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Abstract

Understanding user behavior in software applications is of significant interest to software developers
and companies. By having a better understanding of the user needs and usage patterns, the develop-
ers can design a more efficient workflow, add new features, or even automate the user’s workflow.
In this thesis, I propose novel latent variable models to understand, predict and eventually automate
the user interaction with a software application. I start by analyzing users’ clicks using time series
models; I introduce models and inference algorithms for time series segmentation which are scal-
able to large-scale user datasets. Next, using a conditional variational autoencoder and some related
models, I introduce a framework for automating the user interaction with a software application. 1
focus on photo enhancement applications, but this framework can be applied to any domain where
segmentation, prediction and personalization is valuable. Finally, by combining sequential Monte
Carlo and variational inference, I propose a new inference scheme which has better convergence
properties than other reasonable baselines.
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CHAPTER 1

Introduction

User modeling has been an active field of research in both human-computer interaction (HCI) and
machine learning communities in recent years. Significant growth in the amount of available users’
data, improvement in computational resources and the fierce competition between user-based busi-
nesses are all among the reasons behind this recent attention.

Growth in the user data is the result of growing avidity towards collecting more data with the
hope of better understanding the users. Proprietary software applications are gathering more and
more data with high time-resolution and from different modalities; data such as mouse movement,
event clicks, and location are now routinely collected by many software applications. Gaining
insight into such unprecedented data, requires developing new tools and models.

This growth in data collection has been happening in parallel with the growth in available inex-
pensive and powerful computational resources. In fact the boom in data agglomeration is partially
fueled by this massive growth; inexpensive and powerful hardware means more data can be stored
and processed. On the other hand, analyzing more data necessitates developing more affordable
and powerful hardware; hence, a virtuous cycle has been formed. Another positive consequence
of improvement in hardware is more powerful and flexible software applications. For instance,

‘ photo editing software applications are now available with countless features on mobile devices.
Professional-grade photo-editing software has also advanced by becoming more powerful at the
price of becoming more complicated.

Software companies are competing to attract more users by adding more features to their prod-
ucts. This trend has resulted in feature overload; there are more features in the software than an
average user is able to use. As an example, after loading a photo in a photo editing software appli-
cation, the user is confronted with an array of cryptic sliders like “clarity”, “temp”, and “highlights”
(see Fig. 1-1). Understanding the users’ behavior, allows recommendation of more relevant and

personalized features. Thus, user modeling is now an imperative part of designing most user-based

15
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Figure 1-1: User interface for Adobe Lightroom. The flexible and powerful interface enables
experts to achieve impressive results; however, novices may struggle to complete even basic tasks.

software applications.

Although the above reasons may explain the recent interest in applying machine learning tech-
niques to user modeling, we should mention that this topic is not entirely new. The literature on
it can be traced back to the paper by Brown and Burton (1978), where they proposed a framework
called procedural networks for representing the knowledge underlying a skill. They applied the
framework to debugging a student’s behavior in mathematical problems, which can be considered
as a special case of user modeling (Webb et al., 2001). There is more related work from the *80s and
"90s on the problem of student modeling; Webb et al. (2001) covered a comprehensive list of related
work from that period. The advent of the world-wide-web and e-commerce resulted in accelerated
growth in the area of user modeling with machine learning techniques. For some early works see,
for instance, Widmer and Kubat (1996); Pazzani and Billsus (1997); Ungar and Foster (1998).

In general, user modeling refers to methods and algorithms used to gain insight about a user
based on previous interactions (Bjorkoy 2010; Webb et al. 2001; Pazzani and Billsus 2007). User

models may be developed for different purposes; some common ones are as follows:

¢ Discovering common usage patterns across different users (e.g., Bae et al. 2017; Kosmalla
etal. 2015; Liu et al.; Wang et al. 2016): Log files of software application contain user actions
and their corresponding time-stamps; however, in many applications, the boundaries between
different tasks (i.e., a sequence of events) are not clear and the number of tasks done in each
work session is unknown a priori. In other words, the tasks are unobserved and should be
inferred from the observed event sequence (see Fig. 1-2). Segmentation and various time

serics models are commonly applied to this task.

o Identifying different user groups based on their usage patterns (e.g., Zhao ct al. 2016;
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Task 1: Fill part 2/21/15 23:16:01

of image

Task 2: Erase part
of image

Task 3: ...

Figure 1-2: A sample log file from Adobe Photoshop. Two sample columns in a log file from
Adobe Photoshop which include timestamps and the events. Note that the boundaries between the
tasks are not evident from only the log file.

Nikolenko and Alekseyev 2016; Geyik et al. 2015): In most software applications, there
is a latent heterogeneity between users; that is, users may belong to different usage pattern
groups. Inferring and identifying user clusters can be useful from different perspectives. From
a business perspective, it can help in identifying what types of users are more engaged with
the application or willing to pay for it. From a design point of view, knowing what types
of features different groups are using can potentially lead to an enhanced user interface and

more optimized workflow.

e Personalization and user-dependent recommendation (e.g., Hong et al. 2016; Rabbi et al.
2017): Personalization is known to be a possible solution to the problems of information
and feature overload (Bjorkoy, 2010). By recommending the features best suited for each
user’s interests and abilities, personalization can alleviate these problems and improve the
user’s experience. In general, recommendation models may not be user-dependent. Based on
the level of dependency on each user, recommendation models can be population-based (i.e.,

one-fits-all), semi-population-based, or individual-based' (Hong et al., 2016).

Latent variable models are a natural fit for these tasks since they all involve some unobserved
variable. In discovering the common usage patterns, this variable can be the unobserved task, in
identifying user groups this variable can be the hidden group, and for the personalization the user’s
type can be the unobserved variable. Latent variable models such as Gaussian mixture, factor anal-
ysis, and topic models have been applied to various HCI studies; for a review of these studies, see

Robertson and Kaptein (2016). In this thesis, we propose novel latent variable models for tackling

'A more detailed treatment of these approaches is provided in Chapter 6.
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the three goals of user modeling which we mentioned above.

Generally, latent variable models are a broad class of probabilistic models that are composed of
two parts: 1) the observed variables, which we can directly measure and 2) the unobserved variables,
which we assume exist and can affect the observed variables. The main advantage of using these
models is that we can incorporate our prior knowledge when designing a model. Graphical models
are the standard tool for designing these models; they allow for flexible and powerful models by
providing a framework for prior knowledge incorporation. As we will see in later chapters, in
most cases more a flexible model means a more challenging inference procedure for the latent
variables. We will discuss some widely used approaches for learning and inference in these models

in Chapter 2.

Discovering common usage patterns

For the first goal, we focus on identifying common tasks from user event traces (i.e., log files). A
task is a group of events. For instance, for the task of deleting part of an image, the events can be
opening the file, selecting the appropriate part of the image, deleting, and finally saving the image.
Having a good understanding of the tasks done by the users can potentially help in designing better
workflows and predicting the user’s intention.

We may impose different assumptions on the structure of the latent variables corresponding to
the tasks. For instance, if we consider a sequential structure and assume that the transition and event
emission probabilities are dependent only on the current task, then we are essentially assuming a
hidden Markov model (HMM). HMMs and their variants have been applied to time series segmen-
tation problems in HCI (e.g., Yin et al. 2008; Bui et al. 2002). Having a sequential model structure
is advantageous if we are interested in answering questions about the time-dependent aspect of the
data. Using these types of models, we can potentially answer questions such as where the user is
switching from one task to another (i.e., change-point detection problem) or what is the most likely
next task given the current task. We propose two latent variable models with sequential structures
in Chapters 3 and 4.

In Chapter 3, we introduce the segmented infinite HMM (siHMM), a hierarchical infinite HMM
(iHMM) that supports a simple, efficient inference scheme. The iHMM is a Bayesian nonparametric
variant of HMM that we will explain in Chapter 2. The siHMM is well suited to segmentation prob-
lems, where the goal is to identify points at which a time series transitions from one relatively stable
regime to a new regime. Conventional iHMMs often struggle with such problems, since they have
no mechanism for distinguishing between high- and low-level dynamics. Hierarchical HMMs (HH-
MMs) can do better, but they require much more complex and expensive inference algorithms. The
siHMM retains the simplicity and efficiency of the iHMM but outperforms it on user segmentation

problems, achieving performance that matches or exceeds that of a more complicated HHMM.
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Figure 1-3: Sample observations and inferred states for siHMM and Markov Jump Process
(MJP) (a) Observations (denoted by y) for the stHMM model are assumed to be equidistant and
discrete-time. Hence, we ignore the exact timestamp of sample observations in Fig. 1-2. The
inferred states are the index of the hidden states (denoted by z) and the boundaries between the
tasks. Note that we are inferring both the dynamics within each task and the high-level change
points from one task to another. (b) In the MJP model, we assume that observations can occur
on continuous-time points. That is, for the sample observations in Fig. 1-2, the events are not
distributed evenly over time. We infer the index of the hidden states and the sojourn times in each
state.

Chapter 4 covers another sequential model for time series segmentation based on Markov jump
processes (MJPs). In contrast to siHMM, where we assume time steps are discrete, MJPs are
continuous-time models that are applicable in settings where event timestamps are available and
consecutive events are not equidistant. These flexible and powerful models are used to model a
wide range of phenomena from disease progression to RNA path folding. However, learning and
inference in these models are challenging. Maximum likelihood estimation of parametric models
leads to degenerate trajectories and inferential performance is poor in nonparametric models. We
take a small-variance asymptotics (SVA) approach to overcome these limitations. SVA has shown
promising results on scaling-up Bayesian nonparametric models (see Roychowdhury et al. 2013a;
Jiang et al. 2012). Our experiments on user trace segmentation and other applications demonstrate
that our model is competitive with or outperforms widely used MJP inference approaches in terms

of both speed and reconstruction accuracy.

Fig. 1-3 illustrates the inferred hidden states in both siHMM and MIJP for the sample observa-
tions in Fig. 1-2. If we assume that knowing the exact timestamps is unnecessary and a hierarchical
structure exists over the dynamics of the hidden states, then the siHMM is a better choice between
the two models. However, if we assume the exact continuous-time timestamps are informative in
our dataset and not much gain occurs in a multilevel modeling, then the MJP is more suitable for

the dataset. We will discuss the merits of each of these models in more detail in Chapters 3 and 4.
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Figure 1-4: A sample result from applying topic models to log files. We introduce a nonstandard
variant of the topic models that can incorporate distributional representation of the events (see text).

If we ignore the sequential structure of the events in the log files, then each user can be repre-
sented as a bag of events. One assumption that we can make is that each user is a mixture of distinct
distributions (one for each task). This assumption leads to topic model structure for the latent vari-
ables. Topic models have also been applied to user data; see, for instance Geyik et al. (2015). Based
on a topic model, we can answer questions such as what are the frequent events in each task, or
what are the tasks that each user is interested in. For instance, Fig. 1-4 demonstrates an example
of inferring the set of events in each task and the tasks that each user spends more time on. These
models are limited in the sense that they generally ignore the sequential aspect of the data so they
cannot be readily applied to settings where sequential models such as HMMs are useful.

We apply topic models to user traces in Chapter 5. We introduce a nonstandard variant of topic
models that can benefit from the distributional representation of the events (e.g., commands in a
photo editing software). We obtain distributional representations from Adar et al. (2014). These
high-dimensional vector representations can capture semantic regularities in the event space; they
exhibit semantic consistency over directional metrics such as cosine similarity. For instance, vector
representation of similar commands such as “eraser tool” and “background eraser tool” will have a
high cosine similarity value. Traditional topic models cannot account for semantic regularities in the
command space. Neither categorical nor Gaussian observational distributions used in existing topic
models are appropriate to leverage such correlations. In Chapter 5, we propose using the von Mises-
Fisher distribution to model the density of commands over a unit sphere. Such a representation is
well-suited for directional data. Experiments demonstrate that our method outperforms competitive

approaches in terms of topic coherence on different datasets while offering efficient inference.

Identifying user groups

We focus on identifying different user groups in a photo editing software application where instead

of a log file, we have the images and their corresponding edits for each user. The edits are repre-



21 Chapter 1. Introduction

User Style 1
[o]o]
User Style 2
2 0 :o0lojo! {46 | 12
8 g p p oz 2
= 2 3¢ Original image
= o -
gy & E & User Style 3
[+4]
Training data o] 21 [ 0o
o - E > w ﬁ
§ £ 3 ' B 3
= g 8 = o F
g3 e © 5

Figure 1-5: Identifying user groups based on images and their corresponding edits. The training
data contains a set of images and their edits. The inferred user styles can be applied to different
images and produce different styles. In the above example, inferred user styles 1 and 3 are from
novice users which typically do not utilize various sliders. The inferred user style 2 corresponds to

an expert user.

sented as a vector of slider values (e.g., vector of sliders such as “Brightness” or “Contrast”). Our
goal is to infer different user styles applied to the same or similar image. That is due to the fact that
in photo enhancement, different experts may make very different aesthetic decisions when faced
with the same image, and a single expert may make different choices depending on the intended
use of the image (or on a whim). We therefore want a system that can propose multiple diverse and
high-quality edits. In Chapter 6, we develop a statistical model that meets these objectives. Our
model builds on recent advances in neural network generative modeling and scalable inference, and
uses hierarchical structure to learn editing patterns across many diverse users. Empirically, we find
that our model outperforms other approaches on this challenging multimodal prediction task.

Fig. 1-5 illustrates a synthetic example of training data and the inferred user styles from our
model applied to an image. Identified user styles can be applied to a new image and produce a
diverse set of edits applied to a single image. These styles may correspond to styles of a novice or
multiple different experts. Without identifying different user styles, this problem will be reduced to
predicting a single edit for an image. However, in many applications including photo enhancement

there is no single “correct” edit for a given input (e.g. image). Most work predicting photo edits as-
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sume a single best edit, given an image. See for instance models by Yan et al. (2016) or Bychkovsky
et al. (2011) where the authors use a gaussian process regression or a deep neural network to learn
a mapping from the image to the slider values. These methods approximate a parametric function
by minimizing a squared (or a similar) loss. A thorough review of related models is provided in
Chapter 6.

Personalization and user-dependent recommendation

There is an extensive literature on personalization and recommendation in user models; tools such as
collaborative filtering (Su and Khoshgoftaar, 2009), k-NN, and kernel-based algorithms (Ghazanfar
et al., 2012) have been widely used for these tasks. Particularly, various latent variable models
have been proposed in the literature for personalization. For example, Ovsjanikov and Chen (2010)
introduce a modified topic model for personalization in the settings with high sparsity and volatility.
Hu et al. (2014) proposed a two-step procedure for personalization using a latent Dirichlet allocation
(LDA) model. They first infer user interests and form a user profile which is a vector of topic
proportions for each user in an LDA model. Next, they use the user’s interest profile to conduct a
nearest neighbor search over all the other users and make recommendations based on the top 100
users. For more examples of these types of models see Brusilovski et al. (2007).

We develop a latent variable model for personalization in photo editing applications in Chap-
ter 6. Similar to the previous task, we assume we have a set of images and their corresponding
edits by a user. Our aim is to predict the edits applied to a new image, given a history of edits from
a user (and also other users). The model is an extension of the style identification model which
we introduced above. We show that in addition to identifying user groups, the model is capable of

adapting to a user’s aesthetic preferences.

Limitations of the models and some possible solutions

Despite outperforming other baselines, the latent variable models in Chapters 3 to 6 may suffer
from poor inference performance. This is due to the fact that the variational inference is known to
have difficulties in approximating distributions if non-flexible variational distributions are used. To
improve the performance of variational inference in these types of models, we introduce Discrete
Particle Variational Inference (DPVI) in Chapter 7. DPVI is a new approach that combines key
strengths of Monte Carlo and variational techniques. DPVI is based on a novel family of particle-
based variational approximations that can be fit using simple, fast, deterministic search techniques.
Like Monte Carlo, DPVI can handle multiple modes, and yields exact results in a well-defined limit.
Like unstructured mean-field, DPVI is based on optimizing a lower bound on the partition function;

when this quantity is not of intrinsic interest, it facilitates convergence assessment and debugging.
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In addition to application of user trace segmentation, DPVI performance is illustrated and evaluated
via experiments on several other parametric and nonparametric models. Results show that DPVI can
offer appealing time/accuracy trade-offs as compared to multiple alternatives. We discuss further

limitations of the proposed models along with some possible future research directions in Chapter 8.
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CHAPTER 2

Background

In this chapter, we provide a brief overview of the methods and models which different chapters
of this thesis use extensively. In particular, we explain various approaches for inference in latent
variable models and also review some Bayesian nonparametric models we utilized to build our

proposed latent variable models.

2.1 Inference for latent variable models

Consider a Bayesian model p(y|z)p(z) in which y denote the observations and z denote the latent
variables. In Bayesian inference, we are typically interested in approximating the posterior prob-
ability distribution p(z]y) over latent variables z = {z1, ..., zy}, where the target distribution is
known only up to a normalizing constant Z: p(z|y) = f(z)/Z. We will refer to f(z) > 0 as the
score of z and Z as the partition function. Most approximate inference algorithms fall into two
classes: Monte Carlo methods and variational methods. Monte Carlo methods generate samples
from approximations to the posterior distribution that grow more accurate as the technique is given
more compute time. Variational methods (Wainwright and Jordan, 2008) treat probabilistic infer-
ence as an optimization problem over a set of distributions. This set is typically constrained (e.g., to

factorized conjugate exponential distributions), thereby attaining efficiency at the expense of bias.

2.1.1 Importance sampling and sequential Monte Carlo (SMC)
A general way to approximate p(zly) is with a weighted collection of K particles, {z,...,z%}:

p(zly) ~ q(z) = Zwk5 ks 2.1

25
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where zF = {z{“, ey zf\,}, and ¢ x is the Dirac measure at X. Importance sampling is a Monte
Carlo method that stochastically generates particles from a proposal distribution, z* ~ r(-), and
computes the weight according to w* oc f(z*)/r(z"*). Importance sampling has the property that
the particle approximation converges to the target distribution as K — oo (Robert and Casella,
2004).

Sequential Monte Carlo (SMC) methods such as particle filtering (Doucet et al., 2001) apply
importance sampling to stochastic dynamical systems (where n indexes time) by sequentially sam-
pling the latent variables at each time point using a proposal distribution r(z,|2,-1). As a concrete
example, consider the following stochastic dynamical system also known as a hidden Markov model

(HMM). The joint probability density can be written as:

T
p(z,y) = p(21) [ | P(znl2n-1)p(ynl2n). 22

n=1

Our goal is to compute the posterior p(z1.7|y1.7). However, for most models with non-linear
non-Gaussian transition and observation distributions, the posterior does not admit a closed form
and we need to resort to approximate inference methods. In an SMC scheme, particles are extended
over time by a sequence of propose and resample steps. At time n = 1, we sample a set of K
particles from r(z;) using standard importance sampling. For n > 1, we first resample the particles

based on their weight:
ak | ~ Cat(Wy_1), (2.3)

where W, £ (W}, .-, WX) denotes the normalized importance weights, Cat denotes the cate-

gorical distribution and a¥_; represents the index of the “parent” at time n — 1 of particle zk  for

n = 2,---,T. Next, we propose new set of particles conditioned on the resampled particles:
k ah_,
zn ~ T(zn|2,27"), (24)
k
and extend each particle with the new sample: 2¥ = (zi’;:_ll, zF). Attime T, we have the following

approximation to the posterior: p(z1.7|y1.7) = ZkK:l WT%Z{“;T'

Up to this point, we assumed the parameters for the transition p(zy|z,—1) and emission p(y,|zy,)
distributions are known; for models with unknown parameters # € © we can assume a prior p()
over the parameter (vector) and approximate the posterior p(6, z;.7|y1.7). A Markov chain Monte
Carlo (MCMC) that alternates between sampling @ and z;.7 is a natural choice for this purpose. To
apply MCMC we need proposal distributions for 6 given z;.7 and vice versa. Sampling exactly from

p(flz1.7, y1.7) is typically feasible. However, exact sampling from pg(z1.7|y1.7) is only possible
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for few models with restrictive assumptions (e.g. linear Gaussian models). For most models, we
need to design a proposal distribution for sampling from pg(z1.7|y1.7)-

One popular approach in such scenarios is to use Particle MCMC (PMCMC) methods intro-
duced by Andrieu et al. (2010a). These methods use an SMC algorithm to propose samples for
po(z1:7|y1.7). The main advantage of these methods is the asymptotic exactness of sampling from
po(z1:7|y1.7) Which is due to the SMC algorithm properties. For a comprehensive overview of
PMCMC methods see Andrieu et al. (2010a).

2.1.2 Variational inference

Variational methods (Wainwright and Jordan, 2008) define a parametrized family of probability

distributions Q and then choose ¢ € Q that maximizes the negative variational free energy:

L[q] = / (z)log (( T) (2.5)

The negative variational free energy is related to the partition function Z and the KL divergence

through the following identity:

log Z = KLIq||p] + L]q], (2.6)
where
_ q(z)
KL[qllp] = /z q(z) log o(2ly)’ .7

Since KL[g||p] > O, the negative variational free energy is a lower bound on the log partition
function, achieving equality when the KL divergence is minimized to 0. Maximizing £[g] with
respect to g is thus equivalent to minimizing the KL divergence between g and p. Note that we
are assuming continuous latent variables; for discrete variables, the integrations should be replaced
with summations in the above equations.

Unlike the Monte Carlo methods described in the previous section, variational methods do not in
general converge to the target distribution, since typically p is not in Q. The advantage of variational
methods is that they guarantee an improved bound after each iteration, and convergence is easy to
monitor (unlike most Monte Carlo methods). In practice, variational methods are also often more
computationally efficient.

Depending on the variational distribution family that we consider, the optimization procedure
for equation Eq. (2.5) can be different. For instance, restricting the family to exponential distri-

butions, may result in closed-form update rules of mean field variational inference. More flexible
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parametric density estimators such as multilayer perceptron (MLP) are also possible; we will dis-

cuss them in Section 2.1.3.

2.1.3 Variational autoencoders (VAEs)

The VAE, introduced by Kingma and Welling (2013), has been successfully applied to various mod-
els with continuous latent variables and a complicated likelihood function (e.g., a neural network
with nonlinear hidden layers). In these settings, posterior inference is typically intractable, and even
approximate inference may be prohibitively expensive to run in the inner loop of a learning algo-
rithm. The VAE allows this difficult inference to be amortized over many learning updates, making

each learning update cheap even with complex likelihood models.

As an instance of such models, consider modeling a set of M i.i.d. observations Y = {y(™}M_,
with the following generative process: z(™) " h and y™ ~ f(go(z(™)), where z(™ is a latent

variable generated from a prior h(z) (e.g., N'(0, I')) and the likelihood function
po(y™12™) = f(y™; go(z(™)) 28

is a simple distribution f whose parameters gg(z(m)) can be a complicated function of z(™). For
example, po(y (™ |z(™)) might be N (y(™); u(z(™): ), ¥(z(™); 8)) where the mean and the covari-
ance depend on z(™ through a multi-layer perceptron (MLP) richly parameterized by weights and

biases 6.

In the VAE framework, the posterior density pg(z|y) is approximated by a recognition net-
work g4 (z|y), which can take the form of a flexible conditional density model such as an MLP
parameterized by ¢. To learn the parameters of the likelihood function # and the recognition net-

work ¢, the following lower bound on the marginal likelihood is maximized with respect to 6 and ¢:

Lyag(8,60) £ By, (21y)[log po(y|z)] — KL(gy(2ly)||p(2)). (2.9)

To compute a Monte Carlo estimate of the gradient of this objective with respect to ¢, Kingma and
Welling (2013) propose a reparameterization trick for sampling from q4(z|y) by first sampling from
an auxiliary noise variable and then applying a differentiable map to the sampled noise. This yields
a differentiable Monte Carlo estimate of the expectation with respect to ¢. Given the gradients, the

parameters are updated by stochastic gradient ascent.
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2.2 Bayesian nonparametric (BNP) models

Bayesian nonparametric models are flexible generative models that can capture complex latent struc-
tures and adapt their complexity to the data. These models provide another view on the problem of
model selection in machine learning. Typically, the number of parameters in a model can be deter-
mined via some model selection metrics which favors simpler models and can fit the data well. In
the BNP models the number of parameters is not fixed a priori; it can grow in the inferred model as
more data is observed. In fact complexity is controlled via the prior distribution; with small datasets
the posterior is typically simpler. By adding more data points the posterior gets more complex and
more accurate.

Being flexible and also an elegant alternative to parametric model selection, makes BNP models
ideal candidates for latent variable modeling. There are two main categories of BNP models de-
pending on whether they are based on a prior over functions (i.e., Gaussian process) or a prior over
distributions (i.e., Dirichlet process). In this thesis, we focus on latent variable models which are
extensions on Dirichlet processes. For a detailed review on BNPs see, for example, Gershman and
Blei (2012); Sudderth (2006).

2.2.1 Dirichlet process mixture models (DPMM)

A DPMM, a mixture model with a Dirichlet process (DP) prior, has been commonly used in prac-
tice. Having a simple and scaleable posterior sampling scheme can be the reason behind its wide
applicability. DP defines a distribution over random probability measures. It is defined by a con-
centration parameter « and a base measure H over a measurable space ©. More concretely a DP

is defined as follows:

Definition 2.2.1 (Dirichlet process). Assume o > 0 and a probability space (0, F, H). We say G
is distributed according to a Dirichlet process with parameters o and H and write G ~ DP(a, H)

if for every measurable partition {77,...,Tk} of ©:
K
Un=6, TnT;=0i+#j (2.10)
k=1
we have

(G(T1),G(T»),...,G(Tk)) ~ Dit(aH(T}), aH(T»), ..., o H(Tk)). (2.11)

Intuitively, this means if we sample from a DP and sum over the probabilities in a region T}, € ©
then there will be a mass of H(T},) in that region on average. The concentration parameter o controls

the inverse variance; a high o means more concentrated mass around the H (7%).
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There are various representations of the DP. The one described above is not a constructive rep-
resentation; in what follows we provide two more representations of DP which are constructive
and can be used in devising inference schemes. We define a DPMM based on these constructive

representations.

DPMM generates data from the following process (Antoniak, 1974; Escobar and West, 1995):

m|a ~ GEM(a), 0x|H ~ H, (2.12)

anﬂ" ~ 7T, ynlzn, (gk)];..;l ~ F(gzn)v

where GEM(a) is the stick-breaking distribution with concentration parameter a > 0 defined by

m= @ -v)), v % Beta(l,a) 2.13)
Jj<i
and H is a base distribution over the parameter 6, of the observation distribution F(y,|0,, ). Fig. 2-
1(a) demonstrates the graphical model for the DPMM.

Since the Dirichlet process induces clustering of the parameters § into K distinct values, we can
equivalently express this model in terms of a distribution over cluster assignments, z, € {1,...,C}.

The distribution over z is given by the Chinese restaurant process (Aldous, 1985):

tc if ¢ S C+
P(zn - Clzlzn—l) X 2.14)
8] lfC = C+ —+ ].,

where t. is the number of data points prior to n assigned to cluster ¢ and C is the number of

clusters for which ¢, > 0.

2.2.2 Hierarchical Dirichlet process (HDP)

HDP introduced by Teh et al. (2006a) is a hierarchical variant of Dirichlet process that can be
applied to grouped data (see Fig. 2-1 for its graphical model). We assume that there are M groups

and denote the nth observation in group m by ym,. The generative process is as follows:
iid.

Bly ~GEM(Y),  mm X DP(e,B),  Ou|H ~ H, (2.15)

Zmnlwm ~ Tm, ymnlzmm (gk)zil ~ F(szn),
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(b)

Figure 2-1: Graphical models for (a) DPMM (Section 2.2.1), (b) HDP (Section 2.2.2) and (c)
HDP-HMM (Section 2.2.2).

where 3 and m,, are probability measures over positive integers and each m,, is independently

distributed according to DP(a, 3). A sample from DP(a, 3) can also be shown as:

oC
w ~ GEM(a), Ty, o 3, T = Zwkcsmk. (2.16)
k=1

HDP can be extended to sequential domains. Applying HDP to an HMM results in a model
which is called HDP-HMM (Teh et al., 2006b) or infinite HMM (iHMM). This is a dynamic mixture
variant of the HDP, in which there is a mixture component for each possible hidden state. An iHMM

generates data from the following process:

Bly ~GEM(y),  mm ~DP(a,B),  6i|H ~ H, (2.17)

Zt+1lzfa ("'Tm)?:=1 ~ Tty ytlzh (Bk)ﬁ—_l ~ F(BZ:)?
where z; is the hidden state at time ¢ (see Fig. 2-1(c)).

Like the DPMM, the iHMM induces a sequence of cluster assignments. The distribution over
cluster assignments is given by the Chinese restaurant franchise (Teh et al., 2006b). Letting ;.
denote the number of times cluster j transitioned to cluster c, z; is assigned to cluster ¢ with prob-
ability proportional to t,, ., or to a cluster never visited from z;_1 (¢.,_,. = 0) with probability
proportional to «. If an unvisited cluster is selected, z; is assigned to cluster ¢ with probability
proportional to Zj tjc, O to a new cluster (i.e., one never visited from any state, ) jtie = 0) with

probability proportional to .
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2.2.3 Hierarchical Gamma-exponential process (HTEP)

HI'EP, the hierarchical variant of the gamma-exponential process (T'EP), can be used for building
continuous-time sequential models. We denote the Moran gamma process with base measure H
and rate parameter v by I'P(vy, H) (Kingman, 1993). We recall that the Moran gamma process is a
distribution over measures. If ;» ~ I'P(v, H) is a random measure distributed according to a Moran

gamma process with base measure H on the probability space (2, ) and rate parameter -, then for

all measurable partitions of €2, (A,. .., A,), u satisfies
(u(A1), ..., u(Ag)) ~ Gam(H (A1), 7) x - - - x Gam(H (4y), 7). (2.18)
The HI'EP generates a state/dwell-time sequence 2, 1, 21, to, 22, 3, 23, . . . (With zo assumed

known) according to (Sacedi and Bouchard-Cété, 2011):

po ~TP(y0,0Ho),  pm | po ~ TP(v, o), (2.19)
2k I 2k—1, (/me)?r?:o ~ fz lk | k-1, (/‘m);r.;):o ~ Exp(”/"zk_l ”’ (2.20)

where Hy is the base probability measure, ag is a concentration parameter, fi, = fm /|| tmll,

and ||12|| denotes the total mass of the measure .

2.2.4 Truncated variational inference in DPs and HDPs

Inference in DPMM and HDP models can be done via Monte Carlo methods such as Gibbs sam-
pling and also via variational methods. For the purpose of this thesis, we only focus on truncated
variational methods since they are more amenable to scaling up to large datasets.

Performing variational inference in BNP models is challenging due to the fact that these models
can potentially have infinite number of variational parameters. Hence, most variational approaches
in these models are based on truncation. Truncation can occur in two different ways: 1) truncating
the two stick-breaking distributions in the definition of HDP (used by Hoffman et al. 2013) and
2) truncating the support of g(z;) which is the variational distribution for the hidden states in an
HDP model (used by Bryant and Sudderth 2012). We only use the second scheme in this thesis but
we explain both here for the sake of comparison. To be more concrete, we compare the inference

schemes in the context of an HDP topic model.

Truncating the stick-breaking process for the variational distribution The first scheme
introduced by Hoftman et al. (2013), assumes the following generative model for an HDP topic
model for D documents (which is different from Eq. (2.15)):
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1. Draw breaking proportions at the corpus level, 3; & Beta(1,v) forj € {1,2,3,--- }.
2. Draw infinite number of topics, 6 ~ Dir(n) for k € {1,2,3,---}.
3. For each document:

(a) Draw document-level topic indices, c¢g; ~ Mult(o(8)) for i € {1,2,3,---} where
0i(B) = [1;<:(1 - B;)(8:)-
(b) For each word n:

i. Draw breaking proportions at the document level, 74; ~ Beta(1, o).
ii. Draw topic assignment zg4, ~ Mult(co(7g)).

iii. Draw word wy, ~ Mult(é, ey, )

The variables in this model that need to be inferred are V5, Ok, Cai, Tdi, and zgy,. Since the model
contains infinite number of hidden variables, a naive variational approach requires optimizing over
potentially infinite number of variational parameters. To address this issue, one approach introduced
by Blei et al. (2006) is to truncate the stick-breaking distributions in the variational distribution at
two levels. Considering truncation levels T and K for the document-level and corpus-level sticks,

we have the following variational family:

K D T Ny
a8, 8,¢,m,2) = [[ a@x)a(B) [T ] alcar)a(mas) I azan) (2.21)
k=1 d=1i=1 n=1

where Ny is the number of words for document d.
For high enough truncation levels 7" and K, the variational posterior will use as many as topics
that are needed and does not necessarily use all the possible T topics; hence, the model is not finite.

Also note that we are only truncating the variational distributions and not the generative model.

“Direct assignment” truncation The truncation scheme that we use in this thesis, is the called
the direct assignment truncation and it has been used by Johnson and Willsky (2014), Bryant and
Sudderth (2012), and Liang et al. (2007). As the name suggests, in the generative process for the
topic model, we directly assign words to corpus-level topics. That is, the generative model is the

same as Eq. (2.15) and we have the following variational distribution:

[e3) D Ng
a(0,8,m.2) = a(8) [T a(0x) [T a(7a) T a(zam) 2.22)

k=1 d=1 n=1
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The individual distributions for variational distributions are:

q(B) =6s(B),  a(fkl\x) = Dir(fx| M), (2.23)
q(ﬂ’dll/d) = Dir(“dll’d)y Q(zdnl¢dn) = Cat(zdn|¢dn)a

where dg+(3) is the degenerate distribution at the point 3* and Ak, vg, ¢4 are the variational
parameters. We truncate g(z4,), the topic indicator distribution for each word, at the threshold
K. Thatis, q(zgn = k) = 0 for k > K. With this assumption, we can ignore the topic
distributions with indices greater than K and only update the remaining parameters. In other
words, other factors g(3), g(6x) and g(74) are different from their priors over the first X com-
ponents. Hence, the variational parameters for g(74) and g(8) instead of countably infinite ele-
ments have K + 1 elements: g(7q) = q((7a1, Ta2, - , Tak, Tdrest)) = Dir(va1, - ,Vak+1) and
a(8) = (85,83, + Bics Bls) Whete g = 1 — K | mgp and By = 1 — K 1.

The main advantage of the direct assignment truncation scheme is that it requires less book-
keeping. Another advantage is that as opposed to the stick-breaking truncation, the family of ap-
proximations is nested over K. This means an automatic truncation level adjustment can be done as
proposed by Bryant and Sudderth (2012). However, the disadvantage of this approach is the update
to ¢(f3) is not conjugate given the other factors. We simplified the updates by using a point estimate
for 8. It has been empirically shown (see Johnson and Willsky, 2014; Bryant and Sudderth, 2012;
Liang et al., 2007) that the updates to the global topic weights have much less impact compared to
the improvements to the topic distributions. One reason for this behavior could be that the main
effect of 3 is to share sparsity across all document topics; hence, a point approximation for ¢(f)

can work reasonably well in practice for large datasets.

Updating the variational parameters requires taking the gradient of Eq. (2.5) with respect to the

variational parameters. This yields the following update equations for ¢4, Ax, and vy

Ddnk X exp{[Eq (Ok)[log 0;m] + [Eq(ﬂ'd)[log 7Tdk]} (2.24)
D
Men N+ > Cai)Bink (2.25)
j=1
Ny
Vak = @B + Y Co(d)Pank (2.26)
n=1

where c¢,,(;) is the number of times word n appears in document j. To update the 3 parameters, we
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need to take the gradient of the variational objective Eq. (2.5) with respect to 3*:

it = T [

D
= Vg« {lnp(ﬁ*) + Z Eqera) lnp(7rd|ﬁ*)} ,

d=1
where from Eqgs. (2.15) and (2.23) we have:
1
lnp(B8*) =2 - —(vy—1 —
aﬁk p(B") = g; Zmﬁ (v )Z T ST

and

K+1

8%;&(”) [in p(ral8*)] = ¥ (var) — Y (arcsn) +10(r S B2 — (7).

j=1

(2.27)

(2.28)

(2.29)

(2.30)

To update the gradients we use a backtracking line search so that for each gradient step we have

p* = 0.
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CHAPTER 3

Segmenting user behavior traces

with an efficient Bayesian nonparametric approach!

3.1 Introduction

User behavior traces collected from a software application may evolve at multiple timescales. For
instance, in a photo editing application, the tasks such as filling part of an image or erasing part of
it (see Fig. 1-2), evolve at the high-level. At the low-level and within the tasks, there are some non-
exchangeable events. That is, to correctly perform each task, some order of the events needs to be
preserved. In erasing part of an image, the eraser tool needs to be selected first, then the background
color should be chosen and finally the tool should be dragged over the image.

Such hierarchically structured sequences characterized by multiple timescales is not limited to
user trace segmentation and may arise in many domains, including natural language (Lee et al,,
2013), handwriting (Lake et al., 2014), and motion recognition (Heller et al., 2009). For example,
it is natural in motion recognition to model the sequence of high-level actions (such as walking to a
chair, then sitting down) and steps within the actions (e.g., bending one’s knees then leaning back
to sit down) at two different levels.

In this chapter, we will focus on the problem of segmentation, in which the goal is to identify
points at which a time series transitions from one relatively stable regime to a new regime. In the
photo editing example, the segmentation problem would be to identify when a user transitioned from
one type of task (e.g., filling part of an image) to another (e.g., erasing part of an image), without
necessarily identifying what they were doing. This is one of the easiest problems in time-series
modeling that involves multiple timescales, but (as we will see) it is quite hard for (i)HMMs, which

have no mechanism for distinguishing between high- and low-level dynamics.

"This chapter is based on the work by Saeedi et al. (2016) (http://proceedings.mir.press/vd8/sacedil 6.pdf).

37



3.1. Introduction 38

i
R S s e \
LR T L; v e “¥p - L T T o e -
s T TTY T ke, s nmy) ® e
& - o antih 3 » I s
I - o
R ) S B S R s
PO Sadiands M - B PORTIL AR LY Ak B A R E G 0k e
I—E- g L I S At e o o Sgnge o By &
on 08
- = e PR
i g ) }
i SE e e #a e 4 ey g T P e 4 save
| N P h e e Wi
e o TR, e
5
2 08
Eos
0.4
5J‘:OZ
9 oo

100 200 300 400 500 600
Time

(a) (b)

Figure 3-1: siHMM applied to a synthetic dataset. (a) A sample of a synthetic dataset with true
and inferred segmentations. Top three plots: the y-axis shows 1-d obServations, colors denote true
or inferred hidden state, vertical lines denote true or inferred segment boundaries. Bottom plot:
inferred posterior probability of a segment boundary. (b) Top True and Bottom inferred transition
matrices

The iHMM and its variants (e.g., Fox et al. 2008; Sacedi and Bouchard-Coté 2011) have been
among the most successful Bayesian nonparametric models, with applications from speech recog-
nition (Fox et al., 2011) to biology (Beal and Krishnamurthy, 2012). However, despite their success
in modeling time series with complicated low-level dynamics, their application to time series with
multiple timescales has been limited.

The hierarchical HMM (HHMM) is a generalization of the HMM that naturally deals with
dynamics at multiple timescales (Fine et al., 1998; Murphy and Paskin, 2002). But this general-
ity comes at a price: these models lack the simple predictive distributions and efficient inference
schemes that make (i)HMMs so popular. And the available nonparametric versions of the HHMM
(e.g., Heller et al., 2009; Stepleton et al., 2009) are complex to implement and not readily amenable
to efficient inference.

We propose the segmented iHMM (siHMM), a simple extension to the iHMM that does not suf-
fer from the above problems and can discover segment boundaries in time series with dynamics at
two timescales. Unlike the HHMM, our model does not explicitly model higher-level state; instead,
it assumes dynamics that evolve according to a standard iHMM except for occasional change-point
events that kick the model into a new randomly chosen hidden state, disrupting the low-level dy-
namics of the iHMM. Because it relies on a very simple model of high-level dynamics, inference in
the siHMM has time and implementation complexity similar to that of the iHMM, and well below
that of a typical HHMM. We show that this simple change-point extension is sufficient to encourage

the iHMM to model time-series data characterized by multiple regimes of low-level dynamics.
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Although our model is limited by the depth of the hierarchy, in many practical applications of
HHMMs (e.g., Olivera et al. 2004; Nguyen et al. 2005; Xie et al. 2003) a two-level analysis of the
dynamics is sufficient.

Below, we describe two versions of the model. The first version, which we call the feature-
independent model, enjoys conditional conjugacy and therefore has simple Gibbs and variational
inference algorithms. The second version, which we call the feature-based model, can incorporate
domain knowledge without requiring a complex new machinery. We present a stochastic variational
inference (SVI) scheme for the feature-based model; the derivation for the feature-independent
model is similar and straightforward.

In addition to applying the model to segmenting user behavior traces, we apply the model to
two different tasks: biometric sensor data labeling and automatic behavioral segmentation of fruit
fly. As mentioned, segmenting user behavior traces is of significant importance in understanding
the behavior of software application users; it can help in identifying and simplifying the complex
common patterns among the users (e.g., Adar et al. 2014; Han et al. 2007; Horvitz et al. 1998).
Labeling sensor data gathered in everyday life settings can be used not only to understand physical
activities (e.g., Ermes et al. 2008; Pirkki et al. 2006), but also to detect psychological and emotional
states (e.g., Picard et al. 2001; Healey and Picard 2005). Such labels can aid in implementing
effective health and well-being related interventions, understanding user behavior, and designing
affective interfaces. Finally, for the fruit fly behavior segmentation, we use a dataset from Kain et al.
(2013); the results of this task can be used to better understand how the nervous system generates
behavior.

We empirically compare our model with two main baselines: 1) a two-level Bayesian nonpara-
metric hierarchical HMM (HHMM) introduced by Johnson (2014) that models high-level dynamics
as an infinite hidden semi-Markov model (HSMM) and sub-dynamics as an iHMM, and 2) the
iHMM. In each of these tasks, we show that our model outperforms the nonparametric HHMM
(despite being substantially simpler and faster) and the iHMM.

3.2 Model

Our model can be viewed as a generalization of an iHMM where the transition probability from
each state k is a mixture of two distributions: 1) a state-dependent transition probability distribution
Tk, as in an iHMM, and 2) a state-independent probability distribution m9. Which of these two
distributions generates a hidden state z; at a given time ¢ depends on the hidden state z;_; and
observation y;_; at the previous time ¢ — 1.

We say that the transitions caused by 7o define the boundaries of a segment. The model implic-

itly assumes that the low-level dynamics within a segment are more structured and predictable than
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the higher-level dynamics that govern transitions between segments, since it can throw much more
modeling power at these low-level dynamics. For instance, In the user trace data in a photo editing
application, the dynamics of a task may be highly structured and predictable, whereas the dynamics
that govern whether a user transitions from filling part of an image to erasing or applying a filter

may be much less predictable.

3.2.1 Feature-independent model

The feature-independent model assumes the following generative process. At time step ¢t = 0, we
initialize the process by sampling a hidden state zy from a distribution 7. Given a hidden state 2,
we generate an observation y; from a conditional observation distribution F'{(8,,) where 6,, is the

parameter corresponding to the hidden state z;: y;|z; ~ F(6,,).

Next, we sample a variable s;, which we call the segmentation variable, from a Bernoulli dis-
tribution with a parameter w,,. This is a state-dependent variable which has a conjugate beta prior

with hyperparameters ag and by. Here, s; = 1 denotes the beginning of a new segment:
w; ~ Beta(ag,bo); st|zt, yr ~ Bemn(w,, ).

We denote the probability of creating a new segment at time t by p; ¢. If s; = 0, we sample the
next state 2,41 from a state-dependent distribution 7, (as in the iHMM), otherwise, we ignore the

current state z; and sample 24 from a distribution 7:
2t+1 | 2,8t =0~ Ty, Zp41 | 26,5t = 1 ~ 7.
The transition matrix has the same generative process as the iHMM:

B~ GEM(y);  m ~ DP(a, B); 6; ~ H;

where H is the prior distribution over 6, and -y and « are the concentration parameters of the
stick-breaking and the Dirichlet process, correspondingly. The graphical model of the feature-
independent siHMM is depicted in Fig. 3-2.

An illustration of the model applied to a synthetic dataset (explained in Section 3.5.1) is provided
in Fig. 3-1. The model is able to approximately recover the block-diagonal structure of the true
transition matrix. Even though the model does not explicitly encourage block-diagonal structure,
the sparsity induced by the DP prior on 7, is sufficient to encourage the model to push inter-segment

dynamics into g and recover the block-diagonal intra-segment dynamics.
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Figure 3-2: Graphical representation of the feature-independent siHMM.

3.2.2 Feature-based model

In some tasks such as segmenting software user traces or tagging fruit fly behavior, there is a rich
domain knowledge available for improving the model. For instance, in segmenting user traces,
features like 1(action = save) or 1(action = close) may indicate the end of a segment. We
modify the model in a way that we can add features declaratively. Although due to lack of conjugacy,
deriving the Gibbs sampler is not straightforward anymore, in Section 3.3, we derive an efficient

SVI algorithm for this model.

The difference between this version of the model and the feature-independent version is in the
conditional distribution of the segmentation variable s; (see Fig. 3-3 for the graphical model). Here,

the parameter of the Bernoulli distribution is

1
1+ exp (—¢ - f(y) — wz,)

o(¢-f(y) + w:,)

where ¢ is the weight vector for the data-dependent features, f(y) is the feature function which
consists of all observation-dependent features, and w., is the feature weight for hidden state z.
To simplify the notation, we assume that the observation-dependent features only depend on the

observation at a single time step. Hence, we have
stlzt, ye ~ Bern(o (o - f(ye) + w2,))-

We do not assume a prior for the feature weights; instead, we use a point estimate for them in our

SVI algorithm.
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Figure 3-3: Graphical representation of the feature-based siHMM.

3.3 Stochastic variational inference

To keep the notation uncluttered, we assume that we have a dataset y of K sequences all with the
same length T and write: y = {yf -} |,z = {25 .} |, s = {s} [ })X|. For inference, we use the
stochastic variational inference (SVI) algorithm (Hoffman et al., 2013) and approximate the poste-
rior with a truncated variational distribution introduced by Johnson and Willsky (2014). We approxi-
mate the posterior p(z, s, 3, o, w, 7, 8]y) with a mean-field family distribution q(z, s)q(3)q(w)q(¢)q(7)q(8).
In the language of SVI, z and s are local variables and /3, w, ¢, 7, and 6 are global variables. We

maximize the marginal likelihood lower bound L£:

ﬁé[Eq ].nq p(zusuﬁuw:qﬁ!ﬂ—!g1y') J

(z,8)q(8)q(w)q(d)q(m)q(0)

by using stochastic natural gradient ascent over the global factors and standard mean-field updates
for the local factors. At each iteration of SVI, we sample a minibatch of M sequences from the
dataset and update its local factors; next, given the expectation with respect to the local factors, we
update the global factors by taking a step of size p in the approximate natural gradient direction.
To further simplify the notation, we assume that the minibatch is a single sequence and drop the

superscript for y, z and s. Next, we explain the variational factors for each of the variables.

3.3.1 Variational factors

For g(z1.7, s1.7), the “direct assignment” truncation used by Johnson and Willsky (2014), sets
q(z1.7, s1.7) = 0 if for any of z; to zr we have zz = k and £ > K here K is the truncation
level. Since by using this truncation the update to ¢(/) conditioned on the other factors is not con-
jugate anymore, similar to that we described in Section 2.2.4, we use a point estimate for g(3):
q(B) = dp~(3). We adopt the same point estimate approach for the parameters of the sigmoid func-

tion; hence, q(¢) = dg+ (@) and q(w,) = dux (w:).
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With this truncation scheme, we can write the prior over 7; as p((Ti1, ..., Tk, Tirest)) =

. K K .
Dir(afB1, . .., aBK, Prest). Here, Mirest = 1 — > 3 q Tk and Bress = 1 — D 5 Bx. The opti-
mal g((71, - . ., Tk, Tirest)) is of the form of Dir(&;) where @ is the parameter of the variational

distribution (Hoffman et al., 2013).

We assume that the prior over 6 is in an exponential family with natural parameter 7, and it is a
conjugate prior for the likelihood function f(y;|#). This implies that the optimal variational distribu-
tion ¢(#) is also in the same family with some other natural parameter denoted by 7. More formally,
we have: h(6;) o< exp{(n,t9(6:))} and ¢(8;) x exp{(7:,t9(6;))} where tg is the sufficient statistic
function of p(6).

3.3.2 SVI update equations

For the variational updates, we need to take expectations with respect to each of the variational
distributions. For the expectations with respect to q(z1.7, $1.7), a modification of the standard
HMM forward-backward algorithm with the following forward F' and backward B messages can

be used:

F(ze,5¢) & f(uel0z)p(selze,ye) x> Flzee1, se-1)plaelse-1, 2e-1);

Zt—1,5t—1
Blai,st) & > B(zrs1, se01) X f(yer110z00)P(ser1l2041, Y4 1)p(2er1 st 22).

Zt+1,5t+1

These messages can be computed in O(T'K?). In fact, the augmented transition matrix that we need

to compute for these forward-backward messages has the following form:

st41 =10 sgp1 =1
se=0 [ (I-p)l | Pl
ss=1 [ (1-pf)1nf | jouse Bk

where Il is a K x K transition matrix and 1 is an all-ones vector of size K. The matrix operation
for computing a message requires 2K ? operations for the upper half of the matrix (s; = 0) and
2K + K for the lower half (s; = 1). This is because all the rows of each K x K block in the lower
half are the same. Hence, the total number of operations for message passing is T(2K? + 3K).
Furthermore, the total memory required to compute these operations is O(T'K).

For updating the local factors, instead of 7;; and f(y¢|6.,) in Eq. (3.1), we compute the forward-

backward messages using: 7;; = exp{E,(r) In7;} and Ly 2 expf Eqeo,) I f (el62z, 2¢ = 1)}
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The expectations of the sufficient statistics with respect to ¢(21.7, s1.7) are:

T
teans = Eq(zrpos1r) Z Uzp—1 = 4,2t = j,5¢-1 = 0,8 = .];
t=2
T
teans 2 [E(I(ZI:T:SI:T) Uz = 5] + Z]l[zt =Jrse-1 =15
t=2
. T -
til = IE‘I(ZI:Tvsl:T) Z ]l[zt =J,st = ]til(yt) G.D

t=1

Given these expected sufficient statistics for S sequences and minibatch size M, we can write the
update equations for the parameters of the global variational factors g() and g(#) with a scaling
factor m = S/M:

7ii < (1= p)ii + p(ns + m.t,)
Gy (1 - p)dl + p(a’i + m'Efrans)
&0 (1 = p)ag + p(ao + m.tyyy).
For the global factors g(w), ¢(#) and g(3), we use a point estimate; hence, we only need the gradient

of £ with respect to 8%, ¢* and w*. For V g+ we follow the derivation in Section 2.2.4 and obtain

the gradient to use in a truncated gradient step on 5*. To estimate ¢*, we have:

o, z1.1, 51:T7y1:T)]}

p(
v ,,ﬁ = v * lE Z1.781- ln
& @ { q(zuT51:T) [ q(®)q(z1.781.1)

T
= [Eq(zwm:r) [Z sef(y) — p(st = 1y, Zt)f(yt)] .

t=1

We have a similar equation for w}. This gradient computation has time complexity of O(TK).

3.4 Related models

There are few models similar to our model in terms of extending iHMM to multiple timescales.
Infinite hierarchical HMM (iHHMM), introduced by Heller et al. (2009), is a nonparametric model
that allows the HHMM to have potentially unbounded depth. Hence, the model can infer the number
of levels in the hierarchy. In iHHMM, the bottom level is the observed sequence and each level is a
sequence of hidden variables dependent on the level above. As the authors suggested, more efficient
inference algorithms are needed in order to make their model useful for practical applications.

The block-diagonal iHMM (Stepleton et al., 2009) is a generalization of the iHMM that assumes

a nearly block-diagonal structure on the transition matrix of the iHMM. Each block corresponds to
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a “sub-behavior” and the model can partition the data sequences according to these sub-behaviors.
The model first partitions the infinite number of hidden states into an infinite number of blocks by
using an additional stick-breaking process. Then, it increases the probability of transition between
the states of a block by modifying the Dirichlet process prior over the transitions. Hence, as the
block size becomes smaller, the model behavior converges to that of iHMM. For inference, as
the authors explained, achieving a fast mixing rate in their proposed inference algorithm requires
implementing a nontrivial bookkeeping-intensive method. In contrast, our model is much simpler
and easier to implement inference for, but it can also discover transition matrices with approximately
block-diagonal structure; the segmentation events provide a mechanism for transitioning from one
group of connected states to another.

Another related model is a two-level Bayesian nonparametric HMM introduced by Johnson
(2014) that models the high-level dynamics or the superstates as an HDP-HSMM. As a generaliza-
tion of iHMM, HDP-HSMM can model the dwell time in each state by sampling that from a state-
specific duration distribution once a state is entered. For a formal definition of the HDP-HSMM,
see Johnson (2014). Given each superstate j, observations are generated according to an iHMM
with parameters {37, 7r£, %}?;1 where z; denotes the substate at time step ¢. Compared to our
model, this model is much more flexible; however, the computation of forward-backward messages
is less efficient. Moreover, it requires more bookkeeping for all superstates and their substates, and
uses separate truncation levels for the superstates and each of the iHMMs correpsonding to them.
(One can set a large truncation level for all of them, but this means paying a huge computational
cost for iHMMs that only require a few states. In contrast, in the siHMM we only need to set a
single truncation level for the whole model.) We refer to this model as the sub-iHMM and use it as

a baseline since it is a flexible Bayesian nonparametric model that supports two-level dynamics.

Finally, the iHMM or sticky HDP-HMM can be used for segmentation by treating changes in
hidden state as segment boundaries (Fox etal., 2011). In the sticky HDP-HMM, a self-transition bias
encourages consecutive observations to be associated with the same state. The model can capture
segments in tasks such as speaker diarization; however, within a given state there are no dynamics.
In other words, in the sticky HDP-HMM, the observations within a segment are independent of
each other. This makes the model less appropriate for segmenting sequences with predictable intra-
segment dynamics. For instance, in a software application workflow an action like selection
needs to come before an action like move selection. In our iHMM experiments, we include a

”sticky” self-transition bias .

2We do not include a separate column in Table 3.2 for the sticky HPD-HMM; instead, we find the best variational
lower bound for all settings of hyperparameters of the iHMM inctuding a hyperparameter for self-transition bias.
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3.5 Experiments

We evaluate the performance of our feature-independent and feature-based models on synthetic and
real datasets. We use a synthetic dataset to illustrate the advantages of our model compared to
baselines.

In order to further demonstrate the capabilities of our model, we apply it to three real tasks from
human-computer interaction and two other domains: sensor data analysis, and biology. The proper-
ties of the datasets used for these tasks are provided in Table 3.1. In this table, the maximum number
of labels is the total number of segment labels for each dataset *. All datasets are accompanied with
the “gold standard” labels; hence, the ground truth is available and we can compute the labeling
error of our model.

As mentioned in Section 3.4, two reasonable baselines for our model are the two-level Bayesian
nonparametric HMM and iHMM. We report the labeling error (or normalized Hamming distance in
the case of the synthetic dataset) and predictive log-likelihood for our model and these baselines. To
choose among different hyperparameter settings, we use the variational lower bound (VLB) as our
objective measure. We show that our model, while being simpler and efficient in terms of inference,
is competitive with or outperforms these baselines. For all experiments on siHMM we try both the
feature-independent and feature-based models; we report the results separately in Table 3.2 to show
the effect of including observation features in the model. In the experiments, we only try the hidden
state and the observation as the features for a given time step. However, more sophisticated features
can be made from the observation(s). For the details of all experiments see the supplementary

material.

3.5.1 Synthetic data

We generate a synthetic dataset with 5000 data points from 3 different transition matrices, each with
3 hidden states. Each row of each transition matrix is sampled from a modified Dir(1) with self-
transition bias of 1. The observations are sampled from normal distributions with non-conjugate
separate priors N(0, 10) and I'"!(2, 1) on their mean and variance parameters, respectively. The
goal is to find the points where we change regimes and also to determine the dynamics within each
segment of the sequence. At each time step with probability 0.05, we switch the regime.

Fig. 3-1 shows a sample sequence and the result of running 100 passes of SVI over the whole
dataset for that sequence. For running SVI, we split the dataset into 20 sequences and use a batch of
size 2. We randomly sample a sequence with length 750 to calculate the predictive log-likelihood.

We report the error over the dataset for the hyperparameter setting with the highest VLB.

3For the synthetic dataset, maximum number of labels is the number of hidden states used to generate the observations
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We run SVI with 10 different seeds for 100 iterations over a set of hyperparameters (see the sup-
plementary material for all the settings which we considered). To compute the normalized Hamming
distance between the inferred states and the true states, we use the Munkres algorithm (Munkres,
1957). The algorithm assigns indices to the inferred sequence so that it maximizes the overlap with
the true sequence. Table 3.2 gives the computed distance over the dataset for the hyperparameter

setting with the highest VLB. We also report the predictive log-likelihood over the held-out set.

Fig. 3-4 shows the histogram of the normalized Hamming distance and also the predictive log-
likelihood for runs with different hyperparameter settings. In terms of the Hamming distance, the
siHMM performs slightly better than the iHMM and outperforms the sub-iHMM for most settings.
The same conclusion holds for the predictive log-likelihood. Furthermore, Fig. 3-1 shows that our
model can do reasonably well in finding the regime change points and also the states within each
segment of the sequence. We choose a threshold of 0.5 for the posterior segmentation probability
to identify a time point as a change point. This threshold is just a natural default; it can be tuned to
trade off sensitivity and specificity. Finally, as shown in the last row of Fig. 3-1, the model is able

to provide an estimate for the posterior probability of beginning a segment at time £.

Table 3.2 shows the normalized Hamming distance for the synthetic dataset; siHMM outper-
forms both iHMM and sub-iHMM. This might be because the synthetic dataset is specifically gen-
erated without any state-dependent high-level dynamics. Our model, which does not assume any
dynamics for the segments, performs better than the other baselines which implicitly or explicitly

assume that.
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Figure 3-4: Histogram of normalized Hamming distance and predictive log-likelihood. These
are over different settings of hyperparameters for the synthetic data set.
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Dataset #Points Held-out Max. # Labels

Synthetic 5e3 15% 9

Users 1.4e* 10 % 23

Sensors 1.2¢4 10 % 10

Drosophila  1e? 15 % 12

Table 3.1: Datasets used for experiments (description in text)
(Normalized Hamming Distance / Error% & Predictive LL)
Data Set iHMM sub-iHMM siHMM (WoF) siHMM (WF)
Synthetic ~ (0.21,-2.07 x 10%)  (0.23,-2.24 x 10%)  (0.15,—-2.05 x 10°)  (0.13,—2.19 x 10°)
Users (30%,—3.87 x 10%)  (24%, —2.51 x 10%)  (25%, —3.71 x 10%)  (16%, —3.52 x 103)
Sensors (27%, —-3.25 x 10%)  (22%, —3.95 x 10%) (18%,—3.21 x 10%)  (34%, —3.35 x 10°)
Drosophila  (36%, —6.58 x 10%)  (41%,—6.7 x 10%)  (37%, —7.18 x 10%)  (34%,—6.71 x 10%)
Table 3.2: Labeling error and predictive log-likelihood for various different datasets.

Key: iHMM = infinite HMM; sub-iHMM = a two level hierarchical infinite HMM, siHMM
(WoF) = feature-independent siHMM; siHMM (WF) = feature-based siHMM; Synthetic = synthetic
data segmentation and hidden state inference tasks for which we report the normalized Hamming
distance instead of error rate; Users = user trace segmentation task; Sensors = labeling sensor data
task; Drosophila = segmenting fruit fly behavior task.

3.5.2 Segmenting user behavior traces

Having a good understanding of the tasks done by users can potentially help in designing better
workflows in software applications. As a reminder, log files of software applications contain user
actions and their corresponding time-stamps; however, it is not clear only from these log files how
many different tasks have been done by a user in a single work session. A task consists of multiple
events and each work session consists of multiple tasks. Our two-level hierarchical model can be
used for detecting the boundaries between tasks (i.e., segments). We believe that for the software
applications in which the tasks are less predictable compared to the actions within each task, our
model is a good fit.

We collect log files of users who follow 23 different tutorials in a photo editing software. The
dataset contains 14000 data points and 59 unique events in total. The events are directly read from
the users log files and an action at time ¢ is the observation at that time point. We randomly choose
a sequence of size 1400 and form a held-out set. We split the sequences into subsequences of size
1000 and apply 100 passes of SVI to the dataset with both feature-based and feature-independent
models.

The labels (i.e., the tutorial numbers that the user followed) for each segment of the dataset are

available; hence, we can test the stHMM on predicting the labels for each segment. This task is more
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involved than segmentation, as we also need to group the substates within the inferred segments. We
use a simple K-means clustering on the empirical transition matrix which is generated from counting
the transitions in each inferred segment. This approach works well in practice; however, more
sophisticated methods are possible for grouping the substates. Table 3.2 provides the prediction
error (computed using the Munkres algorithm) for stHMM and the baselines. The performance
of our feature-independent model is significantly better than iHMM and comparable with that of
the more flexible (and also computationally intensivej sub-iHMM. Adding the observation feature
to the model reduces the error to 16%. As mentioned in Section 3.2.2, in this dataset there are

observations that can signal a change-point in the dynamics.

3.5.3 Segmenting and classifying human behavior from sensor data

Through the emergence of pervasive computing and affordable wearable sensors, in-situ measure-
ment of different bio-signals has become possible. This powerful source of data can be utilized for
several purposes, including activity recognition and task identification. Toward this goal, an effi-
cient algorithm for analyzing this large amount of data — which is gathered 24/7 —is essential. In this
section, we use siHMM to model the data collected via Empatica E4 wristband (Empatica, 2015),
a wearable device that can collect Electrodermal activity (EDA) (Boucsein, 2012), blood volume
pulse (BVP), acceleration, and body temperature. EDA refers to changes in electrical properties of
the skin caused by sudomotor innervation (Boucsein, 2012). EDA is an indication of physiologi-
cal or psychological arousal and has been utilized to objectively measure affective phenomena and

sleep quality (Sano et al., 2015).

Segmenting the sensor data can help psychophysiological activity recognition. For instance,
it can help in finding stressful periods objectively in order to detect the roots of stress in a per-
son’s lifestyle. However, manual labeling for large amounts of user data (days or months) is time-

consuming and even invalid if not reported in a timely manner.

We use a dataset with 12000 time steps, collected from a single user, and model the (normal-
ized) observations (i.e., EDA, BVP and acceleration in 3 dimensions) by a multivariate Gaussian

distribution. The hyperparameter setting is similar to that of Section 3.5.4.

The labeling error in Table 3.2 shows that feature-independent siHMM, while performing com-
parably to sub-iHMM, outperforms iHMM by a relative error reduction of 50%. Section 3.5.3
demonstrates the inferred segments for siHMM and the baselines. It seems that the single obser-
vation feature that we are using for the experiment does not help in this dataset; however, more

sophisticated features may help improving the segmentation.
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Figure 3-5: Segments and labels for data collected from sensors. From top to bottom: True,
sub-iHMM, iHMM, siHMM.

3.5.4 Segmenting fruit fly behavior

Automating scientific experiments on live animals has attracted significant attention recently (see,
for instance, Kain et al. 2013; Wiltschko et al. 2015; Crall et al. 2015; Freeman et al. 2014). With
the advent of high throughput and more accurate devices, the need for automatic analysis of large
amounts of collected data is felt more today. In neuroscience and biology, a large amount of be-
havioral data is collected from live animals in order to understand how the brain generates activity
and how the underlying mechanisms have evolved (Kain et al., 2013). Typically the first step in
analyzing this data, is finding and categorizing different types of behavior; this step can be done
manually by experts but it is time-consuming and sometimes error-prone.

An automatic framework has been proposed by Kain et al. (2013) for tracking the leg movements
and classifying the behavior of fruit flies. The behavior is recorded by tracking each leg of a fruit
fly moving upon a track ball. The collected raw data is the x and y coordinates of 6 legs and the
three rotational components of the rotating ball (i.e., a 15-dimensional vector in real time). After
some post-processing and adding some higher-order features (e.g., derivatives of each of the 15
raw data vectors), they expand the dimensions to 45 and apply a KNN classifier to classify each
frame as a part of 12 possible behavioral labels. Our goal is to use this dataset and categorize
the frames in an unsupervised way. A frequent assumption in the behavioral sciences is that a
small set of stereotyped motifs describe most animal activities (Berman et al., 2014). In other
words, actions within a behavioral segment (e.g., actions required for grooming) should be more -

structured, compared to the behavioral segments themselves. Given the capabilities of the siHMM,
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Figure 3-6: A sample segmentation from the fruit fly dataset. From top to bottom: True, sub-
iHMM, iHMM, siHMM.

it is a reasonable choice for applying to this dataset.

The dataset contains 10000 data points; our held-out set is a randomly chosen subsequence
with length 1500, and we apply SVI for 100 passes over both the feature-independent and feature-
based models. For the observations, we use a multivariate Gaussian likelihood and a conjugate
Normal/inverse-Wishart prior.

As in Section 3.5.2, we group the inferred substates with K-means and assign labels to the seg-
ments. The results, presented in Table 3.2, show that feature-based siHMM performs on a par with
the iHMM and outperforms sub-iHMM by a relative error reduction of 17%. This may emphasize
the importance of adding data-driven features to the model. Fig. 3-6, shows a sample of the dataset

and its segmentation by different methods.

3.6 Conclusion

We proposed a new Bayesian nonparametric model, siHMM, for modeling dynamics at two timescales
in time series. Our model is a simple extension to the widely used iHMM and has an efficient infer-
ence scheme. Although our model is less flexible than other nonparametric models for hierarchical
time series, we showed that it can perform reasonably well in practice. One potential application of
our model is using the inferred state-independent transition vector (mp) for summarizing a sequence.
For instance, in the user behavior analysis, this vector may represent a user fingerprint and users can

be grouped based on it. For a better understanding of this feature and the behavior of our model in
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other applications, a more comprehensive comparison with other models is useful.



CHAPTER 4

Markov jump processes for modeling user behavior

traces!

4.1 Introduction

In Chapter 3, we ignored the fact that the events in the log files occur at irregular time intervals.
Furthermore, we assumed they happen at discrete time points. These unrealistic assumptions helped
us in developing a tractable model for user trace segmentation. However, a more realistic setting
would be a continuous-time generative model for the latent variables in which we explicitly model
the duration time in each task and switching between tasks can happen at any time point between
the observations. In this chapter, we focus on Markov Jump Processes (MJPs) which are simple
models with these properties.

MIJPs are continuous-time, discrete-state Markov processes in which state durations are expo-
nentially distributed according to state-specific rate parameters. A stochastic matrix controls the
probability of transitioning between pairs of states.

MIPs have been used to construct probabilistic models either when the state of a system is ob-
served directly, such as with disease progression (Mandel, 2010) and RNA path folding (Hajiaghayi
et al., 2014), or when the state is only observed indirectly, as in corporate bond rating (Bladt and
Serensen, 2009). In analyzing user behavior data, similar to the model in Chapter 3, segmenting
the trace can be done by inferring the latent state of the user. Once the user enters a new state the
software application can guide the user by proposing relevant tools for the new state. In contrast to
the model in Chapter 3, we do not assume any dynamics in each segment; hence, our model is not
hierarchical. That is a simplifying assumption but considering a hierarchical structure for MJPs will

make our algorithms harder to scale to large datasets; we leave this setting for future work.

!This chapter is based on the work by Huggins et al. (2015) (http:/proceedings.anlrpress/v37/hugginsa | 5. pdf).
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Notation
M number of states
m: initial state distribution

b S L P: state transition matrix, with entries p., ./
o 2 A.: transition rate for state z
3 [
L2 -ty U = (z20,t0,21,%1,---,2K-1,tK-1,2K):
2 5 MIP trajectory
— e T —T—T— Z: the states corresponding to 14
momoTm o ” wrm ho b e times corresponding to 4
oa. .9@. qﬁ\. J?. §0 a:«?.o: ‘?. O = {(t;, %)} observation times and states
YéFsd 4 @é;g" & of DOMJP*
& @'F w &Y T = (m,...,7): observation times of
& ¥4 HMJP

Y = (y1,...,yr): observations of HMJP
pzn: probability of observing y, = n when
in state z

Figure 4-1: An example of and notation used in HMJPs. Left: Illustrative example for an HMJP
(Section 4.3.2) with three hidden states (M = 3) and two possible observation values (N = 2).
The observations Y, their times 7, an (arbitrary) sample MJP trajectory U = (zg, to, 21, t1, 22, t2).
Right: Notation used for parametric MJPs. *DOMIJP = directly observed MJP.

In addition to user modeling, datasets with continuous-time observations and potentially discrete
latent states can be found in various domains. For example, consider the important clinical task of
analyzing physiological signals of a patient in order to detect abnormalities. Such signals include
heart rate, blood pressure, respiration, and blood oxygen level. For an ICU patient, an abnormal
state might be the precursor to a cardiac arrest event while for an epileptic, the state might presage
a seizure (Goldberger et al., 2000). How can the latent state of the patient be inferred by a Bayesian
modeler, so that, for example, an attending nurse can be notified when a patient enters an abnormal
state? MJPs offer one attractive approach to analyzing such physiological signals.

Applying an MJP model to user traces or physiological signals presents a challenge: the number
of states is unknown and must be inferred using, for example, Bayesian nonparametric methods.
However, efficient inference in nonparametric MJP models is a challenging problem, where existing
methods based on particle MCMC scale poorly and mix slowly (Saeedi and Bouchard-Cété, 2011).
Current optimization-based methods such as expectation maximization (EM) are inapplicable if
the state size is countably infinite; hence, they cannot be applied to Bayesian nonparametric MJP
models, as we would like to do for physiological signals.

Furthermore, although MJPs are viewed as more realistic than their discrete-time counterparts
in many fields (Rao and Teh, 2013), degenerate solutions for the maximum likelihood (ML) trajec-
tories for both directly and indirectly observed cases (Perkins, 2009), and non-existence of the ML

transition matrix (obtained from EM) for some indirectly observed cases (Bladt and Sgrensen, 2009)
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present inferential challenges. Degenerate ML trajectories occur when some of the jump times are
infinitesimal, which severely undermines the practicality of such approaches. For instance, a trajec-
tory which predicts a patient’s seizure for an infinitesimal amount of time is of limited use to the

medical staff. Fig. 4-3 shows an example of the degeneracy problem.

In this chapter, we take a small-variance asymptotics (SVA) approach to develop an optimization-
based framework for efficiently estimating the most probable trajectories (states) for both parametric
and nonparametric MJP-based models. Small-variance asymptotics has recently proven to be use-
ful in estimating the parameters and inferring the latent states in rich probabilistic models. SVA
extends the well-known connection between mixtures of Gaussians and k-means: as the variances
of the Gaussians approach zero, the maximum a posteriori solution to the mixture of Gaussians
model degenerates to k-means solution (Kulis and Jordan, 2012). The same idea can be applied
to obtain well-motivated objective functions that correspond to a latent variable model for which
scalable inference via standard methods like MCMC is challenging. SVA has been applied to (hi-
erarchical) Dirichlet process mixture models (Kulis and Jordan, 2012; Jiang et al., 2012), Bayesian
nonparametric latent feature models (Broderick et al., 2013), hidden Markov models (HMMs), and
infinite-state HMMs (Roychowdhury et al., 2013b).

We apply the SVA approach to both parametric and Bayesian nonparametric MJP models to
obtain what we call the JUMP-means objective functions. In the parametric case, we derive a
novel objective function which does not suffer from maximum likelihood’s solution degeneracy,
leading to more stable and robust inference procedures in both the directly observed and hidden
state cases. Infinite-state MJPs (iMJPs) are constructed from the hierarchical gamma-exponential
process (HI'EP) (Saeedi and Bouchard-Co6té, 2011). In order to apply SVA to iMJPs, we gener-
alize the HI'EP to obtain the first deterministic procedure (we know of) for inference in Bayesian

nonparametric MJPs.

We evaluate JUMP-means on several synthetic and real-world datasets in both the parametric
and Bayesian non-parametric cases. JUMP-means performs on par with or better than existing
methods, offering an attractive speed-accuracy tradeoff. We obtain significant improvements in
the non-parametric case, gaining up to a 20% reduction in mean error on the task of observation
reconstruction. In summary, the JUMP-means approach leads to algorithms that 1) are applicable
to MJPs with Bayesian nonparametric priors; 2) provide non-degenerate solutions for the most
probable trajectories; and 3) are comparable to or outperform other standard methods of inference

both in terms of speed and reconstruction accuracy.
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4.2 Background

4.2.1 Markov jump processes

A Markov jump process (MIP) is defined by (a) a finite (or countable) state space, which we identify
with the integers [M] £ {1,..., M}; (b) an initial state probability distribution 7; (c) a (stochastic)
state transition matrix P with p,, = 0 for all s € [M]; and (d) a state dwell-time rate vector
A £ (A1,..., ). The process begins in a state zg ~ . When the process enters a state s, it
remains there for a dwell time that is exponentially distributed with parameter \,. When the system
leaves state s, it transitions to state 2z’ # 2z with probability p, .

A trajectory of the MJP is a sequence of states and a dwell time for each state, except for the final

state: U = Ur £ (zo, to, 21, t1, - - -, ZK—1, tK -1, 2K ). Implicitly, K (and thus ) is a random vari-
able such that tx_; < T and the system is in state zx at time T. Let Z £ Zr £ (29,21, ..., 2K)
and T £ Tr £ (to,t1,...,tx—1) be the sequences of states and times corresponding to /. The

probability of a trajectory is given by
pU|m, P,A) = 1[t. < Te kT my x [ Ay e attp, o @)

where t. £ f:_gl tx and 1[-] is the indicator function. In many cases when the states are directly
observed, the initial state and the final state are observed, in which case it is straightforward to
obtain a likelihood from Eq. (4.1).

A hidden state MJP (HMJP) is an MJP in which the states are observed indirectly according to
a likelihood model p(y | z), z € [M], y € Y, where Y is some observation space. The times of the
observations 7 = (71,...,7r) are chosen independent of U, so the probability of the observations
Y £ (y1,...,yr) is givenby p(¥ |U, T) = Hle p(ye | zr,), where, with an abuse of notation, we

write z, for the state of the MJP at time 7.

4.2.2 Previous approaches to MJP inference

There are a number of existing approaches to inference and learning in MJPs. An expectation-
maximization (EM) algorithm can be derived, but it cannot be applied to models with countably
infinite states, so it is not suitable for iMIPs (Lange, 2014) (iMJPs are detailed in Section 4.4).
Moreover, with discretely observed data, the maximum-likelihood estimate with finite entries for
the transition matrix obtained from EM may not exist (Bladt and Sdgrensen, 2005).

Maximum likelihood inference amounts to finding maxy, In p(¢/ | =, P, X), which can be carried
out efficiently using dynamic programming (Perkins, 2009). However, maximum likelihood solu-
tions for the trajectory are degenerate: only an infinitesimal amount of time is spent in each state,

except for the state visited with the smallest rate parameter (i.e., longest expected dwell time). Such
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a solution is unsatisfying and unintuitive because the dwell times are far from their expected val-
ues. Thus, maximum likelihood inference produces results that are unrepresentative of the model
behavior.

Markov chain Monte Carlo methods have also been developed, but these can be slow and their
convergence is often difficult to diagnose (Rao and Teh, 2013). Recently, a more efficient Monte
Carlo method was proposed by Hajiaghayi et al. (2014) which is based on particle MCMC (PM-
CMC) methods (Andrieu et al., 2010b). This approach addresses the issue of efficiency, but since it

marginalizes over the jump points, it cannot provide probable trajectories.

4.2.3 Small-variance asymptotics

Consider a Bayesian model p(D | Z, 8, ?)p(Z, ) in which the likelihood terms contain a variance
parameter 2. Given some data D, a point estimate for the parameters 6 and latent variables Z of the
model can obtained by maximizing the posterior p(Z, 8| D,0?) « p(D | Z,0,0)p(Z, 6), resulting
in a maximum a posteriori (MAP) estimate. In the SVA approach (Broderick et al., 2013), the MAP
optimization is considered in the limit as the likelihood variance parameter is taken to zero: o2 — 0.
Typically, the small-variance limit leads to a much simpler optimization than the MAP optimization
with non-zero variance. For example, the MAP objective for a Gaussian mixture model simplifies

to the k-means objective.

4.3 Parametric MJPs

4.3.1 Directly observed MJP

Consider the task of inferring likely state/dwell-time sequences given O = {({;, %)}._,, the times
at which the system was directly observed and the states of the system at those times. For simplicity
we assume that £p = 0 and that all times are in the interval [0, T]. Let z({/,t) be the state of the

system following trajectory I/ at time ¢. The likelihood of a sequence is

I K
(U0, P ) =1[t. < T[] 1[sU, &) = 2] x (H /\zkkle_/\zk—ltk‘lpzk_lzk> e Nk (T-t)
=1 k=1
“4.2)

We also place a gamma prior on the rate parameters A (detailed below). Instead of relying on
MAP estimation, we apply a small variance asymptotics analysis to obtain a more stable objective
function. Following Jiang et al. (2012), we scale the distributions by an inverse variance parameter
B and then maximize the scaled likelihood and prior in the limit 8 — oo (i.e., as the variance goes

to zero).
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To obtain the SVA objective, we begin by scaling the exponential distribution f(¢; ) = A exp(—\t),
which is an exponential family distribution with natural parameter = —\, log-partition function
¥(n) = —In(—n), and base measure v(dt) = 1 (Banerjee et al., 2005). To scale the distribution,
introduce the new natural parameter 7 = 37 and log-partition function ¥ (7)) = 8v¢(7/83). The new
base measure 7(dt) is uniquely defined by the integral equation (see Banerjee et al., 2003, Theorem
5)

~ B
/ exp(t)v(dt) = exp(y (7)) = exp(—Bn(7/8)) = g_ﬁ.

tP-188
r'(8)

Choosing 7(dt) = dt satisfies the condition, so we have

ft:\B8) = (—ﬁ/\—)ﬁtﬁ_le_[”‘t =exp(=BAt + (8 — 1)Int + BIn A3 — InT'(B))

s Bln g (B) )}
Ing—InT Int
0= r TV L .

=exp{—6 (/\t—lnt—ln/\ 3 3

It can now be seen that f(¢; A, ) is the density of a gamma distribution with shape parameter 8 and
rate parameter S\. Hence, the mean of the scaled distribution is % and its variance is /\—1‘3 Letting

F(t; A, B) denote the CDF corresponding to f(¢; A, 8), we have 1 — F(t; \,8) = F(ﬁig;‘t), where

I’(-, ) is the upper incomplete gamma function.
The multinomial distribution is scaled by the parameter B £ ¢B. Writing the likelihood with
the scaled exponential families (and dropping indicator variables) yields:

InT(8) — InT'(8, Brs,t)

LU|O, P, \) x exp {—[3 (

B
K-1
+ ) (Elnpa ., + Aote — In Xy, ty)
k=0

K-1
_BInB—InT'(B)  Int
*,;0( 5 "B ))}

The modified likelihood is for a jump process which is no longer Markov when 8 # 1. We also
place a Gam(cy, ary 1) prior on each \; and set oy = &) .
For the state at the k-th jump we use a 1-of-M representation; that is, zj, is an M-dimensional

binary random variable which satisfies z,,, € {0,1} and Zf,/f:l Zkm = 1. Hence, we have:

M
pzlze;=1) = [] piir. 4.3)
m=1
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Given the Bregman divergence for a multinomial distribution, dg(zk,p;) = KL(2k||p;) where
Dj £ (pj1,---,Pjm), this can be written in terms of exponential family notation in the following

form (Banerjee et al., 2005):

P(zk|zk—1,; = 1) = by(zk) exp(—dg(zk, P;)) 4.4

where by(2x) = 1. For a scaled multinomial distribution we have bs ¢(zk) exp(aBd(p(zk,ﬁj)),
where § = £8 is the scaling parameter for the multinomial distribution. Writing the trajectory

probility with the scaled exponential families yields” :

lnI‘(B) - lnF(ﬂ,,Bx\th-) + é‘}fKL(Zk-t—alz )

p(u|z07 2K, Pa A) X €Xp {_B <

B
o ’°=°( | (4.5)
BlnB —InT'(B Intg
Aotk —In Az, b — ,
+I§< e —In A, te 3 + 5 ))}

Since 8 — oo, we can apply the asymptotic expansions for I'(-) and I'(-, -). In particular, applying
Stirling’s formula and the facts in (DLMF) we have:

Blnf—nl(B) Blnf—BnB+ B+ 0o(B)

3 3 —1
InT(B) — InD(B,Bxt) [ “Loo@=fMdBN 3y juxe -1 ift> 1
B - 5lnﬁ—/3—ﬁllgn/3+ﬁ+o(6) -0 it < %

We also place a Gam(ay, ey 1)) prior on each \;. With ), = &, /3, we obtain

Inp(As | ax, anpn) = axIn(onpy) + (an — 1) InAs — InT(ay) — axpads
=4O81In s — EuaBAs + 68 + o(B)
= *,B(g)\,u}\)\s —&Hin g — 1) + O(B)

Hence, when 8 — oo, obtain

K-1 K-1
Lﬁ,rll? {5 Z KL(zk41]|P2,) + Z (Azte —In s te — 1)
k=0 k=0 (4.6)
y .
+ D[Nt > 1At —In Ayt — 1) + &) Z(“V\s —Iln); — 1)}
s=1

The optimization problem Eq. (4.6) is very natural and offers far greater stability than maximum

This derivation is done by Jonathan Huggins a coauthor in Huggins et al. (2015).
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likelihood optimization. As with maximum likelihood, the Inp,, ., ., terms penalize transitions
with small probability. The term h(ty) £ ), tr — In ), tx — 1 is convex and minimized when
ty = 1/, the expected value of the dwell time for state z;. As tx — 0, h(t;) approaches oo,
while for ¢, > 1/X,,, h(tx) grows approximately linearly. Thus, times very close to zero are
heavily penalized while times close to the expected dwell time are penalized very little. The term
1Azt > 1) (A, t. —In A, t. — 1) penalizes the time ¢. spent in state 2y, so far in the same manner
as a regular dwell time when ¢. is greater than the expected value of the dwell-time. However,
when £. is less than the expected value there is no cost, which is quite natural since the system may
remain in state 2 for longer than t. — i.e., there should not be a large penalty for ¢. being less than
its expected value. Finally, parameters £, and py have a very natural interpretation (cf. Eq. (4.10)

below): they correspond to a priori having £y dwell times of length p for each state.

Comparison to maximum likelihood MJP trajectories estimated using maximum likelihood
(MLE) are usually trivial, with the system spending almost all its time in a single state (with the
smallest A), with infinitesimal dwell times for the other states. This poor behavior of MLE is due to
the fact that the mode of Exp(\), which is favored by the MLE, is 0, even though the mean is 1/\.
The SVA optimization, on the other hand, does give trajectories that are representative of the true
behavior because the SVA terms of the form At — In(At) — 1 are optimized at 1/ (i.e., at the mean
of Exp())). We demonstrate the superior behavior of the SVA in the concrete example of estimating

disease progression in patients in Section 4.5,

4.3.2 Hidden state MJP

For an HMIJP, the likelihood of a valid trajectory is

K

L
pU| X, T,P,X) = (Hp(yelzn)> X (H )‘zkﬁle_/\zk_ltkﬂlpzk_lzk> e M1 a7
=1

k=1

Hence, the only difference between the directly observed case and the HMJP is the addition of
the observation likelihood terms. Because multinomial observations are commonly used in MJP
applications, that is the case we consider here. Let N denote the number of possible observations
and ps, be the probability of observing y, = n when 2, = s. The observation likelihoods are

scaled in the same manner as the transition probabilities, but with B = (f. Thus, for the HMJP, we

*Note that placing priors on the rate parameters, as we do, does not affect the degeneracy of the ML trajectory.
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obtain:
L K-1
K-1
+ ) Oute —In Aty — 1) (4.8)
k=0

+ At > (At — In X, 2 — 1)

M
+&x Z(M/\/\z —InA, - 1)}

z=1

4.3.3 Algorithm

Optimizing the JUMP-means objectives in Eq. (4.6) and Eq. (4.8) is non-trivial due to the fact that
we do not know the number of jumps in the MJP, and the combinatorial explosion in the sequences
with the number of jump points. The terms involving the continuous variables ¢, (dwell times)
present an additional complexity.

We therefore resort to an alternating minimization procedure to optimize the JUMP-means ob-
Jective function, similar in spirit to the one used by Roychowdhury et al. (2013b). In each iteration
of the optimization process, we first use a modified Viterbi algorithm to obtain the most likely state
sequence. Then, we use convex optimization to distribute the jump points optimally with respect to
the values from A for the current state sequence.

Directly observed MJP When optimizing Eq. (4.6), there may be many sequences (O’s) avail-
able, representing distinct realizations of the process. We use the following algorithm to optimize
Eq. (4.6):

1. Initialize the state transition matrix P and rate vector A with uniform values.

2. For every observation sequence O, instantiate the jump points by adding one jump point between

every pair of observations, in addition to the start and end points.

3. Foreach O, use a modified Viterbi algorithm. to find the best state sequence to optimize Eq. (4.6),
while keeping the jump points fixed. The modified algorithm includes the dwell time penalty

terms, which are dependent upon the assignment of states to the time points.
4. Optimize the dwell times t; with the state sequences of the trajectories fixed.

5. Optimize P and A with the other variables fixed. The optimal values can be obtained in closed

form. For example, if there is only a single observation sequence O with corresponding inferred
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trajectory S, then

Pmj = —m—, m,j € [M] (4.9)
Zj:l nm]
Ex+ D 1zg = m]

m — f 4.10
Exta + D g Uzg = mt @10

where n,,; denotes to the number of transitions from state mn to state j in S.

6. Repeat steps 3-5 until convergence.

Beam search variant We note that the optimization procedure just described is restrictive since
the number of jump points is fixed and the jump points are constrained by the observation bound-
aries. To eliminate this, we also tested a beam search variant of the algorithm to allow for the
creation and removal of jump points, but found it did not have much impact in our experiments.

Hidden state MJP The algorithm to optimize the hidden state MJP JUMP-means objective
Eq. (4.8) is similar to that for optimizing Eq. (4.6), but with three modifications. First, in place
of O, we have the indirect observations of the states X. Second, observation likelihood terms
containing p are included in the objective minimized by the Viterbi optimization (step 3). Finally,

an additional update is performed in step 5 for each of the observation distributions p,,,:

S Tatlen = mitly =)
i Zz ]l[z‘rz = m]

4.11)

form € [M]and n € [N]. If each p,, = (pm1,-- ., Pm) is initialized to be uniform, then the
algorithm converges to a poor local minimum, so we add a small amount of random noise to each

uniform p,,,.

4.4 Bayesian nonparametric MJPs

We now consider the Bayesian nonparametric MJP (iMJP) model. The iMJP is based on the hierar-
chical gamma-exponential process (H['EP), which we described in Section 2.2.3.

As in the parametric case, we must replace the exponential distribution in Eq. (2.20) with the
scaled exponential distribution. After an appropriate scaling of the rest of the hyperparameters, we
obtain the hierarchical gamma-gamma process (H['T'P). The properties of the H['T'P are given in
the Supplementary Material (Appendix A).

Let M denote the number of used states, K ,,, the number of transitions out of state m, and pu; i
the mass on the j-th component of the measure p;. For 0 < ¢ < M,1 < j < M, let 7; = Hij
and for 0 < ¢ < M, let T; pr4q 21— Z]A/i1 iti;. Let tr, = (1, .. ,tanm) be the waiting times

ml»
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following state m and define ¢}, £ Z]K;'i t:nj. In order to retain the effects of the hyperparameters
in the asymptotics, set ag = exp(—£13) and o = ko = £a.

The hierarchical gamma-gamma process (HI'T'P) is defined to be:

o ~ I'P (v, agHp) (4.12)
pi | o = TP(v, Buo) i=12,... (4.13)
2k [ {1320, Uk 1 ~ [y _, (4.14)
tr | {pitiZo, Uk—1 ~ Gam(B, || pz_, II)- (4.15)

The measures {1;}7°, and Hy can be integrated out of the HT'TP generative model in a man-
ner analogous to the way in the the Chinese restaurant franchise in obtained from the hierarchical
Dirichlet process (Teh et al., 2006¢). However the mass of the measure p( cannot be integrated
out. We omit details as they are essentially identical to those in case of the HTEP (Saeedi and
Bouchard-Cb6té, 2011).

First, we consider the case of integrating out {/;};>0. Let M denote the number of used states,
K, the number of transitions out of state m, and r,,, the number of states that can be reached from

state m in one step. The contribution to the likelihood from the HI'T'P prior is

pU, ko | B,70, 7, a0) = p(ko | 20, 10)p(S | B, o, fio)p(TW ¥, Ko)

a0~1_—oro . M—1 1L (a0 + 1) rm—1 L(BKo +1)
o Ky e ag Ty +r)H(ﬂ 0) T'(Bro + Km)

L(B(ko + Km)) (L2 t0)%
§ H MO (55 £, et

where r. £ > Tm- Taking the logarithm, using asymptotic expansions for the Gamma terms, and

ignoring o(3) terms yields

M
(@0 — 1) Inkg — yoko + (M — 1) Inag + »_ {(rm — 1) In ko + Bko + Kom) In[B(ko + Km)]}
m=1
M
> {80 + Knm) = Knm[B1n g — 8]+ 8K Inth,; — B(so + Kon) In (v +t.)}
m=1
where £, Zlf_”i tr;- In order to retain the effects of the hyperparameters in the asymp-

totics, set ap = exp(—¢£15) and yp = exp(&28). Thus, kg — 0 as B — oco. We require that
limsupg_, o, K00 < 00, so without loss of generality we can choose kg = g b = exp(—£8) to
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obtain

-8 (gl 1) +Z{§2(Tm - zfslnt;j+Km1n<[v+t;.]/xm)}>.

Thus, the objective function to minimize is

L M
¢ KL(wellp.,) + M+ Y {&(rm —1) - TEn Ity ~ Konln([y +5,]/Km) }

=1 m=1
(4.16)

Alternatively, the small variance asymptotics can be derived in the case where {u;};>0 is not inte-
grated out. To do so, we first rewrite the HI'TP generative model in an equivalent form, with Hy

integrated out:

7o ~ GEM(ayp) (4.17)
ko ~ Gam(ap, Y0) (4.18)
7 | o '~ DP(Bko, o), i=12,... (4.19)
ki | T = Gam(B, ), i=1,2,... (4.20)
2 | {mi} 2, Un—1 ~ Tz, 4.21)
ti | {Ki}i2q, U—1 ~ Gam(B, k5, ). (4.22)

For0 < i< M,1<j<Mletwm; £ mjandfor0 < i< M,let fipgn 21— 30 7y
Integrating out {«; };>1, the contribution to the likelihood from the H['T'P prior is now

p(Uk, Ko, T | B, 70,7, o) (4.23)
= p(ko | @0, Y0)P(T0 | 0)p(T1:01 | BroT0)p(Sk | 71.m)p(Tk | B, 7, Ko) (4.24)
M _ K
1 ok 7oq o _ _
oc KGO Lg0R0 H Beta ——iO—_z—i———— 1, a9 | Dir(7; | BroTo) H T r.ze | P(TK | B, 7Y, Ko)
i=1 =3 1m0 k=1
(4.25)
M i p— M+1 ﬁnmr i—1
o k& —1,=70%0 H F(l+a) (1- Zq-:1 70,j P(ﬂno) H ”
0 b T(ap) 1— ;“:11 o F(Bﬁoﬂ‘o])

(4.26)

T(B(ko+ Km))  (TL ;)
X H ﬂ-zlc 1,2k H F(,B)Km (’7 + ZKm t* )ﬂ(no—i-Km) ’

m=1

We use a slightly different limiting process, with vy = k¢ = &2, a positive constant, and scale the
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multinomial distributions Eq. (4.21) by 8¢. Taking the logarithm and and ignoring o(3) terms as

before yields*
M M+1
> SdInag+ BrolnBro — B+ > {—Broto,; In(Browo,;) + Broto,; + Brofo; In i }

K M
+ D BEm A s+ > { SIS Bty — B In [y + £ ]/Kom)}
k=1 m=1

M M+1
~ > 8 =B&+ Y {—Brofo;In(To ;) + Broto,j Ini;}
i=1 =1

K M
+ Y BEIn T+ D (SN BInty,, ~ BKmIn ([ + £,/ Kom) |
k=1 m=1

K M
~—=p {élM + {Zlnﬁ.zk——lezk + Z {§2KL(7—"0“7_"m) - Zf:ni lnt:nj —KnIn([y+ t:n]/Km)}} .

k=1 m=1

Thus, the objective function to minimize is

L K
¢ Z lnpzqyz +<& Zlnﬁ'%ﬂ,zk +&aM

=1 k=1 @.27)

M
+ 3 {@KL(ollfm) — SI5 Inth; — Koo ([y +85,1/Kn) |
m=1

Like its parametric counterpart, the Bayesian nonparametric cost function penalizes dwell du-
rations very close to zero via the Int;, ; terms. In addition, there are penalties for the number of
states and the state transitions. The observation likelihood term in Eq. (4.27) favors the creation of
new states to minimize the JUMP-means objective, while the state penalty £& M and the non-linear
penalty term K, In ([y + t,,.]/ K, ) counteracts the formation of a long tail of states with very few
data points. The -y hyperparameter introduces an additional, nonlinear cost for each additional state
— if a state is occupied for £2(7) time, then the -y term for that state does not have much effect on
the cost. The KL divergence terms between 7y and 7, arise from the hierarchical structure of the

prior, biasing the transition probabilities 7, to be similar to the prior 7g.

4.4.1 Algorithm

For the iMJP case, we have the extra variables M and {#,,}}_, to optimize. In addition, the

number of variables to optimize depends on the number of states in our model. The major change in

“This derivation is done by Jonathan Huggins a coauthor in Huggins et al. (2015).
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the algorithm from the parametric case is that we must propose and then accept or reject the addition
of new states. We propose the following algorithm for optimizing the iMJP:
(1) Initialize p, g and 7; with uniform values and set the number of states M = 1.

(2) For each observation sequence, apply the Viterbi algorithm and update the times using the new

objective function in Eq. (4.27), analogously to steps (3) and (4) in the parametric algorithm.

(3) Perform MAP updates for p (as in Eq. (4.11)) and 7:

_ Enm;j + E2To;

Tmi = , m,j€[M] (4.28)
M EY M iy + oy
M M
o o< [ wmd?, € [M]. (4.29)
m=1

(4) For every state pair m, m’ € [M], form a new state M + 1 by considering all transitions from
m to m' and reassigning all observations y, that were assigned to m/ to the new state. Update 7
and p to estimate the overall objective function for every new set of M + 1 states formed in this
way and accept the state set that minimizes the objective. If no such set exists, do not create a

new state and revert back to the old 7 and p.

(5) Repeat steps 2-4 until convergence.

Remark. If instead of multinomial observations we have Gaussian observations, the parameter p, is
replaced with the mean parameter 4. In this case, we update the mean for each state using the data
points assigned to the state, similar to the procedure for k-means clustering (see, e.g., Jiang et al.
2012; Roychowdhury et al. 2013b).

4.5 Experiments

In this section we provide a quantitative analysis of the JUMP-means algorithm and compare its
performance on synthetic and real datasets with standard inference methods for MJPs. For evalua-
tion, we consider multiple sequences of discretely observed data and randomly hold out a subset of
the data. We report reconstruction error for performance comparison. We apply our algorithms to 2
synthetic and 3 real datasets. To demonstrate the wider applicability of our algorithms, in addition
to a user behavior dataset, we perform evaluations on a disease progression and also a vital signs

monitoring dataset.

4.5.1 Parametric models

For the parametric models, we compare JUMP-means to maximum likelihood estimation of the
MIP parameters learned by EM (Asger and Ledet, 2005), the MCMC method proposed by Rao and
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Figure 4-2: Mean error vs iterations for 4 datasets. (a) Synthetic 1; (b) Synthetic 2; (¢) MS;
and (d) MIMIC datasets. In each case the JUMP-means algorithms have better or comparable
performance to other standard methods of inference in MJPs. Mean error vs CPU runtime plots can
be found in the Supplementary Material.

Teh (2013) and a simple baseline where we ignore the sequential structure of the data. We run three

sets of experiments (2 synthetic, 1 real) for our evaluation.

Synthetic 1: directly observed states For evaluating the model on a directly observed process,
we generate 100 different datasets randomly from various MJPs with 10 states. To generate each
dataset, we first generate the rows of the transition probability matrix and transition rates indepen-
dently from Dir(1) and Gam(1, 1), respectively. Next, given the rates and transition probabilities
for each dataset, we sample 500 sequences of length 20. We hold out 30% of the observations at

random for testing reconstruction error.

We run JUMP-means by initializing the algorithm with a uniform transition matrix P and set
the rate vector A to be all ones. We run 300 iterations of the algorithm described in Section 4.3.3;
each iteration is one scan through all the sequences. We set the hyperparameters £, &), and 1)
equal to 1, 1, and .5, respectively. For MCMC, we initialize the jump points using the time points
of the observations. We place independent Dir(1) priors on P and independent Gam(1, 1) priors
on A. We initialize EM with a uniform P and an all-ones A. We run both MCMC and EM for
300 iterations, then reconstruct observations using the Bayes estimator approximated from the 300
posterior samples. For our baseline we use the most common observation in the dataset as an

estimate of the missing observations.
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Data Set Mean Error (%)

#Points Held Out # States | BL EM MCMC SVA PMCMC
Synthetic 1 (P-DO) 10,000 30 % 10 69.7 40.2 41.9 41.2 -
Synthetic 2 (P-H) 10,000 30 % 5 51.8 429 74.6 46.5 -
Users 1,000 10 % 20 85.1 809 74.6 62.1 -
MS (P-DO) 390 50 % 3 512  26.2 48.1 25.4 -
MIMIC (NP-H) 2,208 25 % - 423 25.7* - 24.3 309

Table 4.1: Statistics and mean observation reconstruction error for the various models on dif-
ferent datasets. Key: BL = Baseline; P = parametric; SVA = JUMP-means; NP = nonparametric;
DO = directly observed; H = hidden; MS = multiple sclerosis data set; MIMIC = blood pressure
data set. *Best result obtained by running EM with various number of hidden states (up to 12).

Table 4.1 gives the mean reconstruction error across sequences for the various methods. Note
that JUMP-means performs better than MCMC, and is almost on par with EM. Fig. 4-2(a) shows
the average error across all the datasets for each method versus number of iterations. In terms of
CPU time, each iteration of JUMP-means (Java), EM (Java), and MCMC (Python) takes 0.3, 1.61
and 42 seconds, respectively. We also ran experiments with the beam search variant described in
Section 4.3.3; however, we did not obtain any significant improvement in results.

Synthetic 2: hidden states For the hidden state case, we generate 100 different datasets for
MIPs with 5 hidden and 5 observed states, with varying parameters as above. In each dataset there
are 500 séquences of length 20. In addition to parameters in the directly observed case, we generate
observation likelihood terms for each state from Dir(1).

We initialize the transition probabilities and the rate vectors for JUMP-means, MCMC and EM
in a fashion similar to the directly observed case. For the observation likelihood p, we use Dir(1)
as a prior for MCMC, uniform distributions for EM initialization and a uniform probability matrix
with a small amount of random noise for JUMP-means initialization. We set £, £, j) as before and
£tol.

We run each algorithm for 300 iterations. For JUMP-means, we use the hidden state MJP
algorithm described in Section 4.3.3. Table 4.1 and Fig. 4-2(b) again demonstrate that JUMP-means
outperforms MCMC by a large margin and performs comparably to EM. The poor performance of
MCMC is due to slow mixing over the parameters and state trajectories. The slow mixing is a result
of the coupling between the latent states and the observations, which is induced by the observation
likelihood.

Analyzing user behavior traces Identifying the tasks that a user has performed can be done
via inferring the most-likely latent trajectory given the observations from that user. We study the
performance of our model in a dataset collected from users of a photo editing application. After
pre-processing the dataset by only keeping the top 20 used tools and truncating the sequences to 20
observations for each user, we applied the algorithm to 250 users. For evaluation, we randomly hold
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out 10% of the data points and reconstruct those observations. Initialization and hyperparameters
are the same as the previous experiment.

Similar to the synthetic experiments, we compare our method with EM and MCMC and report
the results in Table 4.1. The results show that our method significantly outperforms both MCMC
and EM. The poor performance of the EM is most likely due to the large state space.

Disease progression in Multiple Sclerosis (MS) Estimating disease progression and change
points in patients with Multiple Sclerosis (MS) is an active research area (see, e.g., Mandel 2010).
We can cast the progression of the disease in a single patient as an MJP, with different states repre-
senting the various stages of the disease. Obtaining the most-likely trajectory for this MJP can aid
in understanding the disease progression and enable better care.

For our experiments, we use a real-world dataset collected from a phase III clinical trial of a
drug for MS. This dataset tracks the progression of the disease for 72 different patients over three
years. We randomly hold out 50% of the observations and evaluate on the observation reconstruction
task. The observations are values of a disability measure known as EDSS, recorded at different time
points. Initialization and hyperparameters are the same as Synthetic 1.

Table 4.1 shows that JUMP-means significantly outperforms MCMC, achieving almost a 50%
relative reduction in reconstruction error. JUMP-means again achieves comparable results with EM.
Fig. 4-3 (top panel) provides an example of the latent trajectories from JUMP-means and maximum
likelihood estimate for a single patient. The MLE trajectory includes two infinitesimal dwell times,
which do not reflect realistic behavior of the system (since we do not expect a patient to be in a
disease state for an infinitesimal amount of time). On the other hand, the trajectory produced by
JUMP-means takes into account the dwell times of the various stages of the disease and provides a

more reasonable picture of its progression.

4.5.2 Nonparametric model

Vital signs monitoring (MIMIC) We now consider a version of the problem of understanding
physiological signals discussed in the introduction. We use data from the MIMIC database (Gold-
berger et al., 2000; Moody and Mark, 1996), which contains recordings of several vital parameters
of ICU patients. Specifically, we consider blood pressure readings of 69 ICU patients collected over
a 24-hour period and sub-sample observation sequences of length 32 for each patient, keeping the
start and end times fixed.” For testing, we randomly hold out ~25% of the observations.

To initialize JUMP-means, we choose uniform matrices for p, 7p and 7, and set M = 1. The
hyperparameters «y and £; are set to 5, while (, &, and &, are set to 0.005. Using a Gaussian like-

lihood model for the observations, we run our model for 50 iterations. We compare with particle

>We use a small dataset for testing since PMCMC cannot easily scale to larger datasets.
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Figure 4-3: Latent trajectories inferred by JUMP-means in MS and MIMIC datasets. Top: La-
tent trajectories inferred by JUMP-means and ML estimate for a patient in the MS dataset. Bottom:
Latent trajectory inferred by JUMP-means for a patient in MIMIC dataset.

MCMC (PMCMC) (Andrieu et al., 2010b) and EM. PMCMC is a state-of-the-art inference method
for iMJPs (Saeedi and Bouchard-Cété, 2011), which we run for 300 iterations with 100 particles.
For PMCMC, we first categorize the readings into the standard four categories for blood pressure
provided by NIH®. We run EM with a number of hidden states from 1 to 12 and report the best
performance among all the results. For initializing the EM, we use the same setting as the Synthetic
2 case.

For evaluation, we consider the time point of a test observation and categorize the mean of the
latent state at this time point (using the same categories obtained above) to compare against the
actual category. Table 4.1 shows that JUMP-means significantly outperforms PMCMC and obtains
a 21% relative reduction in average error rate. Fig. 4-2(c) plots the error against iterations of both
algorithms. In terms of CPU time, each iteration of JUMP-means (Java) and PMCMC (Java) takes
0.17 and 1.95 seconds, respectively. Compared to EM’s error rate of 25.7%, JUMP-means reaches

hittp://www.nhlbi.nih.gov/health/health-topics/topics/hbp
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Figure 4-4: Histograms of error reconstruction for runs with different hyperparameter set-
tings (a) MS (P-DO, 48 settings), and (b) MIMIC (NPB-H, 1125 settings) datasets.

a rate of 24.3% without the need to separately train for different number of states. The second-best
result for the EM had an error of 45%, which shows the importance of model selection when using
EM.

Fig. 4-3 (bottom) provides an example of the latent trajectory inferred by JUMP-means. The
observations are uniquely colored by the latent state they are assigned. We note that the model
captures different levels of blood pressure readings and provides a non-degenerate latent trajectory.

Hyperparameters A well-known problem when applying SVA methods is that there are a num-
ber of hyperparameters to tune. In our objective functions, some of these hyperparameters (v, py,
and ) have natural interpretations so prior knowledge and common sense can be used to set them,
but others do not. Fig. 4-4 shows histograms over the errors we obtain for runs of JUMP-means
on the MS and MIMIC datasets with different settings. We can see that a significant fraction of the
runs converge to the minimum error, while some settings — in particular when the hyperparameters
were of different orders of magnitude — led to larger errors. Hence, the sensitivity study indicates
the robustness of JUMP-means to the choice of hyperparameters.

Scaling Fig. 4-5 shows the total runtime and reconstruction error of the non-parametric JUMP-
means algorithm on increasingly large amounts of synthetic data. The algorithm is able to handle
up to a million data points with the runtime scaling linearly with data size. Furthermore, the error
rate decreases significantly as the amount of data increases.

For these experiments we generated 4 datasets consisting of 10% to 10° sequences. All datasets
are sampled from a single hidden state MJP with 5 hidden states and 5 possible observations. For the
20 observations in each sequence a Gaussian likelihood is used. Finally, for the held out results, we
categorized the observations in 5 bins, removed 30% of the data points and predicted their category.

Time-accuracy plots for the experiments In Fig. 4-6, we compare the time-accuracy across
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Figure 4-5: JUMP-means scaling linearly with data size. Runtime and error of nonparametric
JUMP-means algorithm with increasing synthetic data size. The runtime scales linearly with data

size (dashed black line).
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Figure 4-6: Mean error vs CPU runtime for different datasets. (a) Synthetic 1; (b) Synthetic 2;
(¢) MS; and (d) MIMIC datasets. In each case the JUMP-means algorithms have better or compa-
rable performance to other standard methods of inference in MJPs.

different methods for different datasets. EM, PMCMC, and JUMP-means are implemented in Java
and MCMC is implemented in Python. To plot the MCMC results, we give a speed boost of 100x in

the results to compensate for Python’s slow interpreter. From our experience with scientific comput-
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ing applications, we believe this is a generous adjustment. Also we note that the EM ifnplementation
used in our experiments is not the most optimized in terms of time per iteration. However, our goal is
to show that JUMP-means can achieve comparable performance with a reasonable implementation
of MCMC and EM.

4.6 Conclusion

We have presented JUMP-means, a new approach to inference in MJPs using small-variance asymp-
totics. We derived novel objective functions for parametric and Bayesian nonparametric models and
proposed efficient algorithms to optimize them. Our experiments demonstrate that JUMP-means can
be used to obtain high-quality non-degenerate estimates of the latent trajectories in user trace seg-
mentation applications and also other real datasets. JUMP-means offers attractive speed-accuracy
tradeoffs for both parametric and nonparametric problems, and achieved state-of-the-art reconstruc-

tion accuracy on nonparametric problems.
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CHAPTER 5

Topic modeling applied to user behavior traces with
spherical HDP !

5.1 Introduction

In Chapters 3 and 4, we assumed the user trace data has a sequential structure and built our latent
variable models based on that assumption. Assuming a dependency structure over time allowed
us to learn dynamics within each task (Chapter 3) and also between the tasks (Chapter 4). In this
chapter, we relax that assumption and instead assume each user trace can be represented as a bag of
actions. With this setting we will not be able to learn the dynamics of the tasks but we can still infer
the tasks that each user is interested in. We apply a novel variant of topic models to the user traces
and infer the tasks (i.e., topic) that are common in the whole dataset.

Prior work on topic modeling has mostly involved the use of categorical likelihoods (Blei et al.,
2003; Blei and Lafferty, 2006; Rosen-Zvi et al., 2004). Applications of topic models in the textual
domain treat words as discrete observations, ignoring the semantics of the language. Recent devel-
opments in distributional representations of words (Mikolov et al., 2013; Pennington et al., 2014)
have succeeded in capturing certain semantic regularities, but have not been explored extensively in
the context of topic modeling.

Distributional representations have also been applied to user data in order to learn the relation-
ship between the user tasks, system commands and natural language descriptions. Adar et al. (2014)
introduced a framework in which they learned high dimensional vector space representation of sys-
tem commands by mining a large corpus of web documents about a software application. These
vector representations can capture semantic similarities between commands via directional similar-

ity metrics. For instance similar commands such as “eraser tool” and “background eraser tool” that

IThis chapter is based on the work by Batmanghelich et al. (2016) (hitp://aclweb.org/anthology/P/P16/P16-2087.pdf)
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may often be used together will have vector representations with higher directional similarity com-
pared to commands like “eraser tool” and “lasso tool”. In this chapter, we propose a probabilistic
topic model with a novel observational distribution that integrates well with directional similarity
metrics. Our novel topic model which can incorporate the semantic similarities between the actions,
can also be applied to natural language text documents for which we have word vector representa-
tions such as word2vec (Mikolov et al., 2013). In the remaining of this chapter we use word vectors
and action vectors interchangeably.

One way to employ semantic similarity is to use the Euclidean distance between word vectors,
which reduces to a Gaussian observational distribution for topic modeling (Das et al., 2015). The
cosine distance between word embeddings is another popular choice and has been shown to be a
good measure of semantic relatedness (Mikolov et al., 2013; Pennington et al., 2014). The von
Mises-Fisher (vMF) distribution is well-suited to model such directional data (Dhillon and Sra,
2003; Banerjee ct al., 2005) but has not been previously applied to topic models.

In this chapter, we use VMF as the observational distribution. Each action can be viewed as a
point on a unit sphere with topics being canonical directions. More specifically, we use a Hierar-
chical Dirichlet Process (HDP) (Teh et al., 2006a), a Bayesian nonparametric model we described
in Section 2.2.2, to automatically infer the number of topics. We implement an efficient inference
scheme based on Stochastic Variational Inference (SVI) (Hoffman et al., 2013).

We perform experiments on a user behavior trace dataset from a photo editing application and
also two different English text corpora: 20 NEWSGROUPS and NIPS and compare against two
baselines - HDP and Gaussian LDA. Our model, spherical HDP (sHDP), outperforms all three
systems on the measure of topic coherence. For instance, sHDP obtains gains over Gaussian LDA
of 97.5% on the N1PS dataset and 65.5% on the 20 NEWSGROUPS dataset. Qualitative inspection
reveals consistent topics produced by sHDP. We also empirically demonstrate that employing SVI

leads to efficient topic inference.

5.2 Related Work

Topic modeling and word embeddings Das et al. (2015) proposed a topic model which uses a
Gaussian distribution over word embeddings. By performing inference over the vector representa-
tions of the words, their model is encouraged to group words that are semantically similar, leading
to more coherent topics. In contrast, we propose to utilize von Mises-Fisher (vMF) distributions

which rely on the cosine similarity between the word vectors instead of euclidean distance.

vMF in topic models The vMF distribution has been used to model directional data by placing

points on a unit sphere (Dhillon and Sra, 2003). Reisinger et al. (2010) propose an admixture model
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that uses vMF to model documents represented as vector of normalized word frequencies. This
does not account for word level semantic similarities. Unlike their method, we use VMF over word

embeddings. In addition, our model is nonparametric.

Nonparametric topic models HDP and its variants have been successfully applied to topic
modeling (Paisley et al., 2015; Blei, 2012; He et al., 2013); however, all these models assume a

categorical likelihood in which the words are encoded as one-hot representation.

Vector representations in user modeling Adar et al. (2014) introduced a framework for learn-
ing vector representations of system commands in software applications using a corpus of online
documents. Their framework is capable of learning the semantic regularities between commands;
furthermore, it can learn the relationship between the commands, tasks and natural language de-
scriptions. For instance, it can learn a mapping between a natural language query and its most
likely corresponding system command. In this chapter, we use their pre-trained vector representa-
tions learned over a large corpus of online documents about Adobe photoshop. Yang et al. (2017)
proposed a similar model but instead of mapping commands to vectors, they proposed vector rep-
resentations for the user behavior traces directly. This enables them to make personalized recom-
mendations based on a user behavior trace. Our model is related to theirs as it also proposes a
representation for each user behavior trace; however, instead of directly learning a vector from a
trace of actions, we first map the actions into vectors using the pre-trained vectors and then apply a

topic model to the transformed dataset.

5.3 Model

In this section, we describe the generative process for user traces. Rather than one-hot representation
of actions, we employ normalized action embeddings (Mikolov et al., 2013; Adar et al., 2014)
to capture semantic meanings of associated actions. Action n from user d is represented by a
normalized M -dimensional vector yg4, and the similarity between actions is quantified by the cosine
of angle between the corresponding action vectors. Note that our model can also be applied to

natural language text datasets where 44, denotes word n from document d.

5.3.1 Generative model

Our model is based on the Hierarchical Dirichlet Process (HDP) (see Chapter 2 for a review of the
HDP). The model assumes a collection of “topics” that are shared across documents in the corpus.
The topics are represented by the topic centers uy, € RM. Since action vectors are normalized, the

Lk can be viewed as a direction on unit sphere.
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Figure 5.3.1: Graphical representation of our spherical HDP (sHDP) model. The symbol next
to each random variable denotes the parameter of its variational distribution. We assume D users in
the dataset, each user has N actions and there are countably infinite topics represented by (p, £1).

Von Mises—Fisher (vMF) distribution Von Mises—Fisher (vMF) is a distribution that is com-

monly used to model directional data. The likelihood of the topic & for action yg4,, is:

F (Yans s k) = exp (K seg yan) Car(kx)

where kj is the concentration of the topic k, the Cy (k) = nf/z_l/ ((2m)M2 191 (k) is
the normalization constant, and I, (-) is the modified Bessel function of the first kind at order v.
Interestingly, the log-likelihood of the vMF is proportional to ngdn (up to a constant), which is
equal to the cosine distance between two vectors. This distance metric is also used by Mikolov et al.

(2013) to measure semantic proximity.

For inference we can use a conjugate prior for the mean parameter p;; however, the concentra-
tion parameter does not have a conjugate prior and we need to resort to approximate inference. The
conjugate prior for a vMF distribution with fixed concentration parameter is a vMF distribution. We
denote the parameters of this prior distribution by ¢ and kg. Given N data points y;.y, we have

the following posterior distribution for the mean parameter:

N
p(ly1:ns 5, po, ko) o< YMEF(u; ro, ko) | [ vMF(yi; p, )

=1

N
= C(ko)C(r)" exp (MT (Koﬂo +EY %)) ,

n=1
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p(z|pk) o exp(a” i)
p(xlpk) = Crr(1) exp(a” ) p(alik, ) = Cur() exp( 2 pg)

Normalization
Constant

(a) (b)

Figure 5.3.2: Von Mises—Fisher (vMF) distribution (a) Given the mean vector representation of
the topic, gk, the likelihood of a vector x in the vMF distribution is proportional to the exponential
of the similarity to the center of the topic. We need to normalize this value to get a valid probability
density value. (b) vMF distribution has an extra parameter, £, which controls the concentration of
the topic The bigger « results in more focused topic. In the above figure the green ellipse illustrates
a smaller concentrations parameter.

Hence, the posterior is a vMF distribution with mean parameter vy /||y ||2 and concentration pa-

|a where vy = Kouo + K Zf:] y;. This property of the vMF distribution helps us

rameter ||y
in developing a variational scheme for inference. For the concentration parameter, we utilize an

importance sampling approach (details below).

Hierarchical Dirichlet process When sampling a new document, a subset of topics determine
the distribution over words. We let z;, denote the topic selected for the word n of document d.
Hence, zy,, is drawn from a categorical distribution: zg, ~ Mult(m;), where 74 is the proportion of
topics for document d. We draw 7, from a Dirichlet Process which enables us to estimate the the
number of topics from the data. The generative process for the generation of new document is as

follows:

B ~ GEM(v) mq ~ DP(a, 3)
kx ~ log-Normal(m, o?) g ~ VMF(uq, Co)
Zdn ™ MUIt(T(d) Ydn ™~ VMF(ju'ka Kﬁc}

where GEM(7) is the stick-breaking distribution with concentration parameter v, DP(«, (3) is a
Dirichlet process with concentration parameter v and stick proportions 3 (Teh et al., 2012). We

use log-normal and vMF as hyper-prior distributions for the concentrations (k) and centers of the
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topics (px) respectively. Fig. 5.3.1 provides a graphical illustration of the model.

5.3.2 Stochastic variational inference

In the rest of the chapter, we use bold symbols to denote the variables of the same kind (e.g.,
Yd = {Ydn}n> 2 := {Zan}dn). We employ stochastic variational mean-field inference (SVI) (Hoff-
man et al., 2013) to estimate the posterior distributions of the latent variables. SVI enables us to
sequentially process batches of documents which makes it appropriate in large-scale settings.

To approximate the posterior distribution of the latent variables, the mean-field approach finds
the optimal parameters of the fully factorizable g (i.e., q(z, 8, 7, 1, k) := q(z)q(8)q(7)q(p)g(K))
by maximizing the Evidence Lower Bound (ELBO),

c(Q) = [Eq [lng(Y, Z, :83 ™, 14, K‘)] - [Eq [IOg Q]

where [E,4[] is expectation with respect to ¢, p(Y , z, 8, 7, 1, k) is the joint likelihood of the model
specified by the HDP model. For the variational distribution in the HDP model, we use the direct

assignment truncation scheme we described in Section 2.2.4.

The variational distributions for z, 7, ;& have the following parametric forms,

q(z) = Mult(z|p)
q(m) = Dir(w|0)
q(p) = VMF(pfp, A),

where Dir denotes the Dirichlet distribution and ¢, 8, t and X are the parameters we need to opti-
mize the ELBO.

Update equations for the parameters of the vMF variational distribution (1, \) For the
parameters of the g( ) since the vMF distributions are conjugate with respect to each other, we have
closed form update equations. That is, for a batch size of one (i.e., processing one user/document at

time) we have the following update equations for ¢ and A:

t (1—=p)t+ ps(yg, Par)
Y t/tlla, A |tll2,

where, p is the step size, ¢ is the natural parameter for vMF and s(y, ) is a function computing

the expected sufficient statistics of vMF distribution of the topic k. For s(y, sp4;) we have:
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w
s(Ya> Pa) = Coto + DEqlki] Y Eglzawk]yauw

w=1

The prior distribution x does not follow a conjugate distribution; hence, its posterior does not
have a closed-form. Since x is only one dimensional variable, we use importance sampling to
approximate its posterior. Following Gopal and Yang (2014), we use the Jensen inequality and the

expectation of posterior parameters to derive the approximate conditional distribution of xy:

p(ﬁklyda m, 027 1O, COa Q, /B’ 7) X p(K/ka yd|m7 027 Ho, 007 «, 7)
~ [EQ[p(Hk7 Ya) Zd, ﬁ’ Td, K, Kf—klmy U2a Ho, CU; o, ’7)]

2 €xXp ([Eq[logp(nk, Ya; Zds B’ ™d, 1, K'_klma 027 Ho, CO? «, ’Y)])

w w
o< exp (Z Eq[Zawk] log Cas (kk) + K Y [Eq[zdwk]ygw[Eq[ﬂko

w=1 w=1

x log-Normal(ky|m, o2).

We grid the one dimensional space of « and compute the importance weights of different « val-
ues. We use these importance weights for approximating the expected « and consequently updating

the parameters v and \.

Update equations for the parameters of the HDP variational distribution (3, ¢, 8) Sim-
ilar to Bryant and Sudderth (2012), we view 3 as a parameter; hence, ¢(8) = dg+(83). We use
numerical gradient ascent to optimize for 5*. See Section 2.2.4 for details of the direct assignment

truncation scheme that we are using here.

For a batch size of one, the update equations for the parameters are:

Pawk < exp{Eq[log VMF(yg, ¥k, Ax)] + E4[log max]}
w

Bar + (1 — p)Ogr + p(afBx + D Z Wi Pdwk )

w=1

where D, wy,;, W are the total number of users, number of actions w in user trace j, the total number

of actions in the dictionary (of actions), respectively. We can obtain E,[log VMF(yg, |k, Ax)] and
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Gaussian LDA
select_refine_edge brush_tool window_paths select_transform_selection image_reveal_all
paint_bucket_tool nudge view_snap_to_document pencil_tool layer_arrange_send_to_back
edit_transform_again eraser_tool window_paragraph_styles edit_preferences._file view_show_smart_guides
layer_layer_style_create layer_layer_style_copy_layer layer_merge_visible rectangle_tool view_lock_guides
crop-tool file_open brush_tool elliptical_marquee._tool nudge
0.203 0.177 0.232 0.190 0.208
Spherical HDP
brush_tool file_export_data_sets_as files window_extensions._conneclions select_deselect crop_tool
eraser_tool window_paragraph_styles window_workspace_default_workspace select_refine_edge healing_brush_tool
lasso_tool edit_preferences_file_handling window_workspace_save_workspace select_inverse clone_stamp_tool
magic_wand_tool file_scripts_script_events_manager file_revert edit_paste magnetic_lasso_tool
dodge._tool layer_hide_layers edit_purge_histories select load_selection patch_tool
0.257 0.242 0.250 0.268 0.245

Table 5.1: Examples of top words for the most coherent topics on the user behavior trace
dataset. Examples are generated by Gaussian LDA (k=20) and Spherical HDP. The last row for
each model is the topic coherence computed using the method introduced by Fang et al. (2016).

E,[log max] from the following equations:

Eq[log YMF (ygu |V, Ak)] = Eq[log Chr (k)] + Eq[ke]vd, Eqli],
Eqllog max]} = ¥ (8ax) — ¥ (D Oar),
=

where W is the first derivative of the log Gamma function.

5.4 Experiments

Setup We perform experiments on three different datasets. One user behavior trace dataset and 2
text corpora. The user behavior trace dataset consists of 7914 users and 275510 total actions. We
use the 4000 dimensional action embeddings from Adar et al. (2014) and reduce the dimension of
the vectors to 50 using PCA. We post-process the vectors to have unit £2-norm.

The 2 text corpora are 11266 documents from 20 NEWSGROUPS” and 1566 documents from the
NIPS corpus’. We utilize 50-dimensional word embeddings trained on text from Wikipedia using
word2vec*. Similar to action vectors, we post-process the vectors to have unit £2-norm.

We evaluate our model using the measure of topic coherence (Newman et al., 2010), which has
been shown to effectively correlate with human judgement (Lau et al., 2014). For the text corpora,
we compute the Pointwise Mutual Information (PMI) using a reference corpus of 300k documents
from Wikipedia. The PMI is calculated using co-occurence statistics over pairs of words (u;, u;) in

20-word sliding windows:
p(ui, Uj )

Pl ) =loe s )

3,

2 L
LIde S AW

4http§ /code. google.corﬁlplwordZvec/

c5.0¥

. equly
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Gaussian LDA
vector shows network hidden performance net figure size
image feature learning term work references shown average
gaussian show model rule press introduction neurons present
equation motion neural word tion statistical point family
generalization action input means ing related large versus
images spike data words eq comparison neuron spread
gradient series function approximate  performed source small median
theory final time derived em statistics fig physiology
dimensional robot set describe vol free cells children
1.16 04 0.35 0.29 0.25 0.25 0.21 0.2
Spherical HDP
neural function analysis press pattern problem noise algorithm
layer linear theory cambridge fig process gradient error
neurons functions  computational journal temporal method propagation  parameters
neuron vector statistical vol shape optimal signals computation
activation random field eds smooth solution frequency algorithms
brain probability simulations trans surface complexity feedback compute
cells parameter simulation springer horizontal estimation electrical binary
cell dimensional nonlinear volume vertical prediction filter mapping
synaptic equation dynamics review posterior solve detection  optimization
1.87 1.73 1.51 1.44 1.41 1.19 1.12 1.03

Table 5.2: Examples of top words for the most coherent topics on the NIPS dataset. Examples
are generated by Gaussian LDA (k=40) and Spherical HDP. The last row for each model is the topic
coherence (PMI) computed using Wikipedia documents as reference.

For the user behavior dataset, we use the topic coherence calculation method proposed by Fang et al.
(2016). Their method does not require a large corpus and can provide the topic coherence using the
action/word vectors directly. We compare our model with two baselines: HDP and the Gaussian
LDA model . We ran G-LDA with various number of topics (k).

Results Table 5.3 details the topic coherence averaged over all topics produced by each model.
We observe that our sHDP model outperforms G-LDA by 0.1 points on the user behavior dataset,
0.08 points on 20 NEWSGROUPS, and by 0.17 points on the NIPS dataset. We can also see that the
individual topics inferred by sHDP make sense qualitatively and have higher coherence scores than
G-LDA (Tables 5.1 and 5.2). This supports our hypothesis that using the vMF likelihood helps in
producing more coherent topics. sHDP produces 16 topics for the 20 NEWSGROUPS and 92 topics
on the NIPS dataset.

Fig. 5.4.3 shows a plot of normalized log-likelihood against the runtime of sHDP and G-LDA..?
We calculate the normalized value of log-likelihood by subtracting the minimum value from it and
dividing it by the difference of maximum and minimum values. We can see that sHDP converges

faster than G-LDA, requiring only around five iterations while G-LDA takes longer to converge.

>Our sHDP implementation is in Python and the G-LDA code is in Java.



5.5. Conclusion 84

Topic Coherence
USERS 20 NEws NIPS

HDP 0.201 0.037 0.270
G-LDA (k=20) 0.203 -0.017  0.215
G-LDA (k=40)  0.195 0.052 0.248
G-LDA (k=60) 0.178 0.082 0.137
G-LDA (k=100) 0.217 -0.032  0.267

sHDP 0.300 0.162 0.442

Model

Table 5.3: Average topic coherence for various baselines (HDP, Gaussian LDA (G-LDA)) and
sHDP. k=number of topics. Best scores are shown in bold.

2 100}
3 »v“/
g 80 y
£ 80|
g
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E 40t ]
£ 20
[=]
0

£ 6 8 10 12 14 16

Seconds (log)

Figure 5.4.3: Normalized log-likelihood (in percentage) over a training set of size 1566 docu-
ments from the NIPS corpus. Since the log-likelihood values are not comparable for the Gaussian
LDA and the sHDP, we normalize them to demonstrate the convergence speed of the two inference
schemes for these models.

5.5 Conclusion

Classical topic models do not account for semantic regularities in language. Recently, distributional
representations of words have emerged that exhibit semantic consistency over directional metrics
like cosine similarity. Neither categorical nor Gaussian observational distributions used in existing
topic models are appropriate to leverage such correlations. In this chapter, we demonstrate the use
of the von Mises-Fisher distribution to model actions/words as points over a unit sphere. We use
HDP as the base topic model and propose an efficient algorithm based on Stochastic Varational
Inference. Our model naturally exploits the semantic structures of action embeddings and word
embeddings while flexibly inferring the number of topics. We show that our method outperforms
two competitive approaches in terms of topic coherence on three different datasets. One limitation
of sHDP is that the inferred topics will be unimodal due to the unimodality of the vMF distribution.
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Having a more flexible observation model will help in solving this limitation; one candidate of such

flexible model can be a deep generative model with an HDP latent structure.



5.5. Conclusion

86




CHAPTER 6

Multimodal prediction and personalization in software

applications with deep generative models'

6.1 Introduction

In the last three chapters our goal was to develop models to deal with log files and user behav-
ior traces. We proposed models and algorithms that can infer tasks performed by the users from
their log files. In the current chapter, instead of inferring the tasks, we focus on prediction and
personalization.

Many office workers spend most of their working days using pro-oriented software applications.
These applications are often powerful, but complicated. This complexity may overwhelm and con-
fuse novice users, and even expert users may find some tasks time-consuming and repetitive. We
want to use machine learning and statistical modeling to help users manage this complexity.

Fortunately, modern software applications collect large amounts of data from users with the aim
of providing them with better guidance and more personalized experiences. A photo-editing appli-
cation, for example, could use data about how users edit images to learn what kinds of adjustments
are appropriate for what images, and could learn to tailor its suggestions to the aesthetic preferences
of individual users. Such suggestions can help both experts and novices: experts can use them as a
starting point, speeding up tedious parts of the editing process, and novices can quickly get results
they could not have otherwise achieved.

Several models have been proposed for predicting and personalizing user interaction in different
software applications. These existing models are limited in that they only propose a single prediction

or are not readily personalized. Multimodal predictions” are important in cases where, given an

!This chapter is based on the work by Saeedi et al. (2017a) (https://arxiv.org/pdi/1704.04997 pdf).
2We mean “multimodal” in the statistical sense (i.e., coming from a distribution with multiple maxima), rather than in
the human-computer-interaction sense (i.e., having multiple modes of input or output). This term has also been used in
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input from the user, there could be multiple possible suggestions from the application. For instance,
in photo editing/enhancement, a user might want to apply different kinds of edits to the same photo
depending on the effect he or she wants to achieve. A model should therefore be able to recommend
multiple enhancements that cover a diverse range of styles.

In this chapter, we introduce a framework for multimodal prediction and personalization in
software applications. We focus on photo-enhancement applications, though our framework is also
applicable to other domains where multimodal prediction and personalization is valuable. Fig. 6.2.1
demonstrates our high-level goals: we want to learn to propose diverse, high-quality edits, and we
want to be able to personalize those proposals based on users’ historical behavior.

Our modeling and inference approach is based on the variational autoencoder (VAE) (Kingma
and Welling, 2013). We propose an extension of the VAE which uses a hierarchical structure to
learn styles across many diverse users. We further extend our model to provide personalized results,
learning each user’s personal style from their historical behavior. We introduce a novel encoder
architecture that, for each user, analyzes each edit independently, and then combines the results in a
symmetric, exchangeable way that extends to any number of user edits.

We apply our framework to three different datasets (collected from novice, semi-expert, and
expert users) of image features and user edits from a photo-enhancement application and compare
its performance qualitatively and quantitatively to various baselines. We demonstrate that our model

outperforms other approaches.

6.2 Related work

In this section we provide an overview of the available models for predicting photo edits and sum-

marize their pros and cons.

6.2.1 Related work on the prediction of photo edits

There are two main categories of models, parametric and nonparametric, that have been used for

prediction of photo edits:

Parametric methods These methods approximate a parametric function by minimizing a squared
(or a similar) loss. The loss is typically squared L, distance in Lab color space, which more closely
approximates human perception than RGB space (Sharma and Bala, 2002). This loss is reasonable
if the goal is to learn from a set of consistent, relatively conservative edits. But when applied to a

dataset of more diverse edits, a model that minimizes squared error will tend to predict the average

other related work on multimodal predictions (e.g., Bishop 1994; Tang and Salakhutdinov 2013; Dauphin and Grangier
2015).
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Original Image ! ! : User Group II :

(a)

Figure 6.2.1: The main goals of our proposed models. (a) Multimodal photo edits: For a given
photo, there may be multiple valid aesthetic choices that are quite different from one another. (b)
User categorization: A synthetic example where different user clusters tend to prefer different
slider values. Group | users prefer to increase the exposure and temperature for the baby images;
group 2 users reduce clarity and saturation for similar images.

edit. At best, this will lead to conservative predictions; in the worst case, the average of several
good edits may produce a bad result.

Bychkovsky et al. (2011) collect a dataset of 5000 photos enhanced by 5 different experts; they
identify a set of features and learn to predict the user adjustments after training on the collected
dataset. They apply a number of regression techniques such as LASSO and show their proposed
adjustments can match the adjustments of one of the 5 experts. Their method only proposes a single
adjustment and the personalization scheme that they suggest requires the user to edit a set of selected
training photos. Yan et al. (2016) use a deep neural network to learn a mapping from an input photo
to an enhanced one following a particular style; their results show that the proposed model is able
to capture the nonlinear and complex nature of this mapping. More recently, Gharbi et al. (2017)
propose a network architecture that is faster in processing every image compared to the model by

Yan et al. (2016). Both of these models only propose a single style of adjustment.

Nonparametric methods The few available nonparametric methods are typically able to pro-
pose multiple edits or some uncertainty over the range of adjustments. Lee et al. (2015) propose a
method that can generate a diverse set of edits for an input photograph. The authors have a curated
set of exemplar images in various styles. They use an example-based style-transfer algorithm to
transfer the style from an exemplar image to an input photograph. To choose the right exemplar
image, they do a semantic similarity search using features that they have learned via a convolutional
neural network (CNN). Although their approach can recommend multiple edits to a photo, their

edits are destructive; that is, the recommended edits are directly applied to the photo and the user is
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not able to further customize those edits. Koyama et al. (2016) introduce a model for personalizing
photo edits only based on the history of edits by a single user. The authors use a self-reinforcement
procedure in which after every edit by a user they: 1) update the distance metric between the user’s
past photos, 2) update a feature vector representation of the user’s photos, and 3) update an enhance-
ment preference model based on the feature vectors and the user’s enhancement history. This model

requires data collection from a single user and does not benefit from other users’ information.

6.2.2 Related multimodal prediction models

Traditional neural networks using mean squared error (MSE) loss cannot naturally handle mul-
timodal prediction problems, since MSE is minimized by predicting the average response. Neal
(1992) introduces stochastic latent variables to the network and proposes training Sigmoid Belief
Networks (SBN) with only binary stochastic variables. However, this model is difficult to train,
and it can only make piecewise-constant predictions and is therefore not a natural fit to continuous-
response prediction problems.

Bishop (1994) proposes mixture density networks (MDN), which are more suitable for continu-
ous data. Instead of using stochastic units, the model directly outputs the parameters of a Gaussian
mixture model. The complexity of MDNs’ predictive distributions is limited by the number of mix-
ture components. If the optimal predictive distribution cannot be well approximated by a relatively
small number of Gaussians, then an MDN may not be an ideal choice.

Tang and Salakhutdinov (2013) add deterministic hidden variables to SBNs in order to model
continuous distributions. The authors showed improvements over the SBN; nevertheless, training
the stochastic units remained a challenge due to the difficulty of doing approximate inference on a
large number of discrete variables. Dauphin and Grangier (2015) propose a new class of stochastic
networks called linearizing belief networks (LBN). LBN combines deterministic units with stochas-
tic binary units multiplicatively. The model uses deterministic linear units which act as multiplica-
tive skip connections and allow the gradient to flow without diffusion. The empirical results show

that this model can outperform standard SBNs.

6.3 Models

Given the limitations of the available methods for predicting photo edits (described in Section 6.2.1),
our goal is to propose a framework in which we can: 1) recommend a set of diverse, parametric edits
based on a labeled dataset of photos and their enhancements, 2) categorize the users based on their
style and type of edits they apply, and finally 3) personalize the enhancements based on the user
category. We focus on the photo-editing application in this chapter, but the proposed framework is

applicable to other domains where users must make a selection from a large, richly parameterized
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design space where there is no single right answer (for example, many audio processing algorithms
have large numbers of user-tunable parameters).

Our framework is based on VAEs, we described in Section 2.1.3, and follows a mixture-of-
experts design (Murphy, 2012, Section 11.2.4). We first introduce a conditional VAE that can
generate diverse set of enhancements to a given photo. Next, we extend the model to categorize the
users based on their adjustment style. Our model can provide interpretable clusters of users with
similar style. Furthermore, the model can provide personalized suggestions by first estimating a
user’s category and then suggesting likely enhancements conditioned on that category. We slightly

modify the notation from Section 2.1.3: we denote N i.i.d. observations by y = {y,})\_, and the

latent variables by z,.

6.3.1 Multimodal prediction with conditional Gaussian mixture VAE (CGM-
VAE)

Given a photo, we are interested in predicting a set of edits. Each photo is represented by a feature
vector x,, and its corresponding edits y,, are represented by a vector of slider values (e.g., contrast,
exposure, saturation, etc.). We assume that there are L clusters of possible edits for each image. To
generate the sliders y,, for a given image z,,, we first sample a cluster assignment s,, and a set of
latent features z, from its corresponding mixture component N (us,, , X5, ). Next, conditioned on
the image and z,, we sample the slider values. The overall generative process for the slider values

{yn}2_, conditioned on the input images {x, }_, is

iid
snl'n’ lr\' , Zn|sn7{)u‘€1 Ee}szl ~ N()U’Snv Esn)a
Yn|Tn, Zn,9NN(N(ZmSUn;e),E(Zn,xn;o)), (6.1)

where pi(2zp, Tn; 6) and 3(z,, z,; 0) are flexible parametric functions, such as MLPs, of the input
image features x,, concatenated with the latent features z,. Summing over all possible values for
the latent variables s, and z,, the marginal likelihood p(yn|z,) = 3. s fzn P(Yn, Sns Zn|Tn)dzn
yields complex, multimodal densities for the image edits y,,.

The posterior p(s, z|z,y) is intractable. We approximate it with variational recognition models

as

po(s, 2|z, y) = qo, (s, Y)qs, (22, Y, 5). (6.2)

Note that this variational distribution does not model s and z as independent. For g4 (s|z,y),
we use an MLP with a final softmax layer, and for g4, (2|z,y, s), we use a Gaussian whose mean
and covariance are the output of an MLP that takes s, z, and y as input. Fig. 6.3.2 (parts a and b)
outlines the graphical model structures of the CGM-VAE and its variational distributions g.
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—e

Figure 6.3.2: Graphical models for CGM-VAE and P-VAE (a) The graphical model for CGM-
VAE introduced in Section 6.3.1 (b) The dependency structure for the variational approximations
4o, (s|z,y) and g4_(z|z,y, s) in CGM-VAE (c) The P-VAE model introduced in Section 6.3.2) for
categorization and personalization. There are [/ users and each user u has N, photos. (d) The
dependency structure in the variational distributions for the P-VAE model. Note that the recognition
network for s, depends on all the images and their corresponding slider values of user w.

Given this generative model and variational family, to perform inference we maximize a varia-

tional lower bound on log py(¥y|z), writing the objective as

E(Ba Q‘)) = [Eq,,(s,z\m.y)[logpt?(ylzax)} - KL(ql_ﬁ(sa Zl:C, y)IIPB(S,Z))-

By marginalizing over the latent cluster assignments s, the CGM-VAE objective can be op-
timized using stochastic gradient methods and the reparameterization trick. Marginalizing out the
discrete latent variables is not computationally intensive since s and y are conditionally independent
given z, py(s, z) is cheap to compute relative to pg(y|z, z), and we use a relatively small number of
clusters. However, with a very large discrete latent space, one could use alternate approaches such
as the Gumbel-Max trick (Maddison et al., 2016) or REBAR (Tucker et al., 2017).

6.3.2 Categorization and personalization

In order to categorize the users based on their adjustment style, we extend the basic CGM-VAE
model to a hierarchical model that clusters users based on the edits they make. We call this new
model personalized VAE or P-VAE for short. While the model in the previous section considered
each image-edit pair z,,, ¥, in isolation, we now organize the data according to U distinct users,
using x,, to denote the nth image of user v and y,, to denote the corresponding slider values
(see Fig. 6.3.2(c)). N, denotes the number of photos edited by user u. As before, we assume a
GMM with L components {4, £¢}}_; and mixing weights , but here these clusters will model
differences between users.

For each user u we sample a cluster index s, to indicate the user’s category, then for each

photo n € {1,..., N, } we sample the latent attribute vector z,,, from the corresponding mixture
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component:

iid iid
3u|7r ~ T, zunlsua {(:ufv Zf)}%:l ~ N(lu’su, Esu)’

Finally, we use the latent features z,, to generate the vector of suggested slider values v,,. As
before, we use a multivariate normal distribution with mean and variance generated from an MLP
parameterized by 6:

iid
yunlmuna Zun, 0 ~

N(;U'(Zun,xun; 9)7 E(zuny Tun; 9))

For inference in the P-VAE model, our goal is to maximize the following variational lower
bound (VLB) for a dataset of U users:

N,
1 u
L(9, ¢) £ —[7 Z [Z IEq,,,(z,s|az:,y) [Inge(yuntxuny zun)]
u n=1

- KL(qu(zunlxun’ Yun,y Su) I Ipe(zunlsu))]

— KL(gg(sul{Zun, Yun }p21) 1P (50))-

In the following we define the variational factors and the recognition networks that we use.

Variational factors For the local variables z and s, we restrict g(z|s) to be normal and we have
q(s) in the categorical form. As in the CGM-VAE, we marginalize over cluster assignments at the
user level. Fig. 6.3.2 (parts ¢ and d) outlines the graphical model structures of the P-VAE and its
variational distributions g.

For the variational factor of the latent mixture component index s,,, we write:

Ny
q(sul{Zun, yun}yjy;fl; ¢) o exp { < logm + Z log (yun, Tun; @), ts(su)>}7 (6.3)

n=1
where (s, ) denotes the one-hot vector encoding of s, and 7(yyn, Tun; @) is the recognition net-
work that belongs to some parametrized class of functions. That is, for each user image ., and
corresponding set of slider values y,,, the recognition network produces a potential over the user’s
latent mixture component s,,. These image-by-image guesses are then combined with each other
and with the prior to produce the inferred variational factor on s,,.
This recognition network architecture is both natural and convenient. It is natural because a pow-
erful enough r can set 74 (Yun, Tun; @) X Pg(Yun |[Tun, Su = k), in which case gy (sy|{Tun, yun}ﬁfgl) =
p(sul{xun,yun}ﬁ’;l) and there is no approximation error. It is convenient because it analyzes

image-edit pairs independently, and these evidence potentials are combined in a symmetric, ex-
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changeable way that extends to any number of user images V,,.

6.4 Experiments

We evaluate our models and several strong baselines on three datasets. We focus on the photo editing
software Adobe Lightroom. The datasets that we use cover three different types of users that can
be roughly described as 1) casual users who do not use the application regularly, 2) frequent users
who have more familiarity with the application and use it more frequently 3) experts who have
more experience in editing photos than the other two groups. We randomly split all three datasets
into 10% test, 10% validation, and 80% train set. For more details on the datasets, baselines and

hyperparameter settings, see the supplementary materials.

Datasets The casual users dataset consists of 345000 images along with the slider values that a
user has applied to the image in Lightroom. There are 3200 users in this dataset. Due to privacy
concerns, we only have access to the extracted features from a CNN applied to the images. Hence,
each image in the dataset is represented by a 1024-dimensional vector. For the possible edits to the
image, we only focus on 11 basic sliders in Lightroom. Many common editing tasks boil down to

adjusting these sliders. The 11 basic sliders have different ranges of values, so we standardize them

to all have a range between —1 and 1 when training the model.

Dataset Casual Frequent Expert

El‘\’;’:‘tﬁc LL ISD LL JSD LL JSD LAB
MLP —15.714+0.21 0.26+004 -2.724+031 0.11+002 -4.28+0.12 0.224+£0.06 7.81+0.26
LBN —7.124+0.15 0144002 -3.7+0.43 0.13+0.02 -4894+0.24 0.17+004 7.44+0.29
MDN —14.53+0.25 0.31+£0.06 —-1.67+047 0.24+0.08 —-4.914+0.07 0.28+0.11 8.414+0.27
CGM-VAE —6.39+£0.11 0.10+0.02 —1.42+0.18 0.08+0.02 —26+0.15 0.12+0.05 6.72+0.27

Table 6.1: Quantitative results: LL: Predictive log-likelihood for our model CGM-VAE and the three
baselines. The predictive log-likelihood is calculated over the test sets from all three datasets. JSD:
Jensen-Shannon divergence between normalized histograms of the true sliders and our model predic-
tions over the test sets (lower is better). See Fig. 6.4.3 for an example of these histograms. LAB: LAB
error between the images retouched by the experts and the images retouched by the model predictions.
For each image we generate 3 proposals and compare that with the images generated by the top 3 active

experts in the experts dataset.

The frequent users dataset contains 45000 images (in the form of CNN features) and their cor-

responding slider values. There are 230 users in this dataset. These users generally apply more

changes to their photos compared to the users in the casual group.

Finally, the expert users dataset (Adobe-MIT35k, collected by Bychkovsky et al. 2011) contains

5000 images and edits applied to these images by 5 different experts, for a total of 25000 edits.
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Figure 6.4.3: Marginal statistics for the prediction of the sliders in the casual users dataset (test
set). Due to space limitation, We only display the top 5 mostly used sliders in the dataset. LBN
has limited success compared to CGM-VAE. MLP mostly concentrates around the mean edit. The
quantitative comparison between different methods in terms of the distance between normalized
histograms is provided in Table 6.1.

We augment this dataset by creating new images after applying random edits to the original
images. To generate a random edit from a slider, we add uniform noise from a range of +10% of
the total range of that slider. Given the augmented set of images, we extract the “FC7” features
of a VGG-16 (Simonyan and Zisserman, 2014) pretrained network and use the 4096-dimensional
feature vector as a representation of each image in the dataset. After augmenting the dataset, we
have 15000 images and 75000 edits in total. Similar to other datasets, we only focus on the basic

sliders in Adobe Lightroom.

Baselines We compare our model for multimodal prediction with several models: a multilayer
perceptron (MLP), mixture density network (MDN), and linearizing belief network (LBN). The
MLP is trained to predict the mean and variance of a multivariate Gaussian distribution; this model
will demonstrate the limitations of even a strong model that makes unimodal predictions. The
MDN and LBN, which are specifically designed for multimodal prediction, are other baselines for
predicting multimodal densities. Table 6.1 summarizes our quantitative results.

We use three different evaluation metrics to compare the models. The first metric is the pre-
dictive log-likelihood computed over a held-out test set of different datasets. Another metric is the
Jensen-Shannon divergence (JSD) between normalized histograms of marginal statistics of the true
sliders and the predicted sliders. Fig. 6.4.3 shows some histograms of these marginal statistics for
the casual users.

Finally, we use the mean squared error in the CIE-LAB color space between the expert-retouched

image and the model-proposed image. We use the CIE-LAB color space as it is more perpetually
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Predictions

Predictions

Original image

Original image
Avg. LAB error: 3.22

Avg. LAB error: 4

Figure 6.4.4: Multimodal photo edits. Sample slider predictions from the CGM-VAE model (de-
noted by P in the figure) compared to the edits of 3 most active experts in the expert users dataset
(denoted by E). The images are selected from the test subset of the dataset; the 3 samples are se-
lected from a set of 10 proposals from the CGM-VAE model such that they align with the experts.
To show the difference between the model and experts, we apply their sliders to the original image.
For more examples, refer to Appendix B.

linear compared to RGB. We only calculate this error for the experts dataset (test set) since that is
the only dataset with available retouched images. To compute this metric, we first apply the pre-
dicted sliders from the models to the original image and then convert the generated RGB image to
a LAB image. For reference the difference between white and black in CIE-LAB is 100 and photos
with no adjustments result in an error of 10.2 . Table 6.1, shows that our model outperforms the

baselines across all these metrics.

Hyperparameters For the CGM-VAE model, we choose the dimension of the latent variable
from {2, 20} and the number of mixture components from the set {1, 3, 5, 10}. Note that by setting
the number of mixture components to 1, CGM-VAE will reduce to a conditional VAE. For the
remaining hyperparameters see the supplementary materials. We choose the best hyperparameter
setting based on the VLB of the held-out dataset. In all three datasets, 3 mixture components provide

the best VLB for the validation datasets.
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Figure 6.4.5: Predictive log-likelihood for users in the test set of different datasets. For each
user in the test set, we compute the predictive log-likelihood of 20 images, given 0 to 30 images
and their corresponding sliders from the same user. 30 sample trajectories and the overall average
=+ s.e. is shown for casual, frequent and expert users. The figure shows that knowing more about
the user (up to around 10 images) can increase the predictive log-likelihood. The log-likelihood is
normalized by subtracting off the predictive log-likelihood computed given zero images. Note the
different y-axis in the plots. The rightmost plot is provided for comparing the average predictive
log-likelihood across datasets.

Tasks In addition to computing the predictive log-likelihood and JSD over the held-out test sets
for all three datasets, we consider the following two tasks:

1. Multimodal prediction: We predict different edits applied to the same image by the users in
the experts dataset. Our goal is to show that CGM-VAE is able to capture different styles
from the experts.

2. Categorizing the users and adapting the predictions based on users’ categories: We show that
the P-VAE model, by clustering the users, makes better predictions for each user. We also

illustrate how inferred user clusters differ in terms of edits they apply to similar images.

6.4.1 Multimodal predictions

To show that the model is capable of multimodal predictions, we propose different edits for a given
image in the test subset of the experts dataset. To generate these edits, we sample from different
cluster components of our CGM-VAE model trained on the experts dataset. For each image we
generate 20 different samples and align these samples to the experts’ sliders. From the 5 experts in
the dataset, 3 propose a more diverse set of edits compared to the others; hence, we only align our
results to those three to show that the model can reasonably capture a diverse set of styles.

For each image in the test set, we compare the predictions of MLP, LBN, MDN and the CGM-
VAE with the edits from the 3 experts. In MLP (and also MDN), we draw 20 samples from the
Gaussian (mixture) distribution with parameters generated from the MLP (MDN). For the LBN,
since the network has stochastic units, we directly sample 20 times from the network. We align
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User Group II

Figure 6.4.6: User categorization. Two examples of sample edits for three different user groups
which the P-VAE model has identified (in the experts dataset). (a) For similar flower photos, users in
group I prefer to use low contrast and vibrance, whereas group I users tend to increase the exposure
and vibrance from their default values. There is also group 11l users which do not show any specific
preference for similar flower photos. (b) The same user groups for another set of similar photos
with dominant blue colors. For more examples, see the supplementary materials.

these samples to the experts’ edits and find the LAB error between the expert-retouched image and
the model-proposed image.

To report the results, we average across the 3 experts and across all the test images. The LAB
error in Table 6.1 indicates that CGM-VAE model outperforms other baselines in terms of predict-
ing expert edits. Some sample edit proposals and their corresponding LAB errors are provided in
Fig. 6.4.4. This figure shows that the CGM-VAE model can propose a diverse set of edits that is

reasonably close to those of experts. For further examples see the supplementary material.

6.4.2 Categorization and personalization

Next, we demonstrate how the P-VAE model can leverage the knowledge from a user’s previous
edits and propose better future edits. For the users in the test sets of all three datasets, we use
between 0 and 30 image-slider pairs to estimate the posterior of each user’s cluster membership.
We then evaluate the predictive log-likelihood for 20 other slider values conditioned on the images
and the inferred cluster memberships.

Fig. 6.4.5 depicts how adding more image-slider combinations can generally improve the predic-
tive log-likelihood. The log-likelihood is normalized by subtracting off the predictive log-likelihood
computed given zero images. The effect of adding more images is shown for 30 different sampled
users; the overall average for the test dataset is also shown in the figure. To compare how various
datasets benefit from this model, the average values from the 3 datasets are overlaid. According

to this figure, the frequent users benefit more than the casual users and the expert users benefit the
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most.”

To illustrate how the trained P-VAE model proposes edits for different user groups, we use a
set of similar images in the experts dataset and show the predicted slider values for those images.
Fig. 6.4.6 shows how the inferred user groups edit a group of similar images (i.e., flowers). This
figure provides further evidence that the model is able to propose a diverse set of edits across differ-
ent groups; moreover, it shows each user group may have a preference over which slider to use. For

more examples see the supplementary material.

6.5 Conclusion

We proposed a framework for multimodal prediction of photo edits and extend the model to make

personalized suggestions based on each user’s previous edits. Our framework outperforms several

strong baselines and demonstrates the benefit of having interpretable latent structure in VAEs. Al-
though we only applied our framework to the data from photo editing applications, it can be applied

to other domains where multimodal prediction, categorization and personalization are essential. Our

proposed models could be extended further by assuming more complicated graphical model struc-

ture such as admixture models instead of the Gaussian mixture model that we used. Furthermore,

the categories learned by our model can be utilized to gain insights about the types of the users in

the dataset.

*To apply the P-VAE model to the experts dataset, we split the image-slider combinations from each of the 5 experts
into groups of 50 image-sliders and pretend that each group belongs to a different user. This way we can have more
users to train the P-VAE model. However, this means the same expert may have some image-sliders in both train and test
datasets. The significant advantage gained in the experts dataset might be due in part to this way of splitting the experts.
Note that there are still no images shared across train and test sets.



6.5. Conclusion 100




CHAPTER 7

Improving variational inference for latent variable mod-

els: discrete particle variational inference!

7.1 Introduction

In Chapters 3 to 6, we proposed latent variable models with discrete latent structure. Probabilistic
models defined over large collections of discrete random variables have arisen in multiple fields in
addition to user behavior modeling. Examples include hidden Markov models for sequential data;
Bayesian networks; mixture models for tabular and relational data; and discrete Markov random
field models, which have become popular in fields ranging from computer vision to information
extraction. These models are typically specified in terms of a probability distribution P(x) defined
over a collection of variables ¢ = {z,,} occupying points in an underlying discrete space X'. One
key approximate inference problem that arises in many applications is identifying high-probability
configurations of the discrete variables.

As mentioned in Chapter 2, approximate inference algorithms can be grouped into two main
categories: Monte Carlo methods and variational methods.The flexibility and simplicity of Monte
Carlo methods have made them the workhorse of statistical computation (Robert and Casella, 2004).
There are two basic approaches to Monte Carlo inference for discrete probabilistic models. The first,
Markov chain Monte Carlo methods, work by running a Markov chain with transition operator T
whose equilibrium distribution asymptotically approaches P(x)—that is, T*Py(z) ~ P(zx) for
any initial distribution on states Py(z). The second, sequential Monte Carlo methods, build up a
sample from a distribution that approximates P(z) by sampling from a sequence of more tractable
distributions, typically defined over subspaces of X'. However, their accuracy is difficult to measure,

and the amount of computation required for satisfactory accuracy can be prohibitive in practice.

"This chapter is based on the work by Saeedi et al. (2017b) (http:// imirorg/papersy/vI®/15-615 htmi).

101
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In contrast to Monte Carlo methods, variational methods tend to converge quickly, guarantee
an improved bound after each iteration, and supply an easily monitored objective function (unlike
Monte Carlo methods). However, for complex discrete models, the bias induced by variational ap-
proximations can sometimes lead to poor predictive performance. For example, consider a discrete
probabilistic model where two binary variables x1 and x5 are constrained to take the same value, i.e.
P(zy,x2) = 0if z1 # z2. All the probability mass is on the states ; = 9 = O and z; = zo = 1.
In “mean-field” variational inference, this distribution might be approximated as Qp, (71)Qs,(2),
with 61 and 6, representing coin weights that used to model z; and x5 as independent Bernoulli
distributions. This family of variational approximations to P(z1, z2) cannot capture the true distri-
bution, and in fact cannot qualitatively capture the simple constraint that z; = 5. These limitations
prompted the development of more sophisticated approximations (e.g., Bouchard-Cété and Jordan,
2009; Jaakkola and Jordan, 1998), but these incur additional computational cost and can be difficult
or impossible to apply to a given problem.

This chapter introduces a new approximate inference method, called discrete particle varia-
tional inference (DPVI), that aims to combine key strengths of both Monte Carlo and variational
inference. The key insight in DPVI is to use a weighted collection of samples — the kind of “parti-
cle approximation” output by Monte Carlo methods — as the approximating family for variational
inference. Suppose we got to pick where to place the particles in the hypothesis space; where
would we put them? Intuitively, we would want to distribute them in such a way that they cover
high probability regions of the target distribution, but without the particles all devolving onto the
mode of the distribution. This problem can be formulated precisely within the framework of vari-
ational inference. We derive a coordinate ascent update for particle approximations that iteratively
minimizes the Kullback-Leibler (KL) divergence between the particle approximation and the target

distribution.

In DPVI, the location of the particles become the parameters of the approximating family. This
simple choice has appealing consequences. Like Monte Carlo, DPVI can handle problems where the
posterior has multiple modes, and yields exact results in a well-defined limit (as the number of par-
ticles goes to infinity). Like standard mean-field variational methods, DPVI is based on optimizing
a lower bound on the partition function; when this quantity is not of intrinsic interest, it facilitates
convergence assessment and debugging. Like both Monte Carlo and combinatorial search, DPVI

can take advantage of factorization, sequential structure, and custom search operators.

The rest of the chapter is organized as follows. After introducing our general framework, we
describe how it can be applied to filtering and smoothing problems. We then show experimentally
that variational particle approximations can overcome a number of problems that are challenging for
conventional Monte Carlo methods. In particular, our approach is able to produce a diverse, high

probability set of particles in situations where Monte Carlo and mean-field variational methods
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sometimes degenerate.

7.2 Background

Our goal is to approximate a probability distribution P(zx) over discrete latent variables z =
{@1,...,zn}, 0 € {1,..., M,}, where the target distribution is known only up to a normaliz-
ing constant Z: P(z) = f(z)/Z.

We assume that P(x) is a Markov network defined on a graph G, so that f(z) factorizes ac-
cording to:

f(z) =] felze), (7.1)

where ¢ C {1,..., N} indexes the maximal cliques of G.

Recall from Chapter 2 that a general way to approximate P(x) is with a weighted collection of

K particles, {z!,...,2X}. For discrete latent variables, we have:
K
P(z)~Q(z) = Z whé[x, ), (7.2)
k=1
where ¥ = {zF,... ,zh b xk e {1,..., M} and §[-,-] = 1 if its arguments are equal and 0

ks are stochastically generated particles from a proposal distribution, % ~ o(-), and

otherwise. z
their weights are computed according to w* o f(z*)/p(z¥).

In an SMC framework, where we sequentially sample the latent variables at each time point
using a proposal distribution ¢(z,,|z,—1), the procedure can produce conditionally low probability
particles; therefore, most algorithms include a resampling step which replicates high probability
particles and kills off low probability particles. The downside of resampling is that it can produce
degeneracy: the particles become concentrated on a small number of hypotheses, and consequently
the effective number of particles is low.

We next consider particle approximations from the perspective of variational inference. We then

turn to the application of particle approximations to inference in stochastic dynamical systems.

7.3 Variational particle approximations

Variational inference can be connected to Monte Carlo methods by viewing the particles as a set of

variational parameters parameterizing (). For the particle approximation defined in Eq. (7.2), the
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negative variational free energy takes the following form:

K
LRI =Y wFlog 1) (71.3)

wkVk’
k=1

where VF = Zszl 5[z7, z¥] is the number of times an identical replica of z* appears in the par-
ticle set. We wish to find the set of K particles and their associated weights that maximize £[Q)],
subject to the constraint that Zszl w® = 1. This constraint can be implemented by defining a new

functional with Lagrange multiplier \:

K
L£[Q] = £[Q] + X (Z wk — 1) . (7.4)

k=1

Taking the functional derivative of the Lagrangian with respect to w* and equating to zero, we

obtain:

OL[Q)]

Sk log f(z*) — logw® —log VF+ A =1=0

— wk = Zalf(:ck)/Vk, (7.5)

where
K k
Zg=exp(A—-1)"" =) % (7.6)
k=1

We can plug the above result back into the definition of £[Q)]:

f(b)v*
Z5' f(zk)VE

K k
LRI =25y fifk) log
k=1

=log Zg (7.7)

Thus, £[Q)] is maximized by choosing the K values of z with the highest score. The following

theorem shows that allowing V¥ > 1 (i.e., having replica particles) can never improve the bound.

Theorem 1. Let @ and Q' denote two particle approximations, where () consists of unique particles

(VE = 1forall k) and Q' is identical to Q except that particle z, is replicated V72, times (displacing
Q p p 1) P

V2, other particles with cumulative score F). For any choice of particles, £[Q] > L[Q'].
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Proof. We first apply Jensen’s inequality to obtain an upper bound on £[Q’]:

(7.8)

flg)
VE

!

K K
L[Q'] < log Z wg, Zgy =log Z
k=1 k=1

zk ’ .
Since L[Q)] = log Zg, we wish to show that Zg > S°K | %ﬁ’—z. All the particles in Q and Q' are
QI

identical except for the V7, particles in () that were displaced by replicas of l‘é), in Q’; thus we only

] Vj/ :L'] ! ] - - .
need to establish that f(z7,) + F > -‘3—‘—/:—&&) = f(z(y), where the left hand side of the inequality

is the change in negative variational free energy after the replication of particles. Since the score
f(z) can never be negative, the cumulative score F' can also never be negative (F' > 0) and the

inequality holds for any choice of particles. O

The variational bound can be optimized by coordinate ascent, as specified in Algorithm 1, which
we refer to as discrete particle variational inference (DPVI). This algorithm takes advantage of
the fact that when optimizing the bound with respect to a single variable, only potentials local to
that variable need to be computed. In particular, let ¥ be a replica of ¥ with a single-variable

k

modification, £; = m. We can compute the unnormalized probability of this particle efficiently

using the following equation:

=k
f(@*) = f(w’“)% (1.9)
where 7, (z) = []..,cc fe(zc). The variational bound for the modified particle can then be com-
puted using Eq. (7.7). Particles can be initialized arbitrarily. When repeatedly iterated, DPVI will
converge to a local maximum of the negative variational free energy.” Note that in principle more
sophisticated methods can be used to find the top K modes (e.g., Flerova et al., 2012; Yanover
and Weiss, 2003); however, we have found that this coordinate ascent algorithm is fast, easy to
implement, and very effective in practice (as our experiments below demonstrate).

An important aspect of this framework is that it maintains one of the same asymptotic guaran-
tees as importance sampling: () converges to P as K — oo, since in this limit DPVI is equivalent to
exact inference. Thus, DPVI combines advantages of variational methods (monotonically decreas-
ing KL divergence between () and P) with the asymptotic correctness of Monte Carlo methods.
It is important to note that asymptotic correctness might be useless in practice unless something

is known about the convergence rate. This issue is not unique to DPVI,; it also applies to Monte

Naturally, initialization affects performance, since the objective function has local optima. For example, if the
posterior is multimodal and none of the particles are initialized near the dominant mode, then the particle approximation
will likely miss a significant portion of the probability mass. Studying the effects of initialization is an important practical
challenge for the application of DPVI. In our experiments, we report averages across multiple random initializations.
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Algorithm 1 Discrete particle variational inference
1: /*N is the number of latent variables */

2: /*z* is the set of all latent variables for the kth particle: «* = {z%,..., 2%} */
3: /* M, is the support of latent variable x,, */

4: Input: initial particle approximation @) with K particles, tolerance €
5: while |[£[Q] — L[Q']| > e do

6: forn=1toN do

7: X=90

8: for k =1to K do

9: Copy particle k: ¥ « z*

10: for m = 1to M,, do
11: Modify particle: zF < m
12: Score Z* using Eq. (7.9)

13: X — XUk f(@F)

14: end for

15: end for

16: Select K unique particles from & with the largest scores

17: Construct new particle approximation Q'(z) = S5 w*é[z, z¥]
18: Compute variational bound £[Q’] using Eq. (7.7)

19:  end for
20: end whileReturn particle approximation @’

Carlo and variational methods. For certain Markov chain Monte Carlo (MCMC) samplers, it can be
shown that the chain converges to the posterior at a geometric rate (Mengersen ct al., 1996; Meyn
and Tweedie, 1993). A small amount of work has investigated convergence properties of varia-
tional methods for specific models (Hall et al., 2011; Wang et al., 2006), but in general the issue of

convergence rate for variational methods is an open question.

The asymptotic complexity of DPVI in the sequential setting is O(SN K) where S is the max-
imum support size of the latent variables. For the iterative update of the particles the complexity is
O(TCSK), where T is the maximum number of iterations until convergence and C is the maxi-
mum clique size. In our experiments, we empirically observed that we only need a small number of

iterations and particles in order to outperform our baselines.

7.4 Filtering and smoothing in hidden Markov models

We now describe how variational particle approximations can be applied to filtering and smooth-
ing in hidden Markov models (HMMs). Consider a hidden Markov model with observations y =
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{y1,...,yn} generated by the following stochastic process:
P(y,z,0) = P(0) [ [ P(ynlen, 0)P(zn|n-1,6), (7.10)

where 6 is a set of transition and emission parameters. We are particularly interested in marginal-
ized HMMs where the parameters are integrated out: P(y,z) = [, P(y,z,0)df. This induces
dependencies between observation n and all previous observations, making inference challenging.
Filtering is the problem of computing the posterior over the latent variables at time n given the
history y3.,. To construct the variational particle approximation of the filtering distribution, we need

to compute the product of potentials for variable n:
]:n(m) = P(ynlxlznayl:n—l)P($n]x1:n—l)- (711)

Recall from the previous section that F,(z) is the joint probability of the maximal cliques to which
Zn belongs. We can then apply the coordinate ascent update described in the previous section. This
update is simplified in the filtering context due to the underlying Markov structure. Specifically,
Eq. (7.9) is given by:

f(a?k) :f(.’L‘k)P(ynlIfl = mvxllc:n—h yli’n~1)P($§ = mla:llc:n—l)' (7.12)

Ateach time step, the algorithm selects the K continuations (new variable assignments of the current
particle set) that maximize the negative variational free energy.
Smoothing is the problem of computing the posterior over the latent variables at time n given

data from both the past and the future, y;.y. The product of potentials is given by:
Fn(x) = P(Yn|ZT1:n, Y—n) P(zn|z—pn), (7.13)

where z_,, refers to all the latent variables except z,, (and likewise for y_,,). This potential can be
plugged into the updates described in the previous section.

To understand DPVTI applied to filtering problems, it is helpful to contemplate three possible
fates for a particle at time 7 (illustrated in Fig. 7.4.1):

e Selection: A single continuation of particle k has non-zero weight. This can be seen as a
deterministic version of particle filtering, where the sampling operation is replaced with a

max operation.

e Splitting: Multiple continuations of particle k have non-zero weight. In this case, the particle

is split into multiple particles at the next iteration.
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(A) DPVI (B) Particle Filtering

Figure 7.4.1: Schematic of DPVI versus particle filtering for filtering problems. Illustration of
different filtering scenarios over 2 time steps in a binary state space with X' = 3 particles. The
number in each circle indicates the binary value of the corresponding variable. Arrows indicate the
evolution of the particles. (A) DPVI: The size of the putative particles represents the score of the
particle. The K continuations with highest score are selected for propagation to the next time step.
The size of the new particle set corresponds to the normalized score. Particle P1 is split, P2 is
deleted and one putative particle from P3 is selected. (B) Particle filtering: The size of the node
represents the weight of the particle for the resampling step.

e Deletion: No continuations of particle £ have non-zero weight. In this case, the particle is

deleted from the particle set.

Similar to particle filtering with resampling, DPVI deletes and propagates particles based on their
probability. However, as we show later, DPVI is able to escape some of the problems associated

with resampling.

7.5 Related work

DPVI is related to several other ideas in the statistics literature:

e DPVI is a special case of a mixture mean-field variational approximation (Jaakkola and Jor-

dan, 1998; Lawrence, 2000):

K N
Qz) = Qk) ] Qenlk). (7.14)

k=1 n=1
In DPVL, Q(k) = w* and Q(z,,|k) = §[z,,z"]. From the simple restriction that the com-
ponent distributions must be delta functions, we derived a new algorithm that is simpler
and more efficient than mixture mean-field (which requires separate updates for the mixture

weights), while sacrificing some of its expressivity. Another distinct advantage of DPVI is
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that the variational updates do not require the additional lower bound used in general mixture

mean-field, due to the intractability of the mean-field updates.

When K = 1, DPVIis equivalent to iterated conditional modes (ICM; Besag, 1986), which
iteratively maximizes each latent variable conditional on the rest of the variables. This algo-
rithm is simple to implement, efficient (relative to variational and Monte Carlo algorithms),
and has been successfully applied to computer vision tasks such as reconstruction and seg-
mentation of Markov random fields. However, the algorithm is susceptible to local optima

without the aid of relaxation techniques like simulated annealing (Greig et al., 1989).

DPVl1 s conceptually similar to nonparametric variational inference (Gershman et al., 2012),
which approximates the posterior over a continuous state space using a set of particles con-
volved with a Gaussian kernel (see Miller et al., 2016, for more sophisticated extensions
of this idea). This approach was shown to be effective for probabilistic models that lack
the conjugate-exponential structure required for exact mean-field inference. Because non-
parametric variational inference approximates continuous densities, it is inapplicable to the

discrete problems considered here.

Frank et al. (2009) used particle approximations within a variational message passing al-
gorithm. The resulting approximation is “local” in the sense that the particles are used to
approximate messages passed between nodes in a factor graph, in contrast to the “global”
approximation produced by DPVI, which attempts to capture the distribution over the entire
set of variables. It is an interesting question for future research to understand what classes of

probabilistic models are better approximated using local vs. global approaches.

lonides (2008) described a truncated version of importance sampling in which weights falling
below some threshold are set to the threshold value. Ionides (2008) showed that truncation
reduced sensitivity to the proposal distribution and derived optimal truncations as a function
of the number of samples. This is similar (though not equivalent) to the DPVI setting where

latent variables are sampled exhaustively and without replacement.

Schniter et al. (2008) described an approximate inference algorithm, fast Bayesian matching

pursuit, which can be viewed as a special case of DPVI applied to Gaussian mixture models.

In Jones et al. (2003), a shotgun stochastic search algorithm is suggested, which proposes
local changes to the latent variables with probability proportional to the unnormalized pos-
terior. While this method of evaluating local changes is similar to our coordinate algorithm
for the DPVI objective, it is important to note that DPVI is not a stochastic search algorithm
(unless K = 1): It maintains a collection of particles in order to approximate the posterior

distribution, which is important for applications that require a representation of uncertainty.
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¢ Finally, DPVlis closely related to the problem of finding the K most probable latent variable
assignments (Flerova et al., 2012; Yanover and Weiss, 2003). We view this problem through
the lens of particle approximations, connecting it to both Monte Carlo and variational meth-
ods. The techniques developed for finding the K -best assignments could be fruitfully applied
to optimizing the DPVI objective function.

Our experimental strategy is to compare DPVI with popular algorithms that have similar compu-
tational complexity, which is why we focus on particle filtering, Gibbs sampling and mean-field
approximations. Although mixture mean-field will by definition lead to a better approximation, its
computational complexity is considerably greater, which may explain why it is has never achieved
the popularity of standard mean-field approaches. Some of the approaches listed above are not
applicable to the discrete setting (nonparametric variational inference and fast Bayesian matching
pursuit), and some are point estimators instead of true probabilistic approximations (iterated condi-

tional modes and shotgun stochastic search).

7.6 Experiments

In this section, we compare the performance of DPVI to several widely used approximate inference
algorithms, including particle filtering, Gibbs sampling and variational methods. We first present a
didactic example to illustrate how DPVI can sometimes succeed where particle filtering fails. We
then apply DPVI to four popular but intractable probabilistic models: the Dirichlet process mixture
model (DPMM; Antoniak, 1974; Escobar and West, 1995), the infinite HMM (iHMM; Beal et al.,
2002; Teh et al., 2006b), the infinite relational model (IRM; Kemp et al., 2006) and the Ising model.
The results for the DPMM and the Ising model are provided in Appendix C.

7.6.1 Didactic example: binary HMM

As a didactic example, we use a simple HMM with binary hidden states (x) and observations (y):

P(

Pzpy =1z, =1)=0

P(yn = 0lzn =0) = 5o

Py, = Uz, = 1) = B, (7.15)

ZTpy1 =0z, =0) = g

with ap, a1, By, and f all less than 0.5. Constraining the parameters to be less than 0.5 makes
some sequences more likely; approximating the posterior using a particle filter (with resampling)

may result in capturing only these sequences. We will use this model to illustrate how DPVI differs
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DPVI Monte Carlo Mean-Field
State Seq.  Weight State Seq. Mean-Field
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Q(z2 = 0) =0.15

(B) Pr(zg=1,z; = 0,22 = 1|y) = 0.35 Pr(zg =1,71 =0,20 = 1]y) = 0.4

Figure 7.6.2: Comparison of approximate inference schemes. (A) Approximating families for
DPVI, Monte Carlo and mean-field. (B) Approximating the posterior probability of a sequence
(zo = 1,21 = 0,79 = 1) for the above 3 schemes on a binary HMM. Given the weights for
different sequences in DPVI the posterior probability is the weight corresponding to that sequence.
For Monte Carlo approximation, the posterior can be approximated from the normalized counts of
sampled (zo = 1,27 = 0,22 = 1) sequences. Finally, for the mean-field approximation, we have
Pr(zo = 1,71 = 0,22 = 1ly) = Q(z0 = 1)Q(z1 = 0)Q(x2 = 1).

from particle filtering. Fig. 7.6.2 compares several inference schemes for this model.

For illustration, we use the following parameters: ag = 0.2, oy = 0.1, 3y = 0.3, and 37 = 0.2.
Suppose you observe a sequence generated from this model. For a sufficiently long sequence, a
particle filter with resampling will eventually delete most conditionally unlikely particles, due to
the fact that there is some probability on each step that any given unlikely particle will be deleted.
The particle filter will thus suffer from degeneracy for long sequences. On the other hand, without
resampling the approximation will degrade over time because conditionally unlikely particles are
never replaced by better particles. For this reason, it is sometimes suggested that resampling only
be performed when the effective sample size (ESS) falls below some threshold.

The ESS is calculated as ESS = _f_ll(T)? A low ESS means that most of the weight is being
placed on a small number of particles, and hence the approximation may be degenerate (although
in some cases this may mean that the target distribution is peaky). We evaluated particle filtering

with multinomial resampling on synthetic data generated from the HMM described above. Approx-

Pr(zp=1,7; =0,22 = 1|y) = 0.32
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Figure 7.6.3: HMM with binary hidden states and observations. Total marginal error computed
for a sequence of length 200. For particle filtering the total error for every ESS value is averaged
over 5 sequences generated from the HMM; in addition, for each sequence we reran the particle
filter 5 times (thus 25 runs total). Note the logarithmic scale of the x-axis. Error bars and the thin
black lines correspond to standard error of the mean.

imation accuracy was measured by using the forward-backward algorithm to compute the hidden
state posterior marginals exactly and then comparing these marginals to the particle approximation.
Fig. 7.6.3 shows performance as a function of ESS threshold, demonstrating that there is a fairly
narrow range of thresholds for which performance is good. Thus in practice, successful applications

of particle filtering may require computationally expensive tuning of this threshold.

In contrast, DPVI achieves performance comparable to the optimal particle filter, but without a
tunable threshold. This occurs because DPVI uses an implicit threshold that is automatically tuned
to the problem. Instead of resampling particles, DPVI deletes or propagates particles deterministi-
cally based on their relative contribution to the variational bound. We can always incrementally add
particles, unlike tuning the threshold. So although K can be viewed as a tuning parameter, we can
adapt it with relatively little expense, monotonically increasing the approximation quality in a way

that can be easily quantified.

7.6.2 Infinite HMM

We utilize DPVI for inference in the iHMM model introduced in Section 2.2.2. We show the per-

formance of the model on a synthetic and two real datasets.
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Method Runtime (sec)
DPVI(K =1) 1.28
| == 0P DPVI (K = 10) 3.56
mmm Particle filter (M) DPVI (K = 100) 204.42
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Figure 7.6.4: Infinite HMM on the synthetic dataset (A). Results on 500 synthetic data points
generated from an HMM with 10 hidden states. Error is the Hamming distance between the true
hidden sequence and the sampled sequence, averaged over 50 datasets. M: multinomial resampling;
S: stratified resampling. Lower bound is the expected Hamming distance between data-generating
distribution and ground truth. Upper bound is the expected Hamming distance between uniform
distribution and ground truth. (B) Run time comparison for the synthetic iHMM dataset. We denote
particle filtering method by PF.

Synthetic data

We generated 50 sequences with length 500 from 50 different HMMs, each with 10 hidden and 5
observed states. For the rows of the transition and initial probability matrices of the HMMs we used
a symmetric Dirichlet prior with concentration parameter 0.1; for the emission probability matrix,
we used a symmetric Dirichlet prior with concentration parameter 10.

Fig. 7.6.4A illustrates the performance of DPVI and particle filtering (with multinomial and
stratified resampling) for varying numbers of particles (K = 1,10, 100). Performance error was
quantified by computing the Hamming distance between the true hidden sequence and the sampled
sequence. The Munkres algorithm was used to maximize the overlap between the two sequences.
The results show that DPVI outperforms particle filtering in all three cases.

When the data consist of long sequences, resampling at every step will produce degeneracy in
particle filtering; this tends to result in a smaller number of clusters relative to DPVI. The superior
accuracy of DPVI suggests that a larger number of clusters is necessary to capture the latent structure
of the data. Not surprisingly, this leads to longer run times (Fig. 7.6.4B), but it is important to note
that particle filtering and DPVI have comparable per-cluster time complexity.
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Figure 7.6.5: Infinite HMM for the text analysis task. (A) Predictive log-likelihood for the Alice
in Wonderland dataset. (B) Results using the “Alice in Wonderland” dataset. The maximum number
of inferred clusters is C' = 147 for DPVI (K = 100) and C' = 21 for particle filter (K = 100). As
expected, the per cluster runtime of the two methods are comparable.

Text analysis

We next analyzed a real-world dataset, text taken from the beginning of “Alice in Wonderland”, with
31 observation symbols (letters). We used the first 1000 characters for training, and the subsequent
4000 characters for test. Performance was measured by calculating the predictive log-likelihood.

We fixed the hyperparameters @ and -y to 1 for both DPVI and the particle filtering.

We ran one pass of DPVI (filtering) and particle filtering over the training sequence. We then
sampled 50 datasets from the distribution over the sequences. We truncated the number of states
and used the learned transition and emission matrices to compute the predictive log-likelihood of the
test sequence. To handle the unobserved emissions in the test sequence we used “add-4" smoothing

with § = 1. Finally, we averaged over all the 50 datasets.

We also compared DPVI to the beam sampler (Van Gael et al., 2008), a combination of dynamic
programming and slice sampling, which was previously applied to this dataset. For the beam sam-
pler, we followed the setting of Van Gael et al. (2008). We run the sampler for 10000 iterations
and collect a sample of hidden state sequence every 200 iterations. Fig. 7.6.4B shows the predictive
log-likelihood for varying numbers of particles. Even with a small number of particles, DPVI can
outperform both particle filtering and the beam sampler.
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Figure 7.6.6: Infinite HMM results for the user behavior analysis task. (A) Predictive log-
likelihood vs iteration for the user behavior dataset. The error bars correspond to the standard
error and are computed over 20 runs. In every iteration of DPVI and particle filtering, we do a
forward filtering-backward smoothing pass over all the sequences of the dataset. (B) Predictive log-
likelihood after 3000 iterations of DPVI, Gibbs, particle filter and mean field for the user behavior
dataset (with 1000 data points as held-out). The best performance is achieved by DPVI with 5-10
particles and also the Gibbs sampler. Run time for each epoch is as follows: 0.726 sec for mean
field, 0.593 sec for Gibbs, 4.52 sec for particle filter with 10 particles, and 4.74 sec for DPVI with
10 particles.
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Figure 7.6.7: Infinite HMM results for the user behavior analysis task. Lower bound vs iteration
for the user behavior dataset. The error bars correspond to the standard error and are computed over
20 runs. In every iteration of DPVI, we do a forward filtering-backward smoothing pass over all the
sequences of the dataset.
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User behavior analysis

We analyzed a dataset of user behavior in a photo editing software application. The dataset contains
sequences of edits applied by users to different photos. An iHMM can be utilized for better under-
standing the high-level tasks of the users. That is, a sequence of multiple edits may be required to
perform a high-level task such as cropping or masking a photo. QOur dataset contains 30000 edits
from which we use 1000 data points as a held-out set. There are 23 possible observations (edits) in
the dataset. We compare DPVI with 1, 5 and 10 particles with particle filtering, Gibbs sampling and
mean field inference schemes. For all the inference schemes, we set the hyperparameters « and «y to
1. In every iteration of DPVI and particle filtering, we do a forward filtering-backward smoothing
pass over all the sequences of the dataset. Our results, shown in Fig. 7.6.6(B), demonstrate that
DPVI with 5 and 10 particles can converge in fewer iterations compared to other reasonable base-
lines. We illustrate the lower bound (Eq. (7.7)) convergence in Fig. 7.6.7. The results are computed
over 20 runs and for 1, 5 and 10 particles.

It is important to note here that we do not expect DPVI to outperform Gibbs sampling in all
scenarios; when computation time is not strongly limited, we expect DPVI and Gibbs to perform
similarly. This point applies here as well as to the experiments reported in the sections below. We
see DPVI as a useful alternative to Gibbs when the computational budget is low and the required

fidelity of the approximation can be satisfied by capturing a few of the posterior modes.

7.6.3 Infinite relational model (IRM)

The IRM (Kemp et al., 2006) is a nonparametric model of relational systems. The model simultane-
ously discovers the clusters of entities and the relationships between the clusters. A key assumption
of the model is that each entity belongs to exactly one cluster.

Given a relation R ihvolving J types of entities, the goal is to infer a vector of cluster assign-
ments z/ for all the entities of each type j = 1,..., J.> Assuming the cluster assignments for each
type are independent, the joint density of the relation and the cluster assignment vectors can be

written as:
J -
P(R,z',...,2’) = P(Rlz',...,z") [] P(«"). (7.16)
j=1

The cluster assignment vectors are drawn from a CRP(«) prior. Given the cluster assignment vec-
tors, the relations are drawn from a Bernoulli distribution with a parameter 7 that depends on the
clusters involved in that relation. For instance, in a single two-place relation, 7(a, b) is the proba-

bility of having a link between any given pair (z, 7) where ¢ is in cluster a and j is in cluster b.

>The IRM model can be defined for multiple relations but for simplicity we only describe the single relation case.
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Sample animal clusters:

Al: Hippopotamus, Elephant, Rhinoceros

A2: Seal, Walrus, Dolphins, Blue Whale,
Killer Whale, Humpback Whale

A3: Beaver, Otter, Polar Bear

Sample feature clusters:

F1: Hooves, Long neck, Horns

F2: Inactive, Slow, Bulbous Body, Tough Skin
F3: Lives in Fields, Lives in Plains, Grazer
F4: Walks, Quadrupedal, Ground

F5: Fast, Agility, Active, Tail

Figure 7.6.8: Co-clustering of animals and features with an IRM. Co-clustering of animals
(rows) and features (columns) after 50 iterations of DPVI with 10 particles in the infinite relational
model.

More formally, let us define an M dimensional relation R : T% x ...T% s {0,1}, over J
different types. Each relational value is generated according to:

p ; d
R(iy, ... )|zt ... 20 ~ Bem(r)(rfll,...,xi:f ),

(7.17)

where d,,, denotes the label of the type (i.e., d,, € {1,---,J}) and 4, is the entity occupying
position m in the relation. Each entry of parameter matrix 7 is drawn from a Beta(, 3) distribution.
By using a conjugate Beta-Bernoulli model, we can analytically marginalize the parameters 7 (see
Kemp et al., 2006), allowing us to directly compute the likelihood of the relational matrix given the
cluster assignments, P(R|z!,..., z7).

We compared the performance of DPVI with Gibbs sampling, using predictive log-likelihood on
held-out data as a performance metric. The “animals” dataset analyzed by Kemp et al. (2006), was
used for this task. This dataset (Osherson et al., 1991) is a two type dataset R : T} x T» — {0,1}
with animals and features as it types; it contains 50 animals and 85 features.

We removed 20% of the relations from the dataset and computed the predictive log-likelihood
for the held-out data. We ran DPVI with 1, 10 and 20 particles for 1000 iterations. Given the weights
of the particles, we computed the weighted log-likelihood. We also ran 20 independent runs of the
Gibbs sampler and DPVI for 1000 iterations and computed the average predictive log-likelihood.
Every iteration scans all the data points in all the types sequentially. We set the hyperparameters o
and S to 1. Fig. 7.6.8 illustrates the co-clustering discovered by DPVI for the dataset, demonstrating
intuitively reasonable animal and feature clusters.

The results after 1000 iterations are presented in Fig. 7.6.9B. The best performance is achieved
by DPVI with 20 particles. Fig. 7.6.9A shows the predictive log-likelihood for every iteration of
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Figure 7.6.9: Infinite relational model results for the animals dataset (A) Predictive log-
likelihood vs iteration for the animals dataset. The error bars correspond to the standard error
and for both methods are computed over 20 runs. (B) Predictive log-likelihood after 1000 iterations
of DPVI and Gibbs (with 50 burnin iterations) for the animals dataset (with 20 % held-out). DPVI
with 20 particles performs in par with the Gibbs sampler.

DPVI and Gibbs sampling. DPVI with 10 and 20 particles converge in 11 and 18 iterations, re-
spectively. In terms of computation time per iteration of DPVI versus Gibbs, the only difference for
DPVI with one particle and Gibbs is the sorting cost. Hence, for the multiple particle versus multi-
ple runs of Gibbs sampling, the only additional cost is the sorting cost for multiple particles (e.g. 10
or 20). However, this insignificant additional cost is compensated for by a faster convergence rate

in our experiments.

7.7 Conclusions

This chapter introduced a particle-based variational method that applies to a broad class of infer-
ence problems in discrete models. We described a practical algorithm for optimizing the particle
approximation, and showed empirically that it can outperform widely-used Monte Carlo and vari-
ational algorithms. The key to the success of this approach is an intentional selection of particles:
rather than generating them randomly (as in Monte Carlo algorithms), we deterministically choose
a set of unique particles that optimizes the KL divergence between the approximation and the target
distribution.

This approach leads to an interesting view on the problem of resampling in sequential Monte
Carlo. Resampling is necessary to remove conditionally unlikely particles, but the resulting loss of
particle diversity can lead to degeneracy. As we showed in our experiments, tuning an ESS threshold

for resampling can improve performance, but requires finding a relatively narrow sweet spot for the



119 Chapter 7. Discrete particle variational inference

threshold. DPVI achieves comparable performance to the best particle filter by using a deterministic
strategy for deleting and replacing particles and does not require tuning thresholds. Each particle is
guaranteed to be unique and have high probability among all states discovered so far.

DPVI also suggests new hybrids of ideas from Monte Carlo and variational inference. Consider
models where all particle extensions cannot be enumerated. In this setting, one could randomly
choose particle extensions. To use these particles in a Monte Carlo scheme we may need to know
the output probability density of the particle extension mechanism. However, if we use the results
in DPVI, we just need to be able to score the results under the joint probability distribution. No
proposal distribution is needed. This could make it possible to use proposal mechanisms that can be
seen to work well empirically but that are difficult to analyze a priori.

Although our empirical results are promising, much more empirical and theoretical work is
needed to understand the fundamental tradeoffs between variational and Monte Carlo inference.
However, the results for DPVI on several problems are promising, and the approach to defining
variational approximations may be more broadly applicable. We hope this work encourages others
to develop different hybrids of Monte Carlo and variational inference that overcome the limitations

of each approach when used in isolation.
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CHAPTER 8

Conclusion

In this final chapter of the thesis, we summarize the main contributions of the thesis and also sug-
gest some future research directions. We proposed models for analyzing user behavior in software
applications. We focused on three tasks which are common in user modeling: 1) discovering com-
mon usage patterns across different users, 2) identifying different user groups based on their usage
patterns, and 3) personalization and user-dependent recommendation. We cover an overview of our
models for these tasks and also various alternative approaches in Chapter {. A more detailed de-
scription of these models is provided in Chapters 3 to 6. Specifically, we covered latent variable
models on task 1 in Chapters 3 to 5 and the models on the remaining tasks in Chapter 6. For poste-
rior inference in these models, we rely heavily on variational inference as closed-form conditional
posterior distributions are not available for the models. In Chapter 7, we tackle a major limitation
with variational inference in discrete latent variable models. In particular, for complex discrete la-
tent variable models, the bias induced by variational approximations can sometimes lead to poor
predictive performance. We proposed an inference framework which combines the advantages of
both Monte Carlo methods and variational inference. In what follows, we summarize our main

contributions and suggest some future research directions.

Chapter 3: Segmenting user behavior traces with an efficient Bayesian nonpara-
metric approach

Main contributions In Chapter 3, we introduce siHMM a Bayesian nonparametric with efficient
stochastic variational inference. The model is an extension of widely used iHMM and in contrast to
iHMM, it can capture two levels of dynamics implicitly. Compared to hierarchical HMM (HHMM)
models which are used for modeling multiple levels of dynamics, it has a simpler and more efficient

inference scheme. We use the model to segment user behavior traces and identify the points where
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the user switches from one task to another task. We show that the model empirically outperforms
iHMM and performs on par with the more complex HHMM models. We also demonstrate that
the model is not only limited to user modeling; it can be applied to other domains such as activity

recognition and segmenting animal behavior.

Possible research directions Potentially, one can use the state-indepnedent transition vector
learned from an siHMM for summarizing a sequence. This summary vector can be utilized for user
profiling and identifying user groups which is essentially second task from the three tasks that we
focus on for user modeling. Another possible research direction is extending siHMM to more than
two levels of dynamics which is a challenging problem. This requires keeping track of the states
within each segment. Consequently, we will lose the simple and efficient inference scheme that we

have for two-level dynamics.

Chapter 4: Markov jump processes for modeling user behavior traces

Main contributions In Chapter 4 we apply a continuous-time model, MJP, to the task of seg-
menting user behavior traces where we may have observations at unequal time intervals. MJPs are
more realistic for this task compared to their discrete-time counterparts since they allow for tran-
sitions between states at any time point between observations. However, this more realistic model
comes with a price of more complicated and less scalable inference. Available inference algorithms
based on particle MCMC scale poorly and mix slowly. Optimization-based methods such as EM
are inapplicable if the state size is countably infinite (e.g., Bayesian nonparametric MJPs). Finally,
finding the most probable latent trajectory using maximum likelihood approaches will result in de-
generate solutions. We introduce JUMP-means algorithm, a small variance asymptotic approach to
estimating the most probable trajectories in MJPs which does not suffer from the aforementioned

issues.

Possible research directions MIPs are not directly applicable to dataset with multiple levels of
dynamics. We argued in Chapter 3 that this may be a reasonable assumption for user traces where
there could be some structure within each segment (user task). Hence, a hierarchical extension
of MJPs are more suitable for the user behavior segmentation. However, inference in hierarchical
MIJPs is even more challenging compared to HHMM s since we also need to keep track of the dwell
times in different states at multiple levels of the model. A possible direction for extending MJPs
to two level hierarchies could be an approach similar to siHMM where we implicitly model the

hierarchical structure.
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Chapter 5: Topic modeling applied to user behavior traces with spherical HDP

Main contributions Up to this chapter, we assumed a sequential structure for the user trace
data. In Chapter 5, we relax this assumption and treat each user trace as a bag of actions. We
can apply topic models for inferring the topics (i.e., user tasks in our application) to the bag of
actions representation; however, standard topic models ignore the semantic regularities in the action
space. Semantic regularities in this space can encode the similarities between different actions.
Distributional representation of words (e.g., word2vec) are able to capture these regularities in the
natural language but they have not been explored extensively in the context of topic modeling. For
the user action space, Adar et al. (2014) introduce CommandSpace, the distributional representation
in the action space that has been trained on a large dataset of user actions in Adobe photoshop. In
this chapter, we introduce sHDP, an HDP model with vMF observations which can incorporate the
semantic structure of the actions. Our model, performs significantly better than the standard LDA
and also Gaussian LDA (Das et al., 2015) baselines in terms of topic coherence for a user trace data

and also two English text corpora.

Possible research directions Our model uses the pre-trained action and word embeddings and
does not allow for joint learning of the embeddings and the topics. Joint training of these compo-
nents may result in improved performance; that is a hypothesis worth exploring. However, inference
in such models is challenging as we have a more complex observation model. Frameworks such as
structured VAEs (Johnson et al., 2016), which are capable of combining graphical models and neural

network observation models, may be applicable to this problem.

Chapter 6: Multimodal prediction and personalization in software applications
with deep generative models

Main contributions We focus on the tasks of identifying different user groups and personaliza-
tion in Chapter 6. Given a dataset of image and edit pairs for users, our goal is to develop a model
for predicting the edit for a new image. Available prediction models are limited in that they only
propose a single prediction or are not readily personalized. Multimodal predictions are important
in cases where, given an input from the user, there could be multiple possible suggestions from the
application. In photo editing/enhancement, a user might want to apply different kinds of edits to the
same photo depending on the effect he or she wants to achieve. A model should therefore be able
to recommend multiple enhancements for different user groups and styles. In this chapter, we intro-
duce CGM-VAE, a framework for multimodal prediction that can be extended for personalization
tasks. CGM-VAE can identify diverse set of user groups and propose edits from different styles.

The personalized variant of the model can recommend edits based on the history of user’s edits. We
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demonstrate on three datasets that our model can outperform several reasonable baselines in terms

of the predictive log-likelihood and also error in the LAB space.

Possible research directions CGM-VAE model assumes each user belongs to a single mixture
component. A more realistic assumption is that each image-edit pair for each user can belong
to a different mixture component. This is reminiscent of admixture models and requires a more
complicated inference scheme. Although in theory structured VAE can work, the flexibility of the
model at both the latent structure and the observation model may make the inference even more

challenging.

Chapter 7: Improving variational inference for latent variable models: discrete
particle variational inference

Main contributions Inference in our proposed latent variable models in Chapters 3 to 6 is based
on variational inference which in practice has been shown to be more scalable compared to Monte
Carlo inference approaches. However, without flexible variational distributions, we may have poor
posterior approximations. For instance, a poor variational approxjmétion may cover only a single
mode in a multimodal posterior distribution. In Chapter 7, we introduce a new approximate infer-
ence method, called DPVI, that aims to combine key strengths of both Monte Carlo and variational
inference. In DPVI, similar to “particle approximation” output by Monte Carlo methods, we use a
weighted collection of samples as the approximating family for variational inference. We distribute
the samples in such a way that they cover high probability regions of the target distribution, but
without the samples all devolving onto the mode of the distribution. We compare the performance
of this new inference method with several baselines on sequential and non-sequential latent variable

models and show it has superior time/accuracy trade-offs compared to these alternatives.

Possible research directions The major limitation of DPVI is that it is restricted to discrete
latent variable models. Extending it to models with continuous latent variables can be done by com-
bining mean-field (for continuous variables) and DPVI. However, this approach is not a principled
way to make the DPVI work on models with mixed variables; proposing an algorithm that can cover
both types of variables in a unified way can be a challenging task. Extending DPVI type methods

for mixed latent variable models allows us to apply them to models such as sSHDP or siHMM.



APPENDIX A

Bayesian Nonparametric MJPs for SVA

We show that the I'T'P retains the key properties of the I'EP (Saeedi and Bouchard-Coté, 2011):
conjugacy and exchangeability. Let T; = Z;?:l 1[zj_1 = i]tjand F; £ Z§:1 1[z;_1 = i]d,; be

the sufficient statistics of the observations.

Proposition A.0.1. The I'TP is a conjugate family: p; |Uy ~ GamP(Bu;,~;), where p1, = po + F;
and v, = v+ T;.

Proof sketch. The proof is analogous to that for Proposition 2 in (Sacedi and Bouchard-Cété, 2011).
The key additional insight is that X ~ Gam(fa,b)andY | X ~ Gam(3, X) are conjugate: X |Y ~
Gam(B(a+1),b+Y). O

In order to give the joint distribution of the times 7 £ Tx £ (t1,...,tx), we first derive
the predictive distribution for the I'TP, (21, tk+1) | Ux. We make use of the following family of

densities.

Definition A.0.2 (Shaped Translated Pareto). Let 3 > 0,a > 0,y > 0. A random variable S is
shaped translated Pareto, denoted S ~ STP(3, a, 7y), if it has density

,Yaﬂ tﬂ—l
(B,aB) (t + )8’

£#) =

where B(a,b) = % is the beta function.

Proposition A.0.3. The predictive distribution of the I'TP is

(2, tosn) [ U ~ B, % STP(B, L, 1,7, ): (A1)
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Proof. By Proposition A.0.1, it suffices to show that if u ~ TP(Buo,7), sl ~ i, and t|p ~
Gam(B, ||u||), then (s, t) ~ i x STP(B, ko, Y), where kg = ||uo|. Letting z = |||, the distribution

of tis
oo 00 $5t5—16~z‘t ,yﬁnozﬂno—le—'ym
t) = t dz = d
p(t) /0 p(t | 2)p(z)dz / o s
= __—_’Yﬁﬁotﬁgl ) ooxﬁ(1+'€0)—1e—(’v+t)zd$ — 75“0155’1 L(B(1 + ko)) .
(BT (Bko) Jo T(B)T(Bro) (7 + t)B+ro0)

O

We can now show that the process is exchangeable by exhibiting the joint distribution of waiting
times:

Proposition A.0.4. Let t;, = ()1, ,th ) be the waiting times following state m. Then t}, is

an exchangeable sequence with joint distribution

T(Bro + Km))  (TIEm 5,5
DBYKm (g + YK 7, )Bls0+ Kom)

p(th) = (A.2)

Proof sketch. Take the product of the predictive distributions of 7,1, . .., Timk,, - O



APPENDIX B

Sample results for multimodal prediction in software

applications with deep generative models

B.1 Details of experiments

Hyperparameter settings For training all the models, we use two possible learning rates 0.001
and 0.0001. For the MDN, MLP and CGM-VAE, we use 4 hidden layers with the same number of
hidden nodes (500 or 1000) in all the layers. For LBN, we use two deterministic hidden layers with
linear activation function same as Dauphin and Grangier (2015) and 500 or 1000 nodes; we also use
two stochastic layers with the same number of nodes with sigmoid activation functions following
Dauphin and Grangier (2015). We try two possible minibatch sizes of 100 and 200. For the models
which need the number of mixture components (i.e., CGM-VAE and MDN), we select this number
from the set {1, 3, 5, 10}. Finally, for the CGM-VAE model, we choose the dimension of the latent
variable from {2, 20}. We choose the best hyperparameter setting based on the variational lower
bound of the held-out dataset.

Baselines We choose a set of reasonable baselines that can cover related models in both domains
of multimodal prediction and automatic photo enhancement. As mentioned in Section 2, literature
on the automatic photo enhancement can be divided into two main categories of models: 1) para-
metric methods which typically minimize an MSE loss: MLP and MDN baselines capture these
methods, and 2) nonparametric methods that are not reasonable baselines for us since their pro-
posed edits are destructive (e.g., Lee et al., 2015) or do not benefit from other users’ information
(e.g., Koyamaetal., 2016). We also add LBN as a strong baseline since it has been shown that it can
outperform the MDN and other standard multimodal prediction baselines (Dauphin and Grangier,
2015) .
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B.1. Details of experiments 128

Splitting the datasets We split each dataset into random subsets of train, validation and test
in a way that for all three datasets (i.e., casual, frequent and expert users) we have subsets with
reasonable sizes. Larger training sets may result in non-representative validation and test sets for our
small dataset (i.e., expert users), and larger test and validation sets may result in non-representative
training set for the same dataset. The ratio that we used is just one way for having a reasonable size
subsets; however, we showed for these random subsets and across all three datasets and for three

different evaluation metrics our approach outperforms all the other baselines significantly.



129 Chapter B. Sample results for multimodal prediction

B.2 Sample edits from CGM-VAE and sample user categorization
from P-VAE
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Figure B.2.1: Image 4876 from Adobe-MIT5k dataset
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B.2. Sample edits from CGM-VAE and sample user categorization from P-VAE
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Figure B.2.2: Image 4855 from Adobe-MIT5k dataset
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Figure B.2.3: Image 4889 from Adobe-MIT5k dataset



132

B.2. Sample edits from CGM-VAE and sample user categorization from P-VAE
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B.2. Sample edits from CGM-VAE and sample user categorization from P-VAE
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B.2. Sample edits from CGM-VAE and sample user categorization from P-VAE
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APPENDIX C

More experiments on discrete particle variational in-

ference (DPVI)

C.0.1 Dirichlet process mixture model

In this section, we demonstrate the performance of DPVI on DPMM introduced in Section 2.2.1".

Synthetic data

We first demonstrate our approach on synthetic datasets drawn from various mixtures of bivariate
Gaussians (see Table C.1). The model parameters for each simulated dataset were chosen to create
a spectrum of increasingly overlapping clusters. In particular, we constructed models out of the

following building blocks:

p1 = (00,00), p2 = (05,05

0.
L= (%0 0m)  Z2=(0003)-

For the DPMM, we used a Normal likelihood with a Normal-Inverse-Gamma prior on the compo-

nent parameters:
y’ndlxn =k~ N(mkd’ Ulzcd)7 Mkd ~ N(Ov al%d/T)> gzd ~ IG(CL, b)a (Cl)

where d € {1, 2} indexes observation dimensions and 1G(a, b) denotes the Inverse Gamma distri-
bution with shape a and scale b. We used the following hyperparameter values: 7 = 25,4 = 1,b =
1,a = 0.5.

"These experiments are done by Tejas Kulkarni a coauthor in Saeedi et al. (2017b).
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Dataset PF (K = 20) MF DPVI(K =1) DPVI(K = 20)

DI: [u1, 42, 8u3], 51 0.97£0.03  0.80+0.10  0.93+0.05 0.99£0.02
D2: [u1,4u0,8u3], 52 0.89+0.05 0.63+£0.02  0.86+0.07 0.90-£0.03
D3: [u1,2u2,412], 51 0.58+0.12  0.53+£0.05  0.51+0.03 0.74+0.16
D4: [u1,2u0, 4], 52 0.5040.06  0.2940.05  0.46:0.05 0.55-0.07
D5: [, po, 2u2), 81 0.0540.05  0.2840.12  0.014+0.02 0.1440.10
D6: [u1, p2, 210}, T2 0.1540.08  0.124£0.03  0.1140.06 0.19+0.07

Table C.1: Clustering accuracy (V-Measure) for DPMM. Each dataset consisted of 200 points
drawn from a mixture of 3 Gaussians. For each dataset, we repeated the experiment 150 times
by iterating through random seeds, reporting mean and standard error. The left column shows the
ground truth mean for each cluster and the covariance matrix (shared across clusters). PF denotes
particle filtering and MF denotes mean-field.

Number of particles DPVI  Particle Filtering

K=10 15.20s 14.71s
K =50 153.75s 184.17s
K =100 567.84s 699.43s

Table C.2: Run time comparison for DPMM with synthetic data using dataset from Table 1. The
run time of DPVI is slightly better than particle filtering for a single pass through the dataset.

Clustering accuracy was measured quantitatively using V-measure (Rosenberg and Hirschberg,
2007). V-measure is an entropy-based measure which explicitly measures how successfully the
criteria of homogeneity and completeness have been satisfied. Fig. C.0.1 graphically demonstrates
the discovery of latent clusters for both DPVI as well as particle filtering. As shown in Table C.1, we
observe only marginal improvements when the means are farthest from each other and variances are
small, as these parameters leads to well-separated clusters in the training set. However, the relative
accuracy of DPVI increases considerably when the clusters are overlapping, either due to the fact
that the means are close to each other or the variances are high. One factor contributing to greater
performance of DPVI might be the diversity term in the variational formulation.

An interesting special case is when K = 1. In this case, DPVI is equivalent to the greedy
algorithm proposed by Daume (2007) and later extended by Wang and Dunson (2011). In fact, this
algorithm was independently proposed in cognitive psychology by Anderson (1991). As shown in
Table C.1, DPVI with 20 particles outperforms the greedy algorithm, as well as particle filtering
with 20 particles. We also demonstrate the run-time performance of DPVI compared to particle
filtering in Table C.2. It can be seen in our experiments that DPVI tends to be comparable to
particle filtering or sometimes more efficient in terms of run-time for the same task, although the

theoretical complexity is the same.
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Ground Truth Particle Filter DPVI
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Figure C.0.1: DPMM clustering of synthetic datasets. We treat DPMM as a filtering problem,
analyzing one randomly chosen data point at a time. Colors indicate cluster assignments. Each row
corresponds to one synthetic dataset; refer to Table 1 for corresponding quantitative results. Column
1: Ground truth; Column 2: particle filtering; Column 3: DPVI. The DPVI filter scales similarly to
the particle filter but does not underfit as severely.
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Spike sorting

Spike sorting is an important problem in experimental neuroscience settings where researchers col-
lect large amounts of electrophysiological data from multi-channel tetrodes. The goal is to extract
from noisy spike recordings attributes such as the number of neurons, and cluster spikes belong-
ing to the same neuron. This problem naturally motivates the use of DPMM, since the number of
neurons recorded by a single tetrode is unknown. Previously, Wood and Black (2008) applied the
DPMM to spike sorting using particle filtering and Gibbs sampling. Here we show that DPVI can
outperform particle filtering, achieving high accuracy even with a small number of particles.

We used data collected from a multiunit recording from a human epileptic patient (Quiroga
et al., 2004). The raw spike recordings were preprocessed following the procedure proposed by
Quiroga et al. (2004), though we note that our inference algorithm is agnostic to the choice of
preprocessing. The original data consist of an input vector with D = 10 dimensions and 9196 data
points. Following Wood and Black (2008), we used a Normal likelihood with a Normal-Inverse-

Wishart prior on the component parameters:
Ynltn =k~ N(mg, Ag),  my ~N(0,Ax/7),  Ap~IW(Ag,v), (C2)

where IW(Ag, v) denotes the Inverse Wishart distribution with degrees of freedom v and scale
matrix Ag. We used the following hyperparameter values: v = D + 1, Ag = I,7 = 0.01, = 0.1.

We compared our algorithm to the current best particle filtering baseline, which uses stratified
resampling (Wood and Black, 2008; Fearnhead, 2004). The same model parameters were used for
all comparisons. Qualitative results, shown in Fig. C.0.2B, demonstrate that DPVI is better able
to separate the spike waveforms into distinct clusters, despite running DPVI with 10 particles and
particle filtering with 100 particles. We also provide quantitative results by calculating the held-out
log-likelihood on an independent test set of spike waveforms. The quantitative results (summarized
in Fig. C.0.2C) demonstrate that even with only 10 particles DPVI can outperform particle filtering
with 1000 particles.

C.0.2 Ising model

So far, we have been studying inference in directed graphical models, but DPVI can also be applied

to undirected graphical models. We illustrate this using the Ising model® for binary vectors z &
{_1’ +1}N:

f(z) = exp {%xWxT + G:ET} , (C.3)

’These experiments are done by Sam Gershman a coauthor in Saeedi et al. (2017b).
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Method Predictive LL
DPVI (K = 10) -3.2474x10% (C = 3)
DPVI (K = 100) -1.3888x10°% (C = 3)
PF (K = 10) -1.477140.21 x 108 (C = 37)
PF (K = 100) -5.67574+1.14 x 10° (C = 13)
PF (K = 1000) -3.2965x10% (C = 5)
©
Method Run time
DPVI (K = 10) 36.20s
DPVI (K = 50) 144.6s
DPVI (K = 100) 313.8s
PF (K = 10) 124s
PF (K = 50) 334.2s
Y PF (K = 100) 45425
(B) (D)

Figure C.0.2: Spike Sorting using the DPMM. Each line is an individual spike waveform, colored
according to the inferred cluster. (A) Result using particle filtering with 100 particles and stratified
resampling as reported by Wood and Black (2008). (B) Result using DPVI. The same model pa-
rameters were used for both particle filtering and DPVI. (C) Spike sorting predictive log-likelihood
scores for 200 test points. The best performance is achieved by DPVI with 100 particles. Shown
in parentheses is the maximum a posteriori number of clusters, C. (D) Run time comparison for
DPMM obtained by using the spike sorting dataset. The run time of DPVI is slightly better than
particle filtering.
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Figure C.0.3: Ising model results. Difference between DPVI and mean-field lower bounds on the
partition function. Positive values indicates superior DPVI performance. (A) Low coupling strength;
(B) high coupling strength.

where W € RY*Y and # € RY are fixed parameters. In particular, we study a square lattice
ferromagnet, where W;; = [ for neighboring nodes (0 otherwise) and 6; = 0 for all nodes. We
refer to 3 as the coupling strength. This model has two global modes: when all the nodes are set
to 1, and when all the nodes are set to 0. As the coupling strength increases, the probability mass
becomes increasingly concentrated at the two modes.

We applied DPVI to this model, varying the number of particles and the coupling strength. At

each iteration, we evaluated the change in log probability that would result from setting % = 1:

ah =Y Wpnak +6n, (C.4)

n'Ecn

and likewise the change for setting Z¥ = 1 can be computing by simply flipping the sign of ak.
Ordering these changes, we then took the top K to determine the new particle set.

To quantify performance, we computed the DPVI variational lower bound on the partition func-
tion and compared this to the lower bound furnished by the mean-field approximation (see Wain-
wright and Jordan, 2008). Fig. C.0.3A shows the results of this analysis for low coupling strength
(8 = 0.01) and high coupling strength (3 = 100). DPVI consistently achieves a better lower
bound than mean-field, even with a single particle, and this advantage is especially conspicuous for
high coupling strength. Adding more particles improves the results, but more than 3 particles does
not appear to confer any additional improvement for high coupling strength. These results illus-
trate how DPV1 is able to capture multimodal target distributions, where mean-field approximations
break down (since they cannot effectively handle multimodality).

To illustrate the performance of DPVI further, we compared several posterior approximations for

the Ising model in Fig. C.0.4. In addition to the mean-field approximation, we also compared DPVI
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Samples Samples

DPVI DPVI

Mean field

Figure C.0.4: Ising model simulations. Examples of posteriors for the ferromagnetic lattice at
low coupling strength. (Top) Two configurations from a Swendsen-Wang sampler. (Middle) Two
DPVI particles. (Bottom left) Mean-field expected value. (Bottom right) Loopy belief propagation
expected value.

with two other standard approximations: the Swendsen-Wang Monte Carlo sampler (Swendsen and
Wang, 1987) and loopy belief propagation (Murphy et al., 1999). The sampler tended to produce
noisy results, whereas mean-field and BP both failed to capture the multimodal structure of the

posterior. In contrast, DPVI with two particles perfectly captured the two modes.
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