆𝑡+1

𝑖
← 𝜆𝑡

𝑖
+ 𝜌𝑡 𝑟̂𝑖 (𝑤𝑡),∀𝑖 ∈ 𝑁

23: else
24: 𝜆𝑡+1 ← 𝜆𝑡
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5.C Training algorithm for Online Regret Net

We present an online version of the training algorithm for RegretNet, more details

can be found in Duetting et al. (2019). This version in mentionned in the orginal

paper but the algorithm is not explicitly written there. The following code is our own

adaptation of the original RegretNet algorithm for online settings.

Algorithm 5.3 Training Algorithm.

1: Input: Valuation’s Distribution D

2: Parameters: 𝛾 > 0, 𝜂 > 0, 𝑐 > 0, 𝑅 ∈ N, 𝑇 ∈ N, 𝑇𝜌 ∈ N, 𝑇𝜆 ∈ N, 𝐵 ∈ N
3: Initialize Parameters: 𝜌0 ∈ R, 𝑤0 ∈ R𝑑 , 𝜆0 ∈ R𝑛,
4: for 𝑡 = 0, . . . , 𝑇 do
5: Sample minibatch S𝑡 = {𝑉 (1) , . . . , 𝑉 (𝐵)} from distribution D.
6: Initialize Misreports: 𝑣′

𝑖
(ℓ) ∈ D𝑖, ∀ℓ ∈ [𝐵], 𝑖 ∈ 𝑁.

7:

8: for 𝑟 = 0, . . . , 𝑅 do
9:

∀ℓ ∈ [𝐵], 𝑖 ∈ 𝑛 :
𝑣′𝑖
(ℓ) ← 𝑣′𝑖

(ℓ) + 𝛾∇𝑣′
𝑖
𝑢𝑤

𝑡

𝑖 (𝑣𝑖 (ℓ); (𝑣′𝑖
(ℓ)
, 𝑉
(ℓ)
−𝑖 ))

10:

11: Get Lagrangian gradient and update 𝑤𝑡 :
12: 𝑤𝑡+1 ← 𝑤𝑡 − 𝜂∇𝑤L(𝑤𝑡 ;𝜆𝑡 ; 𝜌𝑡).
13:

14: Update 𝜌 once in 𝑇𝜌 iterations:
15: if 𝑡 is a multiple of 𝑇𝜌 then
16: 𝜌𝑡+1 ← 𝜌𝑡 + 𝑐
17: else
18: 𝜌𝑡+1 ← 𝜌𝑡

19:

20: Update Lagrange multipliers once in 𝑇𝜆 iterations:
21: if 𝑡 is a multiple of 𝑇𝜆 then
22: 𝜆𝑡+1

𝑖
← 𝜆𝑡

𝑖
+ 𝜌𝑡 𝑟̂𝑖 (𝑤𝑡),∀𝑖 ∈ 𝑁

23: else
24: 𝜆𝑡+1 ← 𝜆𝑡

173



5.D Implementation and Setup

We implemented ALGnet in PyTorch and all our experiments can be run on Google’s

Colab plateform (with GPU). In 5.1, we used batches of valuation profiles of size

𝐵 ∈ {500} and set 𝑇 ∈ {160000, 240000}, 𝑇𝑙𝑖𝑚𝑖𝑡 ∈ {40000, 60000}, 𝑇𝑖𝑛𝑖𝑡 ∈ {800, 1600}

and 𝜏 ∈ {100}.

We used the AdamW optimizer (Loshchilov and Hutter, 2017) to train the

Auctioneer’s and the Misreporter’s networks with learning rate 𝛾 ∈ {0.0005, 0.001}.

Typical values for the architecture’s parameters are 𝑛𝑎 = 𝑛𝑝 = 𝑛𝑚 ∈ [3, 7] and

ℎ𝑝 = ℎ𝑛 = ℎ𝑚 ∈ {50, 100, 200}. These networks are similar in size to the ones used for

RegretNet in Duetting et al. (2019).

For each experiment, we compute the total revenue rev := E𝑉∼𝐷 [
∑
𝑖∈𝑁 𝑝

𝑤
𝑖
(𝑉)] and

average regret rgt := 1/𝑛E𝑉∼𝐷 [
∑
𝑖∈𝑁 𝑟

𝑤
𝑖
(𝑉)] using a test set of 10, 000 valuation profiles.

We run each experiment 5 times with different random seeds and report the average

and standard deviation of these runs.
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